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ABSTRACT Wireless sensors network (WSN) is widely used for environmental monitoring, surveillance,
healthcare, and security services. One of the most critical challenges that WSN facing is the heavy
computation requirements and limited energy storage. The recent development of radio frequency-based
(RF) wireless power transfer (WPT) and mobile computation offloading to cloud provide a promising
solution to overcome these shortcoming. In this paper, we consider a multi-user Mobile/Multi-Access edge
computing (MEC) aided WSN powered by the WPT, where BSs are equipped with multiple antennas jointly
service the whole sensors, the sensor node is powered by the WPT only. An optimal multi-user computation
offloading strategy is proposed, where sensor nodes choose to operate in either the offloading or the local
computing. In addition, perfect channel state information (CSI) and imperfect CSI are taken into account.
We study the optimization of computation task offloading in MEC aided WSN under the conditions of
perfect CSI and imperfect CSI. In particular, the optimal dynamic time division duplex (D-TDD) factor
is investigated. Numerical results confirm the advantages of the proposed computation offloading strategy
over the conventional local computation design in handing computationally heavy tasks.

INDEX TERMS Wireless sensor networks, wireless power transmitting, energy harvesting, computation
offloading.

I. INTRODUCTION
Wireless sensors network (WSN) is widely used for envi-
ronmental monitoring, surveillance, healthcare, and security
services. With the gaining popularity of Internet-of-Things
(IoT) in 5G and driven by smart applications, more intelligent
applications such as target recongition (TR), environment
perception based on WSN may meet a great opportunity
to emerge. Those applications usually have a heavy com-
putation requirements, which leads to powerful hardware
equipment and high energy consumption in WSN. However,
the contridiction is that WSN terminals are usually small size
and small battery storage equiped, and inmany cases ofWSN,
especially when massive amount of sensors are deployed,
wired power supply is not economic and sometimes even
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not feasible. Consequently, these facts lead to the challenges
that WSN is facing (1) Convenient lifelong energy supply,
(2) Continuously powerful computing capability.

Mobile/Multi-Access edge computing (MEC) aided WSN
and wireless power transmitting (WPT) techniques provide
two alternative ways to address the issue [1]–[5]. Wireless
power transmission offers the possibility of not charging
the terminals, reducing the size of the electronic device
and improving its endurance reliability. With MEC aided
WSN, the huge data generated by the distributed sensors can
be offloaded to MEC platform, which can further improve
the performance and reduce energy consumption in WSN.
Therefore, academia and industry have great enthusiasm for
the study of wireless powered transmission and MEC aided
WSN.

The adoption of wireless power transmission and MEC
capability faces the following two problems: i) Wireless
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energy transmission efficiency. Due to the physical character-
istics of wireless channels, wireless transmission efficiency
is not efficient, especially for omnidirectional antenna trans-
mission. ii) Offloading strategy of cloud computing under
the limitation of energy supply. Due to the limited energy of
mobile nodes, how to design the optimal data scheduling and
offloading strategy, guarantee the service quality and improve
the energy efficiency has become an important research field.

Simultaneous wireless information and power transfer is
an effective way to prolong the battery life of the battery
equipped wireless devices [6], [7]. Recently, simultaneous
wireless information and power transfer has attracted con-
siderable research interests from wireless communication
since it is identified as a promising approach to solve the
energy scarcity problem in energy-constrained environments.
In WPT design, with a base station continously broadcasting
energy, the wireless sensors can harvest the energy with its
antenna and power its functional modules. There are several
taxonomies of WPT, including the ‘‘near-field’’ electromag-
netic coupling, i.e. the inductive and capacitive coupling, and
the ‘‘far-field’’ radiation in the form of microwaves or lasers.
Due to the high efficiency of electromagnetic coupling and
short distance between the energy source and destination,
the ‘‘near-field’’ WPT can achieve a relative high end-to-
end transmiting efficiency. In [8], the author implemented a
WPT system to power a laptop with peak power consumption
of 12W at a range of 0.7m, whose end-to-end efficiency is
around 50%.

One the other side, far-field WPT techniques use radio-
frequency (RF) signals to convey the energy, which may
suffer the channel attenuation and scatter, degradating the
transmitting efficiency. The fundamental tradeoff in far-
field WPT is directionality and the transmission efficiency.
According to the law of conservation of energy, the power
density of an omnidirectional antenna decreases with 1/r2,
resulting in the received power several magnitude less than
the transmited power. The promising way to improve the
end-to-end WPT efficiency is to adopt the directional anten-
nas or energy beamforming techniques. In [9], the author
proposed a scheme for simultaneous wireless information
and power transfer in MIMO boardcasting networks. Opti-
mal energy beamforming in MIMO system is derived and
the tradeoff between energy and rate is explored. In [10],
the author proposed an adaptive directional WPT scheme,
the aggregate received power of a typically node is analyzed
and the optimal charging radius is derived by exploiting the
tradeoff between the power intensity of the energy beam and
the number of nodes.

From the aspect of the way to harvest energy from wireless
signals, it can be also divided into two categories. Generally
speaking, there are two representative protocols for simul-
taneous wireless information and power transfer systems:
1) time switching protocol [11]; and 2) power splitting proto-
col [12]–[15]. For power splitting, the received signal at each
antenna is splited into two separate streams with difference
power levels for energy harvester and information decoder.

While for time splitting, each antenna periodically switches
between energy harvester and information receiver, which
could also be call time division duplex (TDD).

With the target of improve the energy efficiency of
WSN, MEC enabled approaches are also studies in current
researches. The combination of wireless power transmission
and MEC aided is an effective means to solve the insufficient
computing amount and energy supply of mobile nodes [10],
[16]–[19]. In [16], the authors propose a user cooperative
scheme in which the near user can forward the far user’s tasks
to the edge cloud utilizing its more harvested energy. In [17],
a distributed unloading decision-making algorithm is pro-
posed, which USES the potential game to solve the unloading
equilibrium solution by determining whether the node is the
unloading revenue node. Reference [18] proposes a problem
of integrated node computing power scheduling and cloud
computing unloading in mobile cloud computing to optimize
the probability of successful completion of calculated data.
And in [19], a mixed-timescale joint computational offload-
ing and wireless resource allocation algorithm for latency-
critical applications is proposed, aiming at minimizing the
total energy consumption.

Even though with WPT and MEC aided, there are still
several critical issues that need to be addressed in WSN:
1) the harvested energy by sensor nodes is still scarce. Few
works have considered the large asymmetry between uplink
and downlink in WSN, which means the data transmission
in UL and DL are quite different, and usually are dynamic.
2) The radio link is limited compared to the data generated
by hunderds of sensors. It’s critical to design a offloading
profile to maximize the total amount of prossed data. 3) The
imperfect CSI knowledge between the distributed sensors and
the base stations (BSs) may affect the overall performance
and should be quantified. However, most of state-of-art works
mainly focus on perfect CSI scenario.

Hence, in this paper we consider an MEC aided and
wireless powered WSN, aiming to provide a battery-
free WSN solution. In WSN, sensors are mostly in idle
state, only small period is in transmission state. There-
fore, the TDD energy harvesting mode is more suitable
for WSN. So, in our scenario we firstly design dynamic
TDD (D-TDD) energy harvesting mechanism which can
adapt to the dynamic and asymmetric features of uplink
and downlink transmission in wireless sensor networks.
And then a joint optimization between D-TDD energy har-
vesting and computing offloading approach is investigated.
The main results and contributions of this paper are as
followings:
• AnMEC aidedWSN is proposed, whereWPT is consid-
ered to address the problem of limited energy storage.
The wireless sensors can harvest the energy with its
antenna and power its functional modules.

• We propose an optimal offloading algorithm to maxi-
mize the total numbers of computed bits under the con-
dition of perfect CSI. In particular, the optimal D-TDD
factor is investigated.

VOLUME 8, 2020 35151



L. Wang et al.: Optimal Multi-User Computation Offloading Strategy for Wireless Powered Sensor Networks

FIGURE 1. Overview of the WSN offloading. The MTs can offload its
computation task to the mobile edge cloud through wireless RAN.

• Then a more realistic scenario with imperfect CSI
estimation is considered. The sub-optimal offloading
algorithm is studied to maximize the total numbers of
computed bits under the condition of imperfect CSI.

II. SYSTEM MODEL
Considering a system consists of K low-power mobile termi-
nals (MT) denoted as K = {1, 2, . . . , k}, which are powered
by energy radiated from the BSs. M BSs denoted as M =

{1, 2, · · · ,m} jointly serve all the terminal users, which are
worked as the distributed MIMO style. MEC is empolyed in
WSN for cloud computing, as illustrated in Fig. 1. Each MT
has a single transmit antenna to harvest energy or data trans-
mitting. The backhaul capacity between the BS and MEC is
assumed large enough. The MTs are randomly distributed
in the coverage area. With the harvested energy, the MT
can process the data it collected. This is a typically scenario
of the internet of things (IoT), which consists hundreds of
sensors or even more in a limited area and powering the
devices and processing their data can be a tough task.

The total available bandwidth of the radio access network
(RAN) is ω which can be used by all the MTs. The MTs
charge and process with a periodic T in a time division
duplex mode. T is less than the coherent time of the channel.
Within each period T , a D-TDD scheme is adopted for the
downlink and uplink. In the downlink channel, each MT
harvests energy and receive information from the BS, and it is
powered only by the harvested energy. As IoT is usually used
for data collecting or situation surveillance, uplink data can be
much more than downlink data. Therefore, we mainly focus
on the energy harvesting of downlink and data transmission
of the uplink. For the downlink information transmission,
the power-splitting scheme can be cooperated in this paper.

If there is a job prepared to be processed, theMT can either
compute it locally with its ownMirco ProcessingUnit (MCU)
or offload it to the cloud servers. We denote the decision set
of all MTs as the offloading profile, i.e.

SK = {s1, s2, . . . , sk}, si = {0, 1} (1)

where si = 0 means the ith MT decides to compute the date
locally, and si = 1 means the ith MT decides to offload the
date to the cloud servers.

Typically the computation ability of cloud servers is much
more powerful than the local MCU. Both the local computing
(LC) and the remote computing (RC)will consume the energy

FIGURE 2. Centralized MEC aided offloading protocol.

it harvested. With the diversity of all the channels fadings,
it is critical to design the offloading profile and the optimal
TDD factor to maximize the processing performance. In this
work, with the aid of MTs periodly feedback their channel
state information (CSI) to the BS, we propose a centralized
offloading scheme for theMTs to achieve themaximal system
throughput.

In this paper, quality of service (QoS) can be consid-
ered as the amount of data that can be processed per unit
time. According to weber-Fechner law, the larger the value,
the shorter the processing time, the better the user experi-
ence. Since in this system, the time processing period T is
fixed, we further optimize the system throughput within time
period T .

A. OFFLOADING PROTOCOL FOR MTs
The protocol for the centralized MEC aided offloading pro-
tocol is illustrated in Fig. 2. First the BSs broadcast a start
signal to all the MTs, then the MTs begin to send their corre-
sponding pilots to BSs. State-of-the-art research works have
shown that the minimum number of pilots symbols is equal
to the number of terminals. With the feedback pilots, the BSs
calculate the channel matrix H and length of T according to
the channel coherence time, together with the optimal α and
the offloading profile Sk , then begin to radiated power and
control information in the downlink. The MTs can extract the
control information with a power spliting technology, which
is not considered in this context.

We assume the MTs are sychronized perfectly. The main
factor that may degrade the performance lies on the imperfect
CSI estimation at BS side. For multiuser MIMO systems,
precoding in the downlink and detection in the uplink require
CSI at the BS. The resource, time or frequency required for
channel estimation in a MIMO system is proportion to the
number of MTs. In the proposed D-TDD system, based on
the assumption of channel reciprocity, only CSI for the uplink
needs to be estimated. When theMTs received the start signal
from the BSs, they send uplink pilots. The BSs use these
pilot sequences to estimate CSI of the MTs. Then the BSs
use the estimated CSI to generate beamforming vectors for
the energy beamforming and multiuser detection.

B. ENERGY AND COMMUNICATION MODEL
The process of energy harvesting and task offloading is
illustrated in Fig.3. Every period T is splitted into 2 slots,
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FIGURE 3. D-TDD scheme for the energy harvesting and data offloading.
The downlink power splitting for information transmission is neglected.

i.e. αT and (1−α)T with α ∈ (0, 1) being the D-TDD factor.
In the first αT time, all the MTs harvest energy from the
downlink received signal and save it in its battery, and in the
rest (1 − α)T time, part of the MTs proccess its data locally
while the others offload the data accroding to the offload
profile STK . When there are MTs offloading, the BS stops
radiating signals and begins to receive and forward the data
to the remote cloud. The T-TDD factor α is identical cross all
theMTs in T . No energy harvested in the current T is retained
to the next T . The optimal α will be disccused later.
Downlink EH: For the downlink energy broadcasting, let x

be the energy symbol, wdl
= [wdl

1 ,w
dl
2 , · · · ,w

dl
M ] ∈ RMNt is

downlink energy beamforming vector, where wi ∈ RNt is the
corresponding BF vector at BS i. The receive signal can be
written as:

Y =
√
PdlHwdlx + nk (2)

where H ∈ Ck×MNt is the channel matrix, Pdl is the transmit
power of BS, which is assumed to be identical across all BSs.

The received signal yk at the kth MT can be written as:

yk =
√
Pdl

MNt∑
i=1

hk,iwdli x + n
dl
k (3)

where hk,i is the complex channel response from the ith BS
to kth MT. ndlk ∼ CN (0, 1) is the additive white noise. With
E{x†x} = 1, the receive power of MT k can be written as:

Pk = Pdl
M∑
m=1

||hk,mwdl
m ||

2 (4)

where hk,m ∈ C1×Nt , is the channel matrix from BS m to
MT k respectively. The power of white noise is neglectable
compared with the aptitude of the received signals.

(4) indicates that the power received at a MT is the sum of
the power received from each BS. Compared with the infor-
mation beamforming, the constraints of energy beamforming
is more relax. Its reason is that for the WPT the interference
can be harvested by the MT, but for wireless information
transfer (WIT), the interference needs to be eliminated with
proper beamforming matrix.
Uplink offloading: Based on the uplink-downlink reci-

procity, the received signal rm ∈ CNt at the mth BS is
expressed as:

rm =
√
Pul

K∑
k=1

hHk,msk + nulm (5)

where Pul is the transmit power of the MT, hHk,m ∈ CNt is
the uplink matrix. sk is the transmit symbol of kth MT on
subchannel n. ndlm ∼ CNNt (0, 1) is the additive white noise.
Assuming linear processing by BSs, the estimation of sk at
the BS can be written as:

ŝk =
√
Pul

M∑
m=1

wH
k,mrm

=

√
Pul

M∑
m=1

(wH
k,mhk,msk

+

K∑
i=1,i 6=k

wH
k,mhi,msi + wH

k,mn
ul
m ) (6)

where

W =


w1,1 w1,2 · · · w1,m
w2,1 w2,2 · · · w2,m
...

...
. . .

...

wk,1 wk,2 · · · wk,m

 ∈ Ck×MNt

with wk,m ∈ CNt is the receiving beamforming vector. Then
the signal to interference-plus-noise ratio (SINR) of kth MT
can be denoted as:

γk =

Pul |
M∑
m=1

wH
k,mhk,m|

2

∑
i 6=k
|

M∑
m=1

wH
k,mhi,m|

2Pul +
M∑
m=1
||wk,m||

2

(7)

As a consequence, the uplink capacity of MT k on the nth
subchannel can be expressed as:

Rk = ωlog2(1+ γk ) (8)

Here ω is the bandwidth of the subchannel. From the com-
munication model in (7) (8), we see that the offloading data
rate is correlated with the interference. If there are too many
MTs choose to offload the computation simutaneously during
a period, they may incur severe interference, leading to low
data rates.

C. COMPUTATION MODEL
A two-tuple is used to denoted the computation job prepared
at the begining of each T , i.e.

J = (b, d) (9)

where b denote the total bits of the the job, and d denote
the total MCU cycles needed to finish the job. For the LC,
we denote the energy consumption per CPU cycle as τ joul
per cycle. Then total number of bits can be processed with the
harvested energy within T for the kth MT can be derived as:

Blck =
ηPkαT
τd

, (bit) (10)

where η ∈ (0.1 0.8) is the energy transition efficiency from
RF toDC. It is noted that in (10) we neglect other insignificant
energy loss such as in peripheral circuits.
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For the RC, the total number of bits is bounded both by
the energy and tranmission time. If the available harvested
energy dominiants, the total number of bits can be offloaded
with the harvested energy can be denoted as:

Bk =
ηPkαT
σPul + P0

Rk (11)

where σ is the RF efficiency and P0 is the energy consump-
tion apart from the RF front end. At last the total offloaded
number of bits for kth MT can be wiritten as:

Brck = min(
ηPkαT
σPul + P0

ωlog2(1+ γk ), Rk (1− α)T ) (12)

III. PROBLEM FORMULATION
According to weber-fechner law, QoS can be expressed as a
function of the service processing rate. Combined with the
actual application scenarios in this paper, the QoS of WSN
can be expressed as the data that can be processed in unit
time. Optimizing the amount of data processed per unit time
means optimizing the QoS. Therefore, the main objective of
offloading is maximize the total number of computed bits
within each T . With the offloading scheme defined in (1),
the total computed number of bits can be written as:

UT =
K∑
k=1

skBrck +
K∑
k=1

(1− sk )Blck , (bits) (13)

The problem can be expressed as:

max
SK ,wdl ,W,α

UT (14a)

s.t. sk ∈ {0, 1} (14b)

α ∈ (0, 1) (14c)

||wdl
m || ≤ 1, ∀m (14d)

||wk,m|| ≤ 1, ∀k,m (14e)

where (14b) follows from (1), (14c) is boudary of the D-TDD
factor, (14d) is the power constraints at the BS. (14e) is the
uplink beamforming matrix defined in section II-B.

IV. OPTIMAL OFFLOADING WITH PERFECT CSI
Due to the non-convexity and integer programming properties
of (14), it’s hard to directly solve the problem. In this section,
we propose to solve the problem by 3 steps. First, by fixing
α = α̂ and SK = ŜK , the problem (14) can be reduced to
the following energy beamforming and uplink beamforming
problem:

Q1 : max
wdl ,W

UT (15a)

s.t. ||wdl
m || ≤ 1 ∀m (15b)

||wk,m|| ≤ 1 ∀k,∀m (15c)

With the α and SK been defined, problem (Q1) can be solved
analytically. Then with α = α̂ being fixed, the offloading
problem can be reduced as:

Q2 : max
SK

UT (16a)

s.t. sk ∈ {0, 1}, ∀k ∈ K (16b)

Problem (Q2) can be regard as a cooperative game. With
SK ,wdl andW been defined, the probem (14) can be reduced
to:

Q3 : max
α

UT (17a)

s.t. α ∈ [0, 1] (17b)

The optimal α in Q3 can be found by a one dimension
search. With some predifined region, the search efficiency
can be improved.

A. OPTIMAL DOWNLINK BEAMFORMING FOR ENERGY
HARVESTING
The main purpose of downlink beamforming is to maximize
the receiving signal energy for each MT. Due to the inde-
pendence of downlink energy harvest and uplink offloading,
the optimal downlink beamforming can be solved equavi-
lantly to maximize the received power, i.e. :

max
wdl

Pdl tr[(Hwdl)(Hwdl)H ] (18a)

s.t. tr(wdl
m (w

dl
m )

H ) ≤ 1, ∀m (18b)

where H = [H1,H2, . . . ,Hm]1 ∈ CK×MNt is the downlink
channel matrix, wdl

= [wdl
1 ,w

dl
2 , . . . ,w

dl
M ] ∈ CMNt is the

beamforming matrix.

B. UPLINK MULTIUSER DETECTION AND OFFLOADING
CAPACITY
There are three conventional linear detectors minimum
square error (MMSE), zero forcing (ZF), maximal ratio com-
bination (MRC), i.e.

W =


HH for MRC
(HHH)−1HH for ZF

(HHH+
1
Pul

IK )−1HH for MMSE
(19)

Typically MRC performs worse than the other two. With the
perfect knowledge of CSI for the BS, the offloading rate of
MT k can be determined according to (8)(9).

C. OFFLOADING COALITION FORMATION GAME
With the downlink energy beamforming and uplink multi-
user detection been defined, the problem of the offloading
decision can be formulated as a dynamic coalition formula-
tion game denoted by (K, v), where K is the set of all MTs
and v is the value of each coalition. We define v as the system
data processing throughput in this paper.

Initially we assume there are K + 1 coalitions with each
MT being an independent LC coalition and an empty RC
coalition.

The ultimate goal of the game is to organize all the ter-
minals into two coalitions through the formation process of
the coalitions, namely, the terminal set S representing LC and
the terminal set representing RC. According to the following

1Here we use the MATLAB notation, the comma defines a block matrix
andHm ∈ Ck×Nt is the channel fading between the MTs and BS m. So does
the following wdlk,m.
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rules, for two sets of coalitions S = {S1, · · · , Sk} and S =
{S1, · · · , Sl}, if it satisfies:

k∑
i=1

v(Si) >
l∑
i=1

v(Si) (20)

where v been defined as the total bits processed in period
T , (20) means the utility of new coalition partition is better
than the previous one, the system performance is higher
than the previous one, so it will move from an old alliance
organization to a new one.

There, for every MT (coalition), there are three options:
(i) stay in the current coalition, i.e., LC coalitions; (ii) merge
with the RC coalition, separated from the local computing
alliance and joined the remote unloading alliance; (iii) split
from the RC coalition, there may be too many unloading ter-
minals. The newly added terminals reduce the system utility
of the old alliance terminals and make them leave the remote
unloading alliance.

We use a merge and split process to formulate the offload-
ing coalition illustrated as follows:

Let {si} denotes the coalition formulated by a single MT i,
Slc, Src denote the LC coalition and RC coalition respectively,
S−i denotes the collection of LC coalitions except {si}, i.e.
Slc = {si} ∪ S−i. A partition of the players is denoted as
(LC coalitions,RC coalition), i.e. (Slc, Src).

Merge: For a given LC coalition {si}, if the value of the
partitions satisfies

v(S−i, {si} ∪ Src) > v({si} ∪ S−i, Src), (21)

then merge {si} into Src.
Split: For a given RC MT si ∈ Src, if the value of the

partition satisfies

v(Slc ∪ {si}, Src/{si}) > v(Slc, Src), (22)

then si splits from Src.
It is noted that in (21), the increase of value is equivalent to

that for MT i, the offloading is beneficial to local computing,
which will process more bits subject to the harvested energy
in T . While in (22), with some newMT offloading their com-
putation in wireless channels, the multiuser interference may
become severe and some MTs in Src may not be beneficial
to offloading any more. The process of merge and split is
illustrated in Algorithm 1.

As illustrated in Algorithm 1, there are two loops in the
merge and split process. When a merge process happens,
a new MT is added to the RC coalition. However it may
degrade the utility of existing RC players, and a scan is
needed to split these unbeneficial players from the RC coali-
tion. After all, suppose there are K MTs in the system,
the complexity of the merge and split algorithm is 1 + 2 +
· · · + K = O(K 2).

D. OPTIMAL D-TDD FACTOR SEARCH
With the Wdl ,W and SK being derived, the optimal D-TDD
factorα can be computedwith one-dimension search in (0, 1),

Algorithm 1 Merge and Split Algorithm for Offloading
Data: the channel matrix H, MT set SK = {s1, · · · , sk},

MT energy set EK = {E1, · · · ,Ek};
Result: Slc, Src
begin

Initilization: Slc = SK ,Src = ∅
for sk in Slc do

For sk ∈ Slc, compute U1 according to (13);
For sk ∈ Src, compute U2 according to (13);
if U2 > U1 then /* merge */

Slc = Slc/{sk};
Src = Src ∪ {sk};
for si in Src/{sk} do

For si ∈ Src, compute U3 according to
(13);
For si ∈ Slc, compute U4 according to
(13);
if U4 > U3 then /* split */

Slc = Slc ∪ {si};
Src = Src/{si};

return Slc, Src;

and the search region can be futher optimized according
to offloading proccess. The α is a fundermental tradeoff
between harvest energy and offloading data. If α is too small,
the MTs may not harvest enough energy for local comput-
ing or offloading for the rest (1 − α)T time; and with the
boundary of T , if α is too large, the MTs will harvest more
energy, but the time left and the channel capacity will limit
the energy consumption.

The lower boundary of α should satisfy for the MT har-
vested minimum energy αTP∗k , if it choose offloading, then
at the end of T , the harvested energy just runs out, i.e. :

(σPul + P0)(1− α)T = αTηP∗k (23)

Then the optimal D-TDD factor located in:

α ∈

[
σPul + P0
1+ ηP∗k

, 1
]

(24)

The analysis in this section considered perfect CSI to be
available at the sensor nodes. However, in practical scenarios,
the CSI is obtained via channel estimation, which leads to
errors in the estimated CSI. The next section analyze offload-
ing scheme considering imperfect CSI.

V. OFFLOADING SCHEME WITH IMPERFECT CSI
We now consider the more realistic scenario with imper-
fect CSI estimation. In practice, obtaining perfect CSI is
of great challenge, the common way is that the channel
hk,i is estimated by using linear minimum mean-square
error (LMMSE) [20]. The channel estimated channel can be
expressed as hk,i = ĥk,i + e, where the channel estimation
error is distributed as e ∼ CN

(
0, σ 2

e
)
, the estimate channel
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ĥk,i is independent of e. Note that σ 2
e is a function of average

transmit SNR, which is
Therefore, the receive signal for downlink EH can be

rewritten as:

Y =
√
Pdl
(
Ĥ+ e

)
wdlx + nk (25)

where Ĥ ∈ Ck×MNt is the estimated channel matrix, e is the
channel estimation error.

For imperfect CSI scenario, the received signal yk at the
kth MT can be rewritten as:

yk =
√
Pdl

MNt∑
i=1

(
ĥk,m + e

)
wdli x + n

dl
k (26)

where ĥk,i is the estimated channel response from the ith BS
to kth MT. With E{x†x} = 1, the receive power of MT k can
be written as:

Pk = Pdl
M∑
m=1

∥∥∥(ĥk,m + e)wdlm∥∥∥2 (27)

where hk,m ∈ C1×Nt , is the estimated channel matrix from
BS m to MT k respectively.

For uplink offloading, the receive signal rm ∈ CNt at the
mth BS is expressed as:

rm =
√
Pul

K∑
k=1

(
hHk,m + e

)
sk + nulm (28)

we consider a representative type of channel estimation error
model, i.e., the variance of the error, σ 2

e , is fixed and inde-
pendent of the average transmit SNR. Therefore, under the
condition of imperfect CSI scenario, we employ a similar
offloading scheme for the perfect CSI scenario.

VI. NUMERICAL ANALYSIS
In this section, we analyze the performance of the centrial-
ized computing offloading scheme with energy harvest by
numerical studies, including receiving power analysis of ter-
minals in the coverage area, offloading model, determination
of optimal dynamic time division factor, and comparison of
offloading algorithms. We first consider the scenario where
the RAN has a coverage of 100× 100 meters. Initially there
are 5 BSs and 60 MTs located in the area, the communication
of BSs with the help of the traditional way and work with
distributed MIMO [21], [22]. As illustrated in Fig. 4, the BSs
are uniformly distributed along the two axises and MTs are
randomly distributed.

We consider a flat-fading channel model illustrated as:

hm,k,i = ||hm,k,i||L0(max(||x||k,m, d))−a (29)

where hm,k,i is the channel fading from i-th antenna of BS m
to MT K , which follows from Rayleigh distribution, L0 is the
path loss function for a reference distance r0 = 1, a is the
path loss factor, x is the distance between MT K and BS m,
d is used to avoid singularity caused by proximity between
BSs and MTs, we set d = 3 in this paper.

FIGURE 4. Scenario of the system (Red triangles denote the 5 BSs, black
crosses denote the 60 MTs).

FIGURE 5. The received power with energy beamforming.

In the simulation, it is assumed that the transmitting power
of the BS is adjustable. Then we will analyze the influence on
the terminal energy collection under the premise of different
transmitting power of the BS. When the terminal carries out
uplink information transmission, the transmitting power is
50mW and the system bandwidth is 1 MHz.

When 80 terminal nodes are included in the coverage area,
the transmitting power is 20W and the path loss factor is
2.5. Fig. 5 shows the received power of corresponding node
when downlink energy beamforming is adopted. In Fig. 5,
the location of the BS is not marked. The grayscale bar on the
right, represents the power value corresponding to the color,
and the unit is dBm. The lighter the color, and the higher the
corresponding power value. The darker the color, the smaller
the power received. Meanwhile, for the position coordinates
in Fig. 5, in order to facilitate the display in the grid of lxlm2,
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FIGURE 6. The offloading users versus α.

we round the position coordinates in Fig. 5. It can be seen
from Fig. 5 that the receiving power of the node located near
the Bs is significantly higher than that of the node at the edge
of the BS, which indicates that when energy beamforming is
adopted, the power of the node in the coverage area can be
effectively improved. The node that is far from the BS and
whose channel is in deep fading has limited improvement in
energy transmission efficiency. The difference in receiving
power leads to a large difference in the energy collected by
nodes in the region with in the same amount of time. In order
to complete the computation tasks of each node under the
premise of unbalanced energy and great difference, a set of
task splitting algorithm needs to be designed effectively.

Fig. 6 shows the system overhead versus α. We set that
the transmit power at BS is 20W , the path loss factor is 2.5,
the coverage area includes 80 nodes. Where the horizontal
coordinate represents the charging time for downlink; the
vertical coordinate represents the throughput; blue, red and
orange among the three lines represent the throughput of the
system, the sum of the throughput of all RC users and the
sum of the throughput of all LC users. When α is small,
the system throughput is limited due to insufficient available
energy. As the charging time increases, the total available
energy of the system increases, the total throughput of the
system, the throughput of RC users and the throughput of LC
increase linearly. When α closes to 1, as shown in Fig. 6 into
themost, because for offloading users, its due to the limitation
of period T , with a maximum throughput, more than the
maximum value corresponding to the α, because to uninstall
user information transmission time is not enough, lead to
collect energy cannot all used to transmit data in the limited
time, makes the throughput degradation. At the same time,
as the system aims to maximize the total throughput, after
exceeding the optimal α, some RC users select LC, which
rapidly increases the throughput of LC users, as shown in the
red line in the Fig. 6. In the most extreme case, the whole
cycle is used for power transmission, and no user chooses

FIGURE 7. Through versus total user number with a = 2.5 under the
condition of perfect CSI.

FIGURE 8. Through versus total user number with a = 3.5 under the
condition of perfect CSI.

remote unloading, corresponding to α = 1. When α = 1,
the system throughput equals the LC throughput, while the
RC throughput decreases to zero. At the same time, it can be
seen from Fig. 6 that, when the energy is sufficient, the data
processing capacity of RC is far greater than the LC, which
is the main contribution to the overall throughput of the
system.While LC is an effective supplement to RC.When the
remaining available time of RC is insufficient, the throughput
provided by background computing can be rapidly increased
to maintain the total throughput of the system.

Fig. 7 and Fig. 8 show the throughput versus total user
number for a = 2.5 and a = 3.5, respectively. We set
the transmit power at BS is 20W . From Fig. 7 and Fig. 8,
we can observe that the effect of different algorithms on
the system throughput. The algorithms used for comparison
include: (i) Users process their own tasks locally, that is,
the terminal choose to LC using the energy collected form
BS; (ii) Users offload their own task to cloud, terminals do
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FIGURE 9. Through versus total user number with a = 2.5 under the
condition of imperfect CSI.

not consider the wireless channel state information, it can
offload all computing tasks to the cloud for processing; (iii)
distributed computation offloading algorithm, the distributed
computation offloading decision was proposed in [17], when
RC is preferable to LC, RC is adopted, the system throughput
performance is not considered. The optimal offloading is
proposed in this paper.

From Fig. 8, we can observe that the proposed algorithm
in this paper is obviously superior to the other three algo-
rithms. When the optimal offloading algorithm is adopted,
system throughput increases as the number of users increases.
However, if each user chooses RC, system throughput will
decreases. This is because that when the number of users
exceeds a threshold, wireless channel interference intensifies,
results in that uplink offloading capacity decreases. For dis-
tributed computation offloading algorithm, the total through-
put is not stable. This is because that each node does not
consider system throughput and uplink channel interference
when deciding whether to offloading or not. As for the local
computing strategy selected by all nodes, the charging pro-
cess between each node is independent of the other, so the
overall utility increases gradually with the increase of the
number of users in the coverage area. However, compared
with offloading, the energy efficiency of local computing is
low, making its performance worst.

When the channel state is worst, as shown in Fig. 8, its
state is similar to Fig. 7, the difference is, compared to all the
nodes choose RC, the system performance is lowwhen all the
nodes choose the distributed decision-making, this is due to
the harvesting energy at nodes is limited, the performance of
LC compared with RC is further reduced.

For the case of imperfect CSI, Fig. 9 shows the throughput
versus total user number with a = 2.5. We set the variance
of the channel estimation error is σ = 0.5. From Fig. 7 and
Fig. 9, we can observe that the effect of channel estimation
error on the system throughput. Similarly, the algorithms used

FIGURE 10. Through versus total user number with a = 3.5 under the
condition of imperfect CSI.

FIGURE 11. The offloading users versus total user number with
different a.

for comparison for the case of imperfect CSI align with the
above settings. We can observe that the channel estimation
error have small impact on the system throughput for the case
of sub-optimal offloading, all offloading and all local comput-
ing, the channel estimation error have a larger effect on the
system throughput for the distributed computation offloading
algorithm. It can be also seen that the system throughput
for the sub-optimal offloading algorithm increases with the
increase of the number of terminal users.

Fig. 10 shows the throughput versus total user number for
a = 3.5 under the condition of imperfect CSI. The variance of
the channel estimation error is set as σ = 0.5. From Fig. 8 and
Fig. 10, we can observe that the channel estimation error have
a smaller impact on the system throughput when a = 3.5.
In addition, we can observe from the comparision between
Fig. 9 and Fig. 10, the system throughput of the case for all
offloading algorithm and all local computing algorithm have
a serious effect when the value of a is from 2.5 to 3.5, for
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the cases of sub-optimal offloading and distributed scheme,
the system throughput have a small impact when a increase.
Fig. 11 shows the offloading users versus the number of

the all users with different α. When the optimal offloading
strategy is adopted, the number of nodes selected for RC
under the condition of different path loss factors is provided.
As can be seen from the Fig. 11, with the increase of the total
users in the coverage area, the number of offloading nodes
increases under the conditions of two different path loss.
However, it can be also seen that the number of offloading
nodes under the condition of worst channel is always less than
that under the condition of better channel conditions, which
also explains the differences in the performance of the four
comparison algorithms mentioned above.

VII. CONCLUSION
Aiming at the scenario of downlink wireless power transmis-
sion and uplike task loading, we established a task processing
strategy including uplink and downlink power-information
dynamic time division, unlike remote unloading and local
computation, and optimized the data processing capacity of
the system in unit cycle under the scenario of downlink
wireless power transmission. The strategy uses centralized
control to calculate the downlink wireless power transmission
energy beam matrix, node local calculation and uplinking
offloading strategy. Due to the original problem is a decision
problem of integer programming, it is difficult to directly
to solve, we break it down into descending, the optimal
power transmission, uplink uninstall decision-making, and
dynamic factor in optimizing three sub-problems, by solving
the three sub problems, to maximize the unit cycle system’s
ability to process the data. Simulation analysis shows that the
downgoing energy beamforming can effectively improve the
average received power of about 8-20 dBm in the region, and
the up-down dynamic time division can effectively utilize the
received energy in the time slot to maximize the through-
put. The comparison of algorithm performance shows that,
under different channel conditions, the dynamic time divi-
sion factor centralized unloading decision-making algorithm
adopted in this paper has better performance than existing dis-
tributed unloading decision-making, single local calculation
and remote unloading algorithm. In particular, the optimal
D-TDD factor was investigated.
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