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ABSTRACT Millimeter wave (mmWave) system tends to have a large number of antenna elements to
compensate for the high channel path loss. The immense number of BS antennas incurs high system costs,
power, and interconnect bandwidth. To circumvent these obstacles, two-step hybrid precoding algorithms
that enable the use of fewer RF chains have been proposed. However, the precoding schemes already in
place are either too complex or not performing well enough. In this study, an equivalent channel hybrid
precoding was proposed. The part from the transmitter RF chain to the receiver RF chain is regarded as
equivalent channel. By reducing the dimension of channel matrix to the level of RF link number, baseband
pre-coder is simply calculated from decomposing the equivalent channel matrixHequ, which greatly reduces
the complexity. Based on this novel precoding approach and convolutional neural network (CNN), a novel
combiner neural network architecture was also proposed, which can be trained to learn how to optimize the
combiner for maximizing the spectral efficiency with hardware limitation and imperfect CSI. Simulation
results show that the proposed approaches achieve significant performance improvement.

INDEX TERMS mmWave, MIMO, hybrid precoding, deep learning, CNN.

I. INTRODUCTION
With the growing popularity of mobile internet and the explo-
sive growth of smartphones, users’ usage habits have dramat-
ically changed. The exploration of mobile broadband access
capacity significantly stimulates the demand for mobile inter-
net and boosts the growth in mobile data services, which
in turn increases the demand for mobile network capacity.
There are three main ways to improve the area throughput
of cellular networks: 1) Allocating more bandwidth; 2) Den-
sifying the network by deploying more BSs; 3) Improving
the spectral efficiency (SE) per cell. Higher cell density and
larger bandwidth have historically dominated the evolution
of the coverage tier, which explains the reason why we
are approaching a saturation point where further improve-
ments are increasingly complicated and expensive. Increas-
ing the SE corresponds to using the BSs and bandwidth
that are already in place more efficiently by virtue of new
modulation and multiplexing techniques. This is why major
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improvements in SE are needed. Therefore, studying the
scheme of improving spectral efficiency becomes hot.

By adopting massive antennas, this technology signifi-
cantly improves the spectrum efficiency. Especially amid
large capacity demand and extensive coverage, enabling the
future networks to satisfy growing network demand. Due to
the short wavelength of Millimeter-wave, it is easy to realize
the distribution of large-scale antenna array, so Millimeter-
wave (mmWave) massive multiple-input multiple-output
(MIMO) has already been considered as a promising solu-
tion to meet the requirement of the higher data rate for the
future network. On account of the limited physical space with
closely placed antennas and prohibitive power consumption
in mmWave massive MIMO systems, it is difficult to equip
a dedicated radio frequency (RF) chain for each antenna.
To reduce complexity and cost, phase shifter based two-stage
structure, which is usually called hybrid precoding, is widely
used at both the transmitter and the receiver to connect a large
number of antennas with much fewer RF chains. The hybrid
precoding structure is shown in Figure 1.

Several methods are proposed to design the hybrid pre-
coder. In the existing work, using this hybrid structure based
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FIGURE 1. massive MIMO hybrid pre-coding system.

approach to handle this difficulty, a spatially sparse algorithm
via orthogonalmatching pursuit (SOMP)was proposed in [1].
However, the analog beam-former is limited to a pre-defined
codebook.

To enhance the performance of SOMP, the manifold opti-
mization method was applied in [3], [4] for the analog BF
optimization. Using the connection between the optimum and
the hybrid precoder, [5] proposed an alternatingminimization
approach via manifold optimization (MO-AltMin) to esti-
mate the analog beam-former and baseband precoder. The
above works provide optimization-based and greedy-based
solutions for hybrid precoding problem. The complicated
computations are the main drawbacks of the above tech-
niques. In order to circumvent this issue, DNN (deep neural
network) based technique was proposed to deal with the
beam-forming problem [8]. Although the DNN-based tech-
nique has a low computational complexity, since its training
strategy is based on geometric mean decomposition(GMD)
algorithm, the system performance is far away to the per-
formance provided by singular value decomposition(SVD)-
based all-digital precoding. All of these algorithms require
some approximations to simplify the original objective
function, a lot of serial time consuming iterations are needed.
There are still a lot of problems remaining and two major
challenges are the extraordinarily high computational com-
plexity and poor system performance. Moreover, perfect
channel state information (CSI) is assumed in all of these
algorithms. Recently, many researchers pay attention to use
compressive channel sensing vectors to process hybrid pre-
coding. A compressive channel sensing vectors based neural
network architecture was proposed in [9], which uses com-
pressive channel sensing vectors andDNN to deal with hybrid
precoding problem.

In this study, firstly, a hybrid precoding algorithm based
on equivalent channel was proposed. It’s obvious that svd-
based full digital precoding scheme can provide very superior
performance. In hybrid precoding structure, this decomposi-
tion method can also be used to obtain baseband precoder
which is designed to eliminate interference between multi-
ple data streams. When the beam-former and combiner are
obtained, the beamforming matrix and combining matrix are
obtained by alternating search for maximum spectral effi-
ciency and the part from the transmitter RF chain to the

receiver RF chain can be equivalent to channel. By reducing
the dimension of channel matrix to the level of RF link num-
ber, baseband precoder is simply calculated from decompos-
ing the equivalent channel matrixHequ, which greatly reduces
the complexity. Simulation results show that the proposed
scheme performs excellent and has low complexity. Based
on this novel pecoding approach, a novel combiner convo-
lutional neural network architecture was proposed, which
can be trained to learn how to optimize the combiner for
maximizing the spectral efficiency with hardware limitation
and imperfect CSI. The input of convolutional neural net-
work (CNN) is channel matrix and the output is the com-
biner weights. In order to train the network, different channel
realizations with synthetic noise added to each input data
was generated. Compared with the conventional work that
assuming perfect CSI [1], [5], [8] is known, the CNN-based
approach is expected to process imperfect CSI with strong
robustness.
Notation: The following notation are used throughout this

paper: A is a matrix, a is a vector, a is a scalar. |A| is
the determinant of A, whereas AT and A∗ are its transpose
and Hermitian (conjugate transpose). NC(m, R) is a complex
Gaussian random vector with mean m and covariance R. E [·]
is used to denote expectation.

II. SIGNAL MODEL AND PROBLEM FORMULATION
A. SYSTEM AND CHANNEL MODEL
Considering the fully-connected hybrid architecture depicted
in Figure 1, where a transmitter employs Nt antennas and
N t
RF RF (Radio Frequency) chains is communicating via Ns

streams with a receiver which has Nr antennas and N r
RF RF

chains. The transmitter precodes the transmitted signal using
a N t

RF × Ns baseband pre-coder FBB and a Nt × N t
RF RF

beam-former FRF , while the receiver combines the received
signal using theNr×N r

RF RF combinerWRF and theN r
RF×Ns

baseband combiner WBB, which are subject to constraints
Ns ≤ N t

RF ≤ Nt and Ns ≤ N
r
RF ≤ Nr .

Suppose the transmit power of s is normalized, i.e.
E
[
SS∗

]
=

1
Ns
INs. Since the analog RF beam-formers and

combiners, FRF and WRF , are implemented in the analog
domain using RF circuits, every entry of the RF beam-
former/combiner is assumed to have a constant modulus, i.e.
[FRF ]m,n =

1
√
N t
e−jθm,nt (and similarly for elements ofWRF ).

Further, the total power constraint is enforced by normalizing
the baseband precoderFBB to satisfy ‖FRFFBB‖2F = Ns. After
precoding in the baseband domain, the resultant vector given
as FBBs is the input of N t

RF chains for the up conversion.
Next, an analog beam-former FRF is applied for adjusting
phase/angle to maximize the system capacity or minimize the
interference according to the system requirements. Therefore,
the discrete-time transmitted signals is finally represented as
FRFFBBs.

For narrowband block-fading propagation scenarios,
the received signals at the receiver can be shown as (1), where
y is the Nr ×1 received signal vector,H is the channel matrix
with Nr × Nt dimensions, ρ is the average received power,
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and n is the additive white Gaussian noise (AWGN) vector
following i.i.d. distribution CN (0, σ 2

n ).

y =
√
ρHFRFFBBs+ n. (1)

The transmitted signal is received and processed by analog
and baseband combiners as (2)

ỹ =
√
ρW∗BBW

∗
RFHFRFFBBs+W∗BBW

∗
RFn. (2)

Using the clustered channel model, the matrix channel H
is assumed to be the sum of the contributions of Ncl scatter-
ing clusters, and each of them contributes Nray propagation
paths to the channel matrix H. Therefore, the discrete-time
narrowband channel H can be written as

H = γ
∑
i,l

αi,l3r
(
ϕri,l, θ

r
i,l
)
3t
(
ϕti,l, θ

t
i,l
)

×ar
(
ϕri,l, θ

r
i,l
)
at
(
ϕti,l, θ

t
i,l
)∗
. (3)

where γ is a normalization factor such that γ =√
NtNr/N clNray and αi,l is the complex gain of the l th ray

in the ith scattering cluster, whereas ϕri,l(θ
r
i,l) and ϕti,l(θ

t
i,l)

are its azimuth (elevation) angles of arrival and departure
respectively. The functions 3r (ϕri,l, θ

r
i,l) and 3t (ϕti,l, θ

t
i,l)

represent the transmitter’s and receiver’s antenna element
gain at the corresponding angles of departure and arrival.
Finally, the vectors ar (ϕri,l, θ

r
i,l) and at (ϕti,l, θ

t
i,l) represent

the normalized receive and transmit array response vectors
at the azimuth (elevation) angle of ϕri,l(θ

r
i,l) and ϕti,l(θ

t
i,l)

respectively.
Note that when uniform planar array structure is consid-

ered, both ar (•) and at (•) can be expressed as the format
given as (5), where W and H are the numbers of antenna ele-
ments, k = 2π/λ (λ is the corresponding wavelength) and d
is the inter-element spacing between two neighbor antennas,
N = WH is the size of the antenna array. For simplicity,
we use At and Ar to represent the matrices consisting of
all array response vectors ar (•) and at (•) respectively. These
matrix representations will be used in the sequel.

aUPA(ϕ, θ) =
1
√
N
[ 1, . . . , ejkd(m sin(ϕ) sin(θ )+n cos(θ )),

. . . , ejkd((W−1) sin(ϕ) sin(θ )+(H−1) cos(θ )) ] (4)

B. PROBLEM FORMULATION
Given the system model (2), its spectral efficiency is
described as (5) [1], where Rn = σ 2

nW
∗
BBW

∗
RFWRFWBB is

the noise covariance matrix, the received signal is combined
at the receiver. Therefore, for mm-Wave massive MIMO sys-
tems, the task of hybrid pre-coding is to maximize R through
designing FBB, FRF ,WBB and WRF jointly.

R = log2(|INs +
ρ

Ns
R−1n W∗BBW

∗
RFHFRFFBB

×F∗BBF
∗
RFH

∗WRFWBB|) (5)

To maximize R in (5), FBB, FRF ,WBB andWRF should be
optimal. Nevertheless, due to the non-convex constraints of

FRF andWRF , it is extremely difficult to tackle the optimiza-
tion problem maximizing R via FRF , WBB and WRF . Con-
sequently, the problem of designing analog/digital precoders
and combiners is usually decoupled into two independent
sub-problems. One is to design precoder for the transmitter,
another is to design combiner for the receiver, and both of
them follow the similar approach to obtain solutions.

Generally, digital precoding is an upper bound for hybrid
precoding. For full digital precoding, the unconstrained opti-
mal precoder (Fopt ) is simply calculated from decomposing
the channel matrix H, which is known at the transmitter.
Singular Value Decomposition (SVD) is applied to the chan-
nel matrix H, such that H = U6VH, where U and V are
unitary matrices with dimensions (Nr × rank(H) and
(Nt × rank(H)), respectively, and6 is a diagonal matrix with
dimensions (rank(H) × rank(H)). Taking advantage of the
above decomposition, Fopt equals the first Ns columns of V,
which are orthonormal basis for the channel’s row space.

In this study, transmitter is assumed to use optimal pre-
coders (Fopt ) to transmit the streams, this makes optimize
receiver combiners possible, the achievable mutual infor-
mation of the mm-Wave massive MIMO system can be
shown as (6).

MAX (R)

= log2(|INs+
ρ

Ns
R−1n W∗BBW

∗
RFHFoptF∗optH

∗WRFWBB|)

s.t:WRF ∈WRF , [WRF ]n,m =
1
√
Nr
eiθn,mt . (6)

where WRF is the set that contains all the possible analog
combiners considering the hardware constraints, which con-
sists of the sending phase of each path of each cluster. The
aim is to optimizeWRF andWBB tomakeR as big as possible.
Once the analog combiners WRF , WBB have been designed,
the precoder FBB, FRF at the transmitter can be obtained via
novel equivalent channel approach.

III. HYBRID PRECODING STRATEGIES
This part shows a novel approach to optimize hybrid
pre-coder and using the novel pre-coding approach to build a
neural network model which can be adopted in the mm-Wave
massive MIMO for achieving end-to-end highly efficient
hybrid pre-coding. Finding the transmission paths that make
the spectrum most efficient and adjusting the transmission
phase of the signal through the beam-former so that the sys-
tem spectral efficiency would be improved. Then regard the
beam-former and combiner as a part of channel. By reducing
the dimension of channel matrix to the level of RF link num-
ber, baseband pre-coder is simply calculated from decompos-
ing the equivalent channel matrixHequ, which greatly reduces
the complexity. As for the neural network, the splendid learn-
ing ability of deep learning enables the spatial features to be
exploited of the mm-Wave massiveMIMO system and regard
the entire system as a black box to capture useful features for
hybrid precoding. Developing the proposed CNN framework
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and describing how can the nonlinear operation be mapped
to the hybrid pre-coder, and then we provide a novel training
strategy for facilitating the performance of the CNN.

A. NOVEL EQUIVALENT CHANNEL HYBRID PRECODING
To solve the optimization problem in (5), its essence is
to select out the N r

RF most relevant antenna response vec-

tors from {ar
(
ϕri,l, θ

r
i,l

)
,∀i,l}, which is denoted as Ar for

notational simplicity. Assuming the precoders are optimal,
we seek to design hybrid combinersWRF andWBB that mini-
mize the mean-squared-error (MSE) between the transmitted
and processed received signals. The combiner design problem
can therefore be stated as (7)

(WRF ,WBB)= argminE
[∥∥s−W∗BBW

∗
RFy

∥∥2
2

]
s.t :WRF ∈WRF , [WRF ]n,m=

1
√
Nr
eiθn,mt .

(7)

In the absence of any hardware limitations that restrict the
set of feasible linear receivers, the exact solution to (7) is well
known [19] to be

WMMSE = E
[
sy∗
]
E
[
yy∗

]−1
=

1
√
ρ
(F∗opt (H

∗H)Fopt +
σ 2
n

ρ
NsINs)−1F∗optH

∗ (8)

As a result of [1], the MMSE estimation problem is equiv-
alent to finding hybrid combiners that solve

(WRF ,WBB)= argmin
∥∥∥E[yy∗]1/2(WMMSE−WRFWBB)

∥∥∥
F

s.t.WRF ∈WRF . (9)

which amounts to finding the projection of the unconstrained
MMSE combiner WMMSE onto the set of hybrid combiners
of the form WRFWBB with WRF ∈WRF

Ar = [ar
(
ϕr1,1, θ

r
1,1

)
, · · · , ar

(
ϕrNcl ,Nray , θ

r
Ncl ,Nray

)
is

a Nr × N clNray receive matrix of array response vectors.

Firstly, we calculate all the combinations Qw =
(
NclNray
N r
RF

)
of N r

RF paths that select from all the transmission paths and
get all possible antenna response vectors to form a combiner
matrix. All combinations constitute candidate sets of com-
binerWRF = [W 1

RF W
2
RF · · · W

Qw
RF ]. That’s mean we need to

choose N r
RF columns from Ar to get WRF. Namely, because

of the structure of clusteredmm-Wave channels, near-optimal
receivers can be found by further constrainingWRF to select
elements from corresponding column of Ar . Consequently,
Solve problem (9) turns into solving

WBB= argmin
∥∥∥E[yy∗]1/2WMMSE−E[yy∗]1/2WRFW̃BB

∥∥∥
F

s.t.
∥∥diag(WBBW∗BB)

∥∥
0 = N r

RF (10)

Suppose the transmit power of s and the receive power of y
are normalized

Pt =
1
NS

INs, Pr = ρHFoptPtF∗optH
∗
+ σ 2

n INr (11)

The effective robust digital combiner are given by [1]

WBB = (W∗RFPrWRF )−1W∗RFPrWMMSE . (12)

When we get WRF and WBB candidate sets, put them into
the spectrum efficiency formula (6), and the candidate set
for maximum spectrum efficiency is the optimal combiner.
Owing to the result of WRF , we can know the downlink
equivalent receiving channel Heqd = W∗

RFH. After the
downlink receiving channel matrix is obtained, we know the
phase of the receiving signal with the maximum gain of
the downlink channel, and the maximum spectrum efficiency
can be obtained by letting the transmitter use the phase
information to transmit. We focus on the large array gain
design through the RF combining and leave the interference
canceling to the baseband processing in the proposed scheme.
Using the RF domain processing matrices WRF and FRF
construct the equivalent channel Hequ = W∗

RFHFRF and
Hequ should sufficiently harvest the array gain so that it can
provide as large gain for each stream transmission as possible,
which will lead to a good performance and significantly low
complexity under the hybrid precoding structure. Based on
the obtained baseband equivalent channel Hequ performing
the singular value decomposition (SVD) processing with low
dimension Hequ, the baseband precoder FBB and combiner
WBB, which are used to cancel the inter-streams interference,
are available.

Finally, Algorithm 1 describes the framework to obtain the
feasible hybrid precoder based on the principle of equivalent
channel.

B. PROPOSED CNN-BASED NEURAL NETWORK
ARCHITECTURE
Based on the scheme mentioned above, the novel combiner
neural network architecture was proposed show in Figure 2,
which learns how to predict the RF combining vectors of the
hybrid architecture directly from the receive channel state
information. Supervised learning is tasked with learning a
function from labeled training data in order to predict the
value of any valid input.

The neural network has a total of eight layers, including
an input layer, two convolution layers, a pooling layer, three
full connection layers and a regression output layer. Many
units are deployed in each layer, and the output can be
generated based on the output of these units with the aids
of activation functions. In most cases, the rectified linear
unit (ReLU) function and the sigmoid function are used in
the nonlinear operation. Assumingα as the argument, they are
defined as ReLU(α) = max(0, α) and sigmoid(α) = 1

1+e−α ,
respectively.

The input layer inputs the 3d matrix generated by
the channel matrix. The first channel of the input is
the element-wise absolute value of the channel matrix as
[X(l,n)]i,j,1 = |[H(l,n)]i,j|. The second and the third channels
are defined as the real and the imaginary parts of the channel
matrix as [X(l,n)]i,j,2 = Re{[H(l,n)]i,j} and [X(l,n)]i,j,3 =
Im{[H(l,n)]i,j} ∀ij. The second and third layers are the
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Algorithm 1 Equivalent Channel Hybrid Precoding

1: inputs: H, At , Ar ,N t
RF ,Ns,N

r
RF

2: ouputs: WBB,WRF , FBB, FRF

3: calculate Combination Qw =
(
NclNray
N r
RF

)
,

subsetWRF(Qw)
4:

[∼,∼ ,Fopt ] = SVD(H),

WMMSE=
1
√
ρ
(F∗opt (H

∗H)Fopt+
σ 2n
ρ
NsINs)−1F∗optH

∗.

5: for qw = 1: Qw do
WF(qw) = Ar(:,subsetWRF(qw)));

WB(qw)= (W∗FPrWF )−1W∗FPrWMMSE

R(qw) = log2(|INs +
ρ

Ns
R−1n W∗B(qw)×

W∗F (qw)HFoptF∗optH
∗WF (qw)WB(qw)|)

end
6: [∼, qwm] = max(R(:, 1))

7: WRF =WF (qwm),WBB =WB (qwm)

8: Heqd =W∗RFH

9: FRF =
ej(angle(Heqd∗))
√
Nt

10: Hequ =W∗RFHFRF
11: [∼,∼ ,FBB] = SVD(Hequ)

12: FBB =
√
NsFBB

‖FRFFBB‖F

FIGURE 2. The proposed CNN framework for combiner design.

convolutional layers with 32 filters and the convolution kernel
is 3× 3. The activation functions in the convolution layer are
all ReLU functions. The main task of convolutional layers
filters are to extract and select data feature vectors. CNN
can automatically extract and select feature vectors from
data to obtain representative vectors from input data. After
that, the parameters to be estimated are compressed by a 2D
maximum pooling layer, and the data dimension after pooling
is 1/4 or 1/8 of the original dimension. Then, the data after
pooling is rearranged into a one-dimensional vector. The next
full connection layers make a weighted sum of the features of
the previous layer and map the feature space to the sample
marker space by linear transformation. In order to prevent
overfitting, dropout Layer is added, so that the neural network
is sampled in the training process, while dropout is not used in

the prediction, and the random sampling probability is usually
set at 0.5. And the next two layers are full connection layer.
The activation functions in the full connection layers are also
all ReLU functions. Finally, the regression layer is used as the
output layer to output the results with computing the mean-
squared-error loss.

In the training phase, the combiner is trained end-to-end
in a supervised manner. More specifically, a dataset of the
mm-Wave channels and the corresponding RF combining
matrices are constructed and the combiner is trained to be
able to predict the indices of the RF combining vectors of
the hybrid architecture given the input channel vector. The
training labels, RF combining matrices, are calculated based
on the scheme mentioned above, equivalent channel hybrid
precoding algorithm. For the loss function, we use the mean
square error (MSE) for the multi-label regression that corre-
sponds to each task, so the prediction loss of the model is

Jloss(θ ) =
1
n

n∑
i=1

(fθ (xi)−WRF (i, :))2 (13)

Then, based on the proposed method, the stochastic gradi-
ent descent (SGD) algorithm with momentum is employed
to update the parameter sets (θ ) of the network, which is
given by

θ j+1 = θ j + v

v = αv− εg

g =
∂J (θ )
∂θ j

=
1
n

n∑
i=1

∇(fθj (xi)−WRF (i, :))2 (14)

where v is denoted the velocity for facilitating the gradient
element, the iteration number is denoted as j, α denotes
the momentum parameter and ε denotes the learning rate.
Synchronously, g represents the gradient element. The
momentum term increases for dimensions whose gradients
point in the same directions and reduces updates for dimen-
sions whose gradients change directions. As a result, the
convergence of the training process is accelerated and
reduced oscillation.

In order to improve the processing capacity of imperfect
channel state information, such collocation is carried out
when generating training data sets. For each perfect channel
state information matrix was generated, nine imperfect chan-
nel state information matrices were generated, which were
generated by using the same perfect channel state information
matrix to add noise. However, all training tags are produced
by using perfect channel state information. Nine noisy chan-
nel matrices are obtained, where the added element-wise
synthetic noise is defined by

Hnoise = H+ n (15)

where H is the channel matrix with Nr × Nt dimensions,
and n is the additive white Gaussian noise (AWGN) vector
following i.i.d distribution CN (0, σ 2

n ).
During the training process, the CNNs are fed with the

training data generated for N = 1000, L = 10. In the training
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process, 70% and 30% of all generated data are selected as the
training and validation datasets, respectively. The parameters
of the model include ordinary parameters and hyperparame-
ters (some parameters related to model design and training).
Using the BP (Error back-propagation) algorithm can only
train ordinary parameters, but cannot ‘‘train’’ the hyperpa-
rameters of the model.

Therefore, set the verification data set and feedback
through the effect of the verification data set.

According to the effect, it is necessary to terminate the
current model training or retrain after changing the hyperpa-
rameters, and finally get the best model. The initial learning
rate is set to 0.01, the number of training iterations is set
to 5000, and the size of each batch is set to 200.We sum-
marize the algorithmic steps of the training data generation
in Algorithm 2.

Algorithm 2 CNN-Based Neural Network Architecture
1: inputs: H, At, Ar,Nt

RF , N
r
RF ,Ns, N, L =10

2: ouputs: WBB, WRF, FBB, FRF
3: Construct the proposed CNN framework.
4: Generate train data:

for 1 ≤ n ≤ N
for 1 ≤ l ≤ L do

if l=1, H(l,n)
=H; generate perfect CSI; use

Algorithm 1 to get Wl,n
RF as label

else H(l,n)
= H + n; generate imperfect CSI;

copy Wl,n
RF as label

[X(l,n)]i,j,1 = |[H(l,n)]i,j|.
[X(l,n)]i,j,2 = Re{[H(l,n)]i,j}.
[X(l,n)]i,j,3 = Im{[H(l,n)]i,j} ∀ij.

end
end

5: Feeding X to train the CNN by processing the SGD with
momentum
6: Use the CNN to predictWRF
7: Use Algorithm 1 to get FRF WBB FBB

IV. NUMERICAL SIMULATIONS
A. COMPLEXITY ANALYSIS
One of the key advantages of the proposed EQUA hybrid
precoding is that this method decreases the computational
complexity. To verify the low computational complexity
of the EQUA scheme intuitively, the computational com-
plexity of the proposed method and some other typical
precoding approaches are presented, which is illustrated
as TABLE 1. According to [1], the main complexity of
SOMP hybrid precoding comes from the following three
parts:

1) The first one is derived from the channel matricH SVD
computation of Fopt andWopt , sinceH isNr×Nt , so the main
complexity is O(3N 2

t Nr ) [20].
2) In order to get FRF and FBB, the main complexity are

the calculation of 99∗ (9 = At ∗ Fopt ) and invert F∗RFFRF

The main complexity of this part isO(N t
RF (LNtNs+L4Ns+(

N t
RF

)5 Nt + NtN t
RFNs)). L (L = NclNray) is the number of

transmission paths.
3) The third one originates from the computation of 99∗

(9 = Ar ∗ E
[
yy∗

]
∗ WMMSE ) and invert W∗RFWRF to

get WRF and WBB. The main complexity of this part is
O(N r

RF (LNrNs + L4Ns +
(
N r
RF

)5 Nr + NrN t
RFNs)).

As for the EQUA hybrid precoding, we can see from
algorithm 1 that the main complexity of the first four steps are
the same to the first part of SOMP [1]. The main complexity
stem from the calculation of RF sections in step 5 and the
singular value decomposition of equivalent channel matrix
Hequ in step 10. The complexity of calculation for WRF and

WBB is O(
(

L
N r
RF

)
(
(
N r
RF

)3
+ 2NsN r

RFNr + 2N 2
sN

2
t )). The

complexity of calculation for FBB and FRF is O(3
(
N r
RF

)3).
The complexity of the MO-AltMin [5] algorithm is rel-

atively high. In each iteration, the update of the analog
precoder involves a linear search algorithm, so the nested
loops in the MO-AltMin algorithm will slow down the
whole solving procedure. Furthermore, the Kronecker prod-
ucts in calculation Euclidean gradient of the cost function
will result in two matrices of dimension N t

RFNt × NtNs,
which scales with the antenna size and results in an expo-
nential increase of the computational complexity in the
MO-AltMin algorithm. According the algorithm description
in [5], the main complexity that calculate for FRF and FBB
is O(K 2(N t

RFNtNS +
(
N t
RF

)2
N 5
t NS +

(
N t
RF

)2 N 3
t )). K is the

number satisfied with stopping criterion triggers. And the
main complexity that calculates for WRF and WBB is

O(K 2(N r
RFNrNS +

(
N r
RF
)2
N 5
r NS +

(
N r
RF
)2 N 3

r )).

The complexity of the CNN-based precoding is minimal.
Because convolution layers have 32 filters and the convolu-
tion kernel is 3 × 3, the input layer has 3 channels and the
dimension of output layer isNrN r

RF×1. The main complexity

O
(
96kNt + 320N t

RFNr + 55
(
N t
RF

)2N 2
r

)
.

From TABLE 1, we can find the highest degree of SOMP is
N t
RF to the sixth, the highest degree ofMO-AltMin isNt to the

fifth andNr to the fifth. However the highest degree of EQUA
is only N r

RF to the third and N r
RF is far less than Nt . Overall

comparison, the complexity of algorithm EQUA is much less
than algorithm MO-AltMin and algorithm SOMP. And the
CNN-based precoding is the simplest of these algorithms.

TABLE 1. Computational complexity of several precoding schemes of
mmWave massive MIMO.
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FIGURE 3. Achievable spectral efficiency of proposed EQUA hybrid
pre-coding and CNN-based pre-coding when Nt = 16, NRF = 4,Nr = 16,
perfect CSI, Ns = 1 streams) compared to other pre-coding systems.

B. SIMULATION RESULT
In this section, the performance of the proposed algorithm
is evaluated by measuring the spectral efficiency of the
mm-Wave system with square planar array. The proposed
algorithms (Algorithm 1 EQUA and Algorithm 2 CNN
precoding) are compared with the fully digital pre-coding
(Full Digital OPT), the prior work SOMP in [1], the prior
work manifold optimization alternating minimization
(MO-AltMin) in [5], and the prior work DNN-based pre-
coding (DL Pre-coding)[8]. For each channel matrix real-
ization, the propagation environment is modeled with
Ncl = 4 and Nray = 4 for each clusters with σ 2

θ = 5
◦

for all
transmit and receive azimuth and elevation angles which are
uniform randomly selected from the interval [−60◦, 60◦] and
[−20◦, 20◦]. The complex gain of scattering path in cluster is
a complex gaussian distribution with mean 0 and variance 1.
The center carrier frequency of the transmission is 28GHz.

Figure 3 presents the spectral efficiency achieved by the
proposed EQUA and the CNN-based hybrid pre-coding com-
pared with some existing solutions for hybrid pre-coding in
mm-WavemassiveMIMO system.We set Nt = 16, NRF = 4,
Nr = 16, and Ns = 1. As can be seen from the figure,
the approach that was proposed by us has similar performance
with full digital pre-coding and MO-AltMin. The prior DL
pre-coding has similar performance with SOMP and there is
a small gap between SOMP and full digital precoding.

In figure 4, we set Nt = 16, NRF = 4, Nr = 16,
Ns = 3 streams, and use perfect CSI. It clearly shows that
the proposed scheme EQUA and the CNN-based pre-coding
can achieve a considerably higher spectral efficiency than the
prior hybrid pre-coding and the gap between the proposed
CNN-based hybrid pre-coding with prior DL pre-coding and
SOMP is obvious.

The system configuration difference in figure 3 and
figure 4 is the number of sending data streams. Figure 3 rep-
resents the system sends single data stream, figure 4 system

FIGURE 4. Achievable spectral efficiency of proposed EQUA hybrid
precoding and CNN-based pre-coding(when Nt = 16, NRF = 4,Nr = 16,
perfect CSI, Ns = 3 streams)compared to other pre-coding systems.

FIGURE 5. Achievable spectral efficiency of proposed EQUA hybrid
pre-coding and CNN-based pre-coding (when Nt = 36, NRF = 4,Nr = 36,
perfect CSI, Ns = 3 streams) compared to other pre-coding systems.

sends multiple data stream. Through the comparison of the
two figures, it is obvious that after adding data streams,
the spectral efficiency of all pre-coding schemes increased
significantly. And the performance of prior pre-coding
schemes has been reduced compared with full digital optimal
pre-coding, while the proposed scheme is still very close to
the result of full-digital pre-coding. This indicates that the
proposed scheme has excellent performance when dealing
with multiple data streams.

Figure 5 shows the spectral efficiency achieved in a 36×36
system with square planar arrays at both transmitter and
receiver. For the proposed pre-coding strategy, both transmit-
ter and receiver are assumed to have four transceiver chains
and transmit N s = 3 streams, perfect channel knowledge is
available to the transmitter. Figure 5 show that the proposed
hybrid precoding achieves spectral efficiency which close to
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FIGURE 6. Achievable spectral efficiency of proposed EQUA hybrid
precoding and CNN-based pre-coding (when Nt = 36, NRF = 4,Nr = 36,
imperfect CSI, Ns = 3 streams))compared to other pre-coding systems.

optimal full digital precoding. This implies that the proposed
strategy can very approximate the scheme that decomposing
channel matrix to obtain the channel’s dominant singular
vectors as a pre-coder. Compared with the results in figure 4,
the spectral efficiency is also significantly improved when
increasing the number of antenna.

Figure 6 illustrates the SE performance achieved by
mm-Wave system with 36 receive antennas and 36 transmit
antennas, as well as 4 RF chains at the transmitter and trans-
mit N s = 3 streams. Different from previous simulations,
white gaussian noise is added to the channel state information
matrix in this simulation. Compared the results in figure 5 and
figure 6, we find that the spectral efficiency of all pre-coding
schemes decreases when imperfect channel state information
was used. Especially, the performance of the SOMP hybrid
pre-coding and DL Pre-coding significantly decreased.
However, the proposed algorithm still has good performance
under imperfect channel state information.

V. CONCLUSION
This paper presents two approaches to design hybrid pre-
coding in mmWave Massive MIMO systems. Results show
that the performance of the proposed equivalent channel pre-
coding algorithm and the CNN-based precoding algorithm
is much closer to the all-digital precoding algorithm, com-
pared to the optimal unconstrained precoding algorithm and
some existing schemes. Meanwhile, the proposed scheme
achieves a superior performance as SOMP. SOMP performs
poor due to the fact of not matching the set of array responses
from the dictionary which maximizes spectrum efficiency.
MO-AltMin performs sufficiently well, while EQUA per-
forms better than it. Furthermore, the performance improves
more apparently between the proposed CNN-based precod-
ing and the prior DNN-based strategy. By using convolutional
neural network, the complexity of calculating combiner is

greatly reduced, not only the time is saved but also the system
performance is improved.

To sum up, the performance of the proposed EQUA
schemes has little gap compared with full digital precoding
and the computational complexity decreased significantly.
And it can be concluded that the proposed CNN exhibits
much stronger robustness to imperfect CSI than the tradi-
tional algorithms and it also significantly decrease computa-
tional complexity. The less accurate the channel estimate is,
the larger the performance gap is.
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