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ABSTRACT In underwater optical wireless communication (UOWC) systems, using single photon
avalanche photondiode (SPAD) as the detector can improve the transmission distance. However, the signal
detection for SPAD-based systems is greatly challenged by the complex optical channel characteristics and
SPAD nonlinear distortion. To address this issue, a novel deep learning aided signal detection scheme is
proposed in this paper. By exploiting the physical mechanism and prior expert knowledge of the signal
processing, a two-connected multilayer perception (MLP) network is integrated into the receiver. The first
subnetwork is regarded as a channel compensation block while the second one works as a demodulator. With
sophisticated numerical optical channel model and SPAD non-Poisson model, large amounts of training data
are utilized to train the proposed model offline. Afterwards, the online data are recovered with the trained
network. Simulation results verify that significant bit error ratio (BER) improvement can be achieved with
the proposed scheme.

INDEX TERMS Underwater optical wireless communication, nonlinear distortion, deep learning, multilayer
perception, signal detection.

I. INTRODUCTION
With the application of technologies such as massive
multi-input multi-output transmission, millimeter-wave
(mm-mave) communication and non-orthogonal multiple
access scheme, 5G mobile communication has significantly
increased the system capacity and supported massive connec-
tions [1]. However, the 5G network is still ground based [2].
Vast communication demand at sea is greatly challenged
due to the limited 5G network coverage. Thus, the envis-
aged 6G network is expected to provide global wireless
connectivity from space to underwater. As a complementary
technology for terrestrial communication, optical wireless
communication, like laser communication or visible light
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communication, can be used to support underwater commu-
nication and expand the wireless coverage [3].

Underwater optical wireless communication (UOWC)
employs the visible light spectrum (mainly the blue-green
wavelength) for data transmission. It can provide ultra-high
data rate, low time latency and high security [4]. Besides
UOWC, underwater acoustic communication and radio fre-
quency (RF) communication can also be used for underwater
wireless communication. The underwater acoustic technol-
ogy is the widely usedmethod for underwater communication
in the past decades. It can support long-distance transmission
up to several tens of kilometers [5]. However, using sound
for the underwater signal transmission is not simple since
the acoustic channel is time-varying and space-varing. The
extremely low data rate (only Kbps) also limits its applica-
tion. Compared to the acoustic communication, RF system
can provide a higher data rate up to tens of Mbps. As the
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radio wave can easily pass through the air-water interface,
the underwater communication and terrestrial communica-
tion can be switched over smoothly [6]. The defect of this
technology is that the distance is confined in the range of sev-
eralmeters due to the conductivity of thewater. In comparison
with its two counterparts, UOWC is an extremely competi-
tive approach for underwater wireless communication, which
provides a tradeoff between the transmission distance and the
data rate.With UOWC technologies, moderate distance in the
range of tens of meters can be supported while the data rate
can reach up to Gbps [7], [8].

Nevertheless, using optical wireless communication in
underwater also faces several challenges. In underwater envi-
ronment, optical signal suffers from severe water absorption
and scattering. The interaction between photons and water
molecules or other particulate matters causes that the prop-
agation characteristics of the light beam becomes extremely
complicated and varies with different water body. As a result,
it is elusive to mathematically describe the underwater optical
channel accurately and thereafter so is the signal detection.
In spite that Radiative Transfer Equation (RTE) provides a
theoretical model to describe the absorption and scattering
effect in water, deriving an analytical solution is bristling with
difficulties. Besides that, improving the transmission distance
from tens of meters to hundreds of meters in UOWC is an
another challenging work. Using single photon avalanche
photondiode (SPAD) as the detector provides a potential solu-
tion. Compared to the conventional avalanche photondiode
(APD), SPAD is more sensitive so that a single photon can be
detected [9]. However, the dead time contributes to the non-
linearity between the average input photon and the average
output voltage. As a result, the photon detection exhibits non-
Poisson despite the photons arrival is a Poisson process [10].

To deal with the complexity of the mathematical mod-
eling and overcome the nonlinear distortion of SPAD for
signal detection in UOWC, deep learning can be used for
this physical-layer communication [11]. As a subbranch of
machine learning, deep learning can provide a data-driven
method to solve this problem by extracting the feature of
large amounts of training data and optimizing the system
performance [12]. In such a system, the mathematical model
for the processing block is optional and can be replaced by the
deep learning network. Although whether the deep learning
based wireless communication outperforms the traditional
one in terms of the performance improvement and complexity
is an open issue, it is believed that the deep learning based
algorithm can be executed faster with lower power consump-
tion compared to its counterpart [11].

Recently, the deep learning method has been applied in
optical wireless communication to address the physical-layer
issues. In [13], a Gaussian kernel-aide deep neural network
is applied for 8-pulse amplitude modulation based signal
detection to compensate for the nonlinear distortion in an
underwater optical system. To mitigate the high peak-to-
average power ratio (PAPR) of the optical orthogonal fre-
quency division multiplexing (O-OFDM) based visible light

communication system, an autoencoder network is proposed
with efficient learning and end-to-end performance opti-
mization [14]. Similar autoencoder network framework is
proposed for binary signal designing in LED-based visible
light communications [15]. The cost function is deliberatedly
designed to satisfy the target dimming constraints. In [16],
three demodulators based on convolution neural network,
deep belief network and adaptive boosting are compared in
a hardware prototype of an end-to-end VLC system with
practical datasets.

Against this background, in this paper, a novel deep learn-
ing aided signal detection scheme is proposed for SPAD
based UOWC system. A two-connected multilayer percep-
tron (MLP) network as the deep learning architecture is inte-
grated into the signal processing blocks. The first block of
the connected MLP network can be regarded as the channel
compensation block while the second one works as a demod-
ulator. Compared to existing channel compensation or chan-
nel equalization methods, the channel side information is
no longer needed for the deep learning aided signal detec-
tion. With sophisticated numerical optical channel model and
SPAD non-Poisson model, large amounts of training data can
be utilized to train the proposed network. Our simulation
results show that the deep learning method can address the
optical channel distortion as well as SPAD non-Poisson dis-
tortion, and thereafter improve the system performance.

The remainder of this paper is organized as follows: In
Section II, we describe the characteristics of the UOWC
systems, including the inherent optical property, the under-
water optical channel and the SPAD nonlinear detection. The
deep learning aided signal detection scheme is introduced
in Section III. Section IV presents the simulation results to
validate our proposed scheme. Finally, the conclusions are
drawn in Section V.

II. SYSTEM CHARACTERISTICS
A. INHERENT OPTICAL PROPERTY
The light propagation characteristics in water is quite dif-
ferent from that in the free space since the photons interact
with the particles in water more severely and frequently. As is
shown in Fig. 1, when the light moves in water, some parts of
the incident beam are absorbed in the water and some parts
are scattered by the particles. The absorption effect as well as
the scattering effect is noticeable in water and would cause
the light attenuation.

To mathematically describe these effect, two inherent opti-
cal properties of the light are introduced, namely the absorp-
tion coefficient a(λ) and the scattering coefficient b(λ). Then,
the attenuation coefficient c(λ) can be expressed as

c(λ) = a(λ)+ b(λ), (1)

where λ is the light wavelength. Since we only focus on the
performance of the UOWC systems with a specific wave-
length, the parameter λ is omitted for brevity herein.

Volume scattering phase function is an another inherent
optical property related to the scattering effect. It is defined
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FIGURE 1. Geometry of light propagation in water.

as the proportion of the light scattered out from the incident
beam with a solid angle �, which is given by

β(�) = lim
dl→0

lim
d�→0

Ls(�)
Lidld�

, (2)

where Ls(�) is the power of the scattered beam toward the
solid direction �, Li is the power of the incident beam, d�
is the infinitesimal solid angle of the scattered beam and dl
is the infinitesimal length of water. Usually, the scattering in
the azimuth angle is assumed to be symmetric. Thus, β(�)
is replaced by β(ϕ) for simplicity, where ϕ is the elevation
angle of the scattered beam.

The volume scattering phase function indicates that the
scattering in water is non-isotropic and highly forward. Some
field experiments have already been done to measure this
phase function for the selected realistic water types [17]–[19].
However, these collected data cannot be used directly for
theoretical analysis. Thus, several types of analytical models
have been proposed. The Henyey-Greenstein phase function
is widely used due to its simple expression [20]. Nevertheless,
this function is inadequate to represent the realistic light
forward scattering at small angle and backscattering at large
angle in water. To better describe the realistic light scattering,
the two-term Henyey-Greenstein phase function is proposed
by summing of two Henyey-Greenstein phase function with
different weights [21]. Another more complicated analytical
model is the Fournier-Forand marine phase function, which
fits well with the Petzold experiment data for San Diego
harbor [22].

Based on the volume scattering phase function, the scat-
tering coefficient b is obtained by integrating the volume
scattering phase function over all direction (i.e., 4π ), which
is given by

b =
∫ 4π

0
β(�)d� = 2π

∫ π

0
β(ϕ) sinϕdϕ. (3)

By normalizing the volume scattering phase function β(ϕ)
with the scattering coefficient b, another commonly used
function, the scattering phase function β̂(ϕ), is obtained to
describe the scattering characteristics of the light in water,

FIGURE 2. Photon propagation trajectory with multiple scattering.

which is expressed as

β̂(ϕ) =
β(ϕ)
b
. (4)

The scattering phase function can be regarded as the elevation
angular distribution probability when photon interacts with
the particles in water.

B. UNDERWATER OPTICAL CHANNEL
Based on the attenuation coefficient, the Beer Law is used to
model the underwater optical loss, which is formulated as [4]

I (L) = I (0) exp(−cL), (5)

where I (0) is the initial radiance of the transmitted light and
I (L) is the radiance of the light at the distance L.
The expression of the Beer Law is simple to be used for

optical link budget. However, it is not accurate since the
photons scattered out of the incident beam are not taken into
account when calculating the radiance of the received light.
Instead, in consideration of the energy conservation, a more
complex but accurate equation, called RTE, is derived to
theoretically describe all photons moving through the water
along a path toward a given direction. For brevity, the time-
independent and source-free RTE can be given by [23]

cosϕ2
dI (ϕ2, θ2)

dl
= −cI (ϕ2, θ2)

+

∫ π

0

∫ 2π

0
β
(
〈ϕ1, θ1〉, 〈ϕ2, θ2〉

)
I (ϕ1, θ1) sinϕ1dθ1dϕ1. (6)

where I (ϕi, θi) is the radiance in the direction with the
elevation angel ϕi and the azimuth angle θi (i = 1, 2),
β
(
〈ϕ1, θ1〉, 〈ϕ2, θ2〉

)
is the volume phase scattering function

when light is scattered from the direction 〈ϕ1, θ1〉 into the
direction 〈ϕ2, θ2〉,

Since the equation involves the integrals and derivatives,
deriving an exact analytical solution is extremely difficult.
Therefore, the Monte Carlo approach has been proposed to
numerically evaluate the light radiance when the light passes
through water [24]. In this numerical approach, the trajec-
tories of all photons from the light source are simulated.
As shown in Fig. 2, each photon would be scattered by the
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materials in water for several times. During each scattering
time, the photon would change its moving direction ran-
domly. The elevation angle ϕi is generated according to an
angular probability based on the scattering phase function
while the azimuth θi is randomly chosen from [0, 2π ]. Then
the new direction cosine ê = [êx êy êz]T is expressed as

êxêy
êz

=
sinϕi cos θisinϕi sin θi

cosϕi




exez√
1− e2z

−ey√
1− e2z

ex

eyez√
1− e2z

−ex√
1− e2z

ey

−

√
1− e2z 0 ez


, (7)

where e = [ex ey ez]T is the original direction cosine before
this scattering event. The photon path length between two
scattering events is defined as

ri = −
1
c
ln ui, (8)

where ui is a uniform random number chosen from [0, 1].
Then, the total number of scattering times can be calculated
based on the photon path length ri and the overall distance
between the transmitter and the receiver. In addition, the pho-
ton would also lose some weights during each scattering time
due to the interactionwith other particles in water. The photon
weight wi after i times of scattering is given by

wi = αiw0, (9)

where w0 is the initial photon weight and α is the single-
scattering albedo, which is defined as the ratio of the scatter-
ing loss to the attenuation loss. Ultimately, only the photons
with the weights above a threshold arriving at the receiver
plane from multi-path would be recorded to calculate the
received light radiance.

The Monte Carlo approach gives us a numerical underwa-
ter optical channel model. In this model, the channel impulse
response varies greatly with different water types, link dis-
tance and receiver characteristics. Nevertheless, in most
cases, the channel time dispersion can be neglected. Even
when the light travelling distance is very long and the water
is turbid, the maximum delay is less than 12 ns [25]. Thus,
the signal suffers from low inter-symbol interference.

C. SPAD NONLINEAR DETECTION
Compared to APD, SPAD has higher sensitivity and can
detect single photon as a photon counting receiver. It is useful
for signal detection in long distance transmission or low
optical power scenarios. SPAD is working in Geiger-mode
that an APD is biased with an excess bias voltage above
the breakdown voltage. When a photon arrives at the SPAD,
an avalanche can be triggered. This avalanche event reduces
the SPAD voltage below the breakdown voltage. Before
detecting a second photon, SPAD has to be recharged till its
voltage is raised to the original bias level with the quenching
circuits. This period between the starting of the avalanche

event and the recovery of the bias voltage is called as the
dead time. Typically, there are two types of quenching circuits
configuration that have an impact on the dead time, namely
the active quenching (AQ) circuits and the passive quenching
(PQ) circuits. For an AQ SPAD, with the use of the AQ
circuit, SPAD would be recharged rapidly to the original
bias level even when SPAD is fired by another photon in
the recharge process. As a result, the dead time would keep
constant. While for a PQ SPAD, it can still be triggered by
another photon as if the SPADvoltage is above the breakdown
voltage. In other words, anther photon arriving during the
recharge process can paralyze the device and extend the dead
time.

Note that the photon arriving can be modeled as a Pois-
son process. The probability of detecting k photons can be
expressed as

Pideal(k) =
(λpT )ke−λpT

k!
, (10)

where T is the counting interval and λp is the average photon
arrival rate. In this situation, the average detected photon is
Eideal(k) = λpT , which is proportional to the average photon
arrival rate λp.
When the dead time is considered, the photon detection no

longer follows the Poisson distribution. Typically, the dead
time τ is smaller than the counting interval T . If a photon
is detected at the start of a counting interval, the maximum
number of the counted photons would be kmax = b

T
τ
c + 1,

where bxc denotes the maximum integer smaller than x.
For an AQ SPAD, its probability of the detected photon is

given by [10]

PAQ(k) =



k∑
i=0

λip(T − (k + 1)τ )i

i!
e−λp(T−(k+1)τ )

−

k−1∑
i=0

λip(T − kτ )
i

i!
e−λp(T−kτ ), if k<kmax,

0, if k ≥ kmax.

(11)

Then the average detected photon is given by

EAQ(k) = (kmax − 1)

−

kmax−2∑
k=0

k∑
i=0

λip(T−(k+1)τ )
i

i!
e−λp(T−(k+1)τ ). (12)

While for a PQ SPAD, the probability of the detected
photon is given by [10]

PPQ(k) =


kmax∑
i=k

(−1)i−k
λip(T − iτ )

i

k!(i− k)!
e−iλpτ , if k<kmax,

0, if k≥kmax.

(13)

Then the average detected photon is given by

EPQ(k) = λpe−λpτ (T − τ ). (14)
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FIGURE 3. Deep learning aided SPAD based UOWC system framework.

From (12) and (14), it can be observed that the dead time
could cause the nonlinearity between the arrived photons and
the detected photons. To mitigate this nonlinear impact of
the dead time, a SPAD array with multiple elements can be
used. When photons arrive at the SPAD array, some elements
would be triggered while others are still active for another
photon detection. However, due to the limited number of the
elements in the array, the nonlinearity cannot be eliminated
completely [9].

III. SYSTEM DESIGN
In traditional wireless communications, processing blocks
such asmodulation, channel estimation and channel equaliza-
tion rely on the mathematically expressed models. However,
in some practical scenarios, the interaction between the signal
and the environment becomes extremely complex and estab-
lishing such mathematical models are intractable [26], [27].
Combining the deep learning with the mature existed math-
ematically expressed model or associated algorithm for pro-
cessing block can boost the intelligent communication and
achieve comparable performance gains [28]. In this section,
a novel signal detection scheme is proposed where the MLP
network is integrated into the SPAD based UOWC system
with direct current biased optical orthogonal frequency divi-
sion multiplexing (DCO-OFDM) employed for signal mod-
ulation. Among various deep learning network architectures,
such as MLP network, convolutional neural network (CNN),
recurrent neural network (RNN) and others built upon them,
the MLP network is adopted in our work. This is because
applying MLP network into signal processing can achieve
comparable system performance compared with the CNN

network and RNN network but with lower computational
time [29]. Besides, the architecture ofMLP network is simple
and easy to be trained compared to the RNN network where
the gradient vanishing problem is hard to deal with [30].

A. SPAD BASED UOWC SYSTEM WITH DCO-OFDM
MODULATION
The block diagram of the SPAD based UOWC system is illus-
trated in Fig. 3. Here, the DCO-OFDMmodulation scheme is
considered due to its high spectrum efficiency. Specifically,
the transmitted bits zi are firstly modulated with quadra-
ture amplitude modulation (QAM). As UOWC systems usu-
ally adopt the intensity modulation/direct detection (IM/DD)
scheme, the transmitted signal must be real-valued. Accord-
ingly, the modulated complex symbols Xk follows Hermitian
symmetry, which is expressed as

Xk = X∗N−k , k = 0, 1, . . . ,N/2− 1, (15)

where the subcarriers X0 and XN/2 are set to zero. The
time-domain OFDM signal xn is obtained with inverse fast
Fourier transformation (IFFT) from the modulated symbols
Xk , which is given by

xn =
1
√
N

N−1∑
k=0

Xkej
2π
N nk

=
1
√
N

N
2 −1∑
k=1

[
Xkej

2π
N nk
+ X∗k e

−j 2πN nk
]

=
1
√
N

N
2 −1∑
k=1

Re
(
Xkej

2π
N nk

)
, n = 0, 1, . . . ,N − 1, (16)
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FIGURE 4. Architecture of the proposed two-connected MLP network.

where Re(a) denotes the real parts of a complex symbol a.
A cyclic prefix (CP) is then added in front of each OFDM
signal to avoid ISI. The time-domain signal xn is scaled to
utilize the dynamic range of the transmitter and satisfy the
target power budget. Since the signal should be non-negative,
a DC bias is added to the scaled signal before being converted
to the optical signal x(opt)n .
At the receiver, to increase the link distance, SPAD is used

as the photon detector. The received signal can be expressed
as

yn = g2(g1(x
(opt)
n )) (17)

where g1(·) denotes the underwater optical channel distortion
and g2(·) denotes the SPAD nonlinear distortion.

Conventionally, after removing CP, fast Fourier transfor-
mation (FFT) is conducted to obtain the frequency symbols
from the sampled data. The frequency symbols are sequently
equalized and demodulated to recover the original informa-
tion. Unlike this traditional method, in this paper, a two-
connected MLP network is applied to the signal detection
by employing the features of the received signals suffering
from the distortion of the underwater optical channel and
the detector.

It should be mentioned that in machine learning, the train-
ing data have a great impact on the performance of the
deep learning network and finding such high-quality training
data is tricky. Fortunately, obtaining a dedicated training set
for network training is much easier in the field of wireless
communications since there are many sophisticated models
to generate simulated data that match the practical data well,
especially in the physical layer. In our scheme, the numeric
underwater optical channel model and non-Poisson SPAD
model detailed in the previous section are adopted for data
generation.

B. DEEP LEARNING AIDED SCHEME
The architecture of the two-connected MLP network is illus-
trated in Fig. 4. Instead of using one MLP network, two
MLP subnetworks are connected intuitively motivated by the
signal processing model to improve the training accuracy and
reduce the complexity. The first subnetwork of the connected
MLP network can be regarded as the channel compensation
block while the second one can be regarded as a demodula-
tor. Compared to existing channel compensation or channel
equalization methods, the channel side information is no

FIGURE 5. Inner structure of the MLP subnetwork.

longer needed for the deep learning aided scheme. The loss
functions used here to train the network are detailed in the
next subsection.

The inner structure of each subnetwork is further shown
in Fig. 5. Each subnetwork consists of one input layer, multi-
ple hidden layers and one output layer. The input layer is the
first layer of the MLP subnetwork. Its input is the training
data. The last layer of the subnetwork is the output layer
which output the data that approaches the expected value.
The hidden layers are some special layers where the network
does not indicate the exact form or value should be output.
They are just used to extract the features of the signals and
find the inner connection among them. The output of the
previous layer is also the next input of the next hidden layer.
Accordingly, the output of each subnetwork can be expressed
as

ŝn = fNl (fNl−1(· · · f1(un))), (18)

where un denotes the input data, Nl denotes the number of
layers and the function fi(i = 1, 2, · · · ,Nl) denotes the
nonlinear operation in each layer. Specifically, the nonlinear
operation is constituted of three steps, which are the full
connection, batch normalization and activation. For a layer
l with Pl inputs units and Ql output units, the full connection
among them can expressed as

ĥl,q =
Pl∑
p=1

wl,p,qhl,p + bl,q, (19)

where hl,p is the p-th input of layer l, ĥl,q is the q-th output
of layer l, wl,p,q is the weights between the p-th input and the
q-th output, and bl,q is the bias. It should be pointed out that
ĥl,q is not the final output value in this layer. Since gradient
exploding and vanishing are two serious problems in theMLP
network, batch normalization is applied to address this issue
before outputting the final results [31]. It can prevents small
weights variation from dramatically amplifying and control
the variation of this layer independent of all sequent layers
as the data goes through the network, which can be further
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expressed as

h̄l,q = γl,q
ĥl,q − µl,q√
σ 2
l,q + η

+ βl,q, (20)

where µl,q and σ 2
l,q denote the mean and variance of the

output of q-th neuron in layer l, respectively. γl,q and βl,q
denote two parameters to be learned, which guarantee that
the mean and variance of h̄l,q only depend on this layer. η is
a small constant.

Next, the activation function is introduced to obtain the
final output of this layer. There are two kinds of activation
functions to be used in our proposed network. The first acti-
vation function is the relu function, which is used in all hidden
layers and given by

σrelu(h̄l,q) = max(0, h̄l,q), l = 1, 2, · · · ,Nl − 1. (21)

The second one is the sigmoid function, which is used in the
output layer and expressed as

σsigmoid(h̄Nl ,q) =
1

1+ e−h̄Nl ,q
. (22)

C. OFFLINE TRAINING
Generally, the purpose of offline training of neural network
is to reduce the loss function by optimizing the parameters of
the MLP network. Here, the mean square error is adopted as
the loss function, which is defined as

l =
1
n

n∑
i=1

(ŝn − sn)2, (23)

where sn is the expect value. The loss function measures the
difference between the actual output of MLP network and
the expected output. Since two MLP subnetworks serve as
different functions, their expected values are distinct. The
expected output of the first block is the transmitted optical
signal whereas the expected output of the second one is the
transmitted bit.

The training procedure of the deep learning aided signal
detection is summarized in Algorithm 1. The first MLP sub-
network is trained with the back-propagation method, which
involves the gradient descent algorithm [32]. There are differ-
ent kinds of gradient algorithms applied into deep learning
network. Since the learning rate determines the converging
rate of the deep learning network, a self-adaptive learning
rate algorithm, called Adam algorithm, is used in our offline
training [33]. Adam algorithm exploits the exponential mov-
ing averages of the gradient and the squared gradient to scale
the learning rate. The weights and bias are updated by

w[k]
l,p,q ← w[k−1]

l,p,q − ε
m[k]
l,p,q√

n[k]l,p,q + δ
,

b[k]l,q ← b[k−1]l,q − ε
m̂[k]
l,p,q√

n̂[k]l,p,q + δ
, (24)

Algorithm 1 Deep Learning Aided Signal Detection
Training Algorithm
Input: For each subnetwork, the length of the input,

the number of hidden layers, the number of
hidden units in each hidden layer, the length of
output, training iteration Nnn1,ite, Nnn2,ite

1 Start the underwater emulator with the numerical
underwater optical channel model and the non-Poisson
SPAD model to generate the training data;

2 Normalize the training data;
3 Initial the first MLP subnetwork. The iteration is initially
to be 0, and randomly generate the weights and bias;

4 for k = 1 to Nnn1,ite do
5 Calculate the output of the first MLP subnetwork

based on (18);
6 Calculate the loss function between the output of

this subnetwork (i.e., x̂(opt)n ) and the transmitted
optical signal: l1 = 1

N1

∑N1
n=1(x̂

(opt)
n − x(opt)n )2 ;

7 Update the weights and bias with Adam algorithm
based on (24);

8 end
9 Initial the second MLP subnetwork while retaining the
structure and parameters of the first subnetwork. The
iteration is initially to be 0, and randomly generate the
weights and bias of this subnetwork ;

10 for k = 1 to Nnn2,ite do
11 Calculate the output of the second MLP subnetwork

based on (18);
12 Calculate the loss function between the output of

this subnetwork (i.e., ẑi) and the transmitted bits:
l2 = 1

N2

∑N2
i=1(ẑi − zi)

2;
13 Update the weights and bias with Adam algorithm

based on (24);
14 end

where m[k]
l,p,q and n[k]l,p,q are the bias-corrected first and sec-

onde raw moment estimate of the mini-batch partial deriva-
tion of loss function with respect to the weight g[k]w in the
k-th iteration. Correspondingly, m̂[k]

l,p,q and n̂
[k]
l,p,q are the bias-

corrected first and seconde raw moment estimate of the mini-
batch partial derivation of loss function with respect to the
bias g[k]b . They can be updated by

m[k]
l,p,q ←

α1m
[k−1]
l,p,q + (1− α1)g

[k]
w

1− αk1
,

n[k]l,p,q ←
α2n

[k−1]
l,p,q + (1− α2)(g

[k]
w )2

1− αk2
,

m̂[k]
l,p,q ←

α1m̂
[k−1]
l,p,q + (1− α1)g

[k]
b

1− αk1
,

n̂[k]l,p,q ←
α2n̂

[k−1]
l,p,q + (1− α2)(g

[k]
b )2

1− αk2
. (25)

Here, ε, δ, α1 and α2 are predefined hyperparameters.
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After the first MLP subnetwork is trained, the paraments
and its structure is retained. The second MLP subnetwork
is then trained with the same method. Once the training
of the two subnetworks is completed, the whole network
structure with its trained parameters are embedding into the
receiver. In the online processing procedure, the received
signal is fed to the MLP network. With simple mathematical
calculation, the original information can be recovered in a
forward propagation manner.

IV. PERFORMANCE EVALUATION
In this section, some simulation results are carried out to test
the performance of the proposed scheme. The clear ocean
and coastal water are chosen as two typical homogeneous
water types. Their absorption, scattering and attenuation coef-
ficients are given in Table 1. The dominant background noise
is the dark count noise while the noise from the ambient
light is not considered in the simulation. In the optical com-
munication system configuration, a commercial laser diode
with the maximum optical power of 85 mW is used at the
transmitter while a SPAD array with 64 elements is adopted
as the photon detector. For each SPAD element, the dead
time is 5 ns. Besides, a 4-QAM based DCO-OFDM with
16 subcarriers is utilized to modulate the transmitted infor-
mation. The sampling rate for the DCO-OFDM symbol at
the receiver is set as 10 MHz. Correspondingly, the photon
counting interval is 100 ns and the maximum number of
counted photons in a single SPAD element is 21 during a
photon counting interval. The specifical photon number in
each SPAD element is then generated with the non-Poisson
SPAD model (i.e., (11) or (13)). Therefore, the detected pho-
tons for each signal sample can be obtained by summing up
the detected photons from each SPAD element. In addition,
the photon energy for blue light is 4.42 × 10−19 J, which
is used for calculating the photon arrival rate for a specific
received optical power. Other related parameters used in the
simulation are listed in Table 2.

In the MLP network configuration, as the subnetworks
work as different signal processing blocks, the number of
neurons in their hidden layers are different. In the first subnet-
work, there are two hidden layers. The neurons in each layer
are 512 and 256, respectively. As the first subnetwork is used
for channel compensation, the number of its input data and
output data are the same, which equal the number of subcar-
riers in a DCO-OFDM symbol (i.e., 16). On the other hand,
for the second subnetwork, there are two hidden layers with
64 neurons in each layer. Since its input is the output of the
first subnetwork, the number of the input data is also 16. The
number of its output is set as 14 since the transmitted bits are
modulated only on the half of subcarriers of a DCO-OFDM
symbol except for the subcarriers X0 and XN/2. It should be
mentioned that the achieved BER is unacceptable with the
same number of hidden layers and neurons (i.e., 4 hidden
layers with 512, 256, 64 and 64 neurons, respectively) in only
one MLP network for data training.

TABLE 1. Parameters for typical water types.

TABLE 2. Simulation parameters of UOWC systems.

To validate the effectiveness of our proposed deep learning
aided signal detection scheme, two other schemes are utilized
as two baselines. In the first scheme, after FFT operation
with the received signal, the frequency-domain signal is
obtained and be demodulated with the logarithmic likelihood
ration (LLR) based soft-decision directly. In the scheme,
this demodulation block is called as the LLR demodulator.
While in the second scheme, a MLP network is combined
with the LLR demodulator. This MLP network is only used
for channel compensation to mitigate the distortion caused
by the optical channel and SPAD. Its architecture is the
same as that of the first subnetwork in the proposed scheme.
Note that the light moving distance is used in the simula-
tion instead of the signal-to-noise ratio. This is because the
photons’ interaction with the particles in the water lead to
a complex relationship between the distance and the atten-
uation in UOWC. The impact of the distance is considered
afterwards.

A. PERFORMANCE COMPARISON
Fig. 6(a)-(f) demonstrate the performance comparison of the
proposed scheme with the two baseline on the received sig-
nals in different cases. Here, two channel models are consid-
ered to generate the received signals, namely the numerical
optical channel model and the Beer Law model. Besides,
the performance on AQ SPAD and PQ SPAD are also investi-
gated. From these figures, it can be observed that the overall
BER performance of the proposed scheme is better than the
two baselines. The difference between the two baselines is
that a deep learning network structure (also the first subnet-
work of our proposed scheme) is utilized for channel compen-
sation. With such network, the BER can be improved greatly.
In our proposed scheme, the second subnetwork is adopted by
replacing the LLR demodulator, which can be regarded as a
fine-tuning process. Hence, the BER can be further improved
with the prior knowledge of the original transmitted bits.
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FIGURE 6. BER comparison on the received signals in different cases.

1) COMPARISON OF WATER TYPES
In Fig. 6, the BER performance in the cases of different
water types are compared. When using the proposed two-
connected MLP network, for the clear ocean water type,
the BER performance can be improved more in the rela-
tively short distance than the long distance. This is because

the data in the relative short distance suffers less distortion
imposed by the channel and SPAD as well as the noise. The
network can better extract the features of the received signals
and recover the original information. On the contrary, in the
relatively long distance, the data has extremely low power and
is severely polluted by the non-Poisson-related noise and the
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dark count noise. The deep learning network can no longer
discern the received signal. The recovery of the information
bits from such data would contribute to an extremely low
BER. The performance is even worse than that of directly
demodulating the signal. More importantly, it can be seen that
the degree of the distance improvement in clear ocean water
with the proposed scheme is higher than that in coastal water.
Specifically, in consideration of the same BER target (below
the forward error correction threshold), the improved distance
can be extended up to 3 m in clear ocean water with the
proposed scheme whereas the improvement is only 1.8 m for
coastal water. This effect is caused by the light characteristics
when travelling in different water. In the water with higher
turbility, the optical channel would deteriorate rapidly even
in a short distance. Accordingly, its BER would drop faster
than in the clearer water and the proposed scheme could not
further recover the transmitted information.

2) COMPARISON OF SPAD TYPES
The performance of the proposed scheme on different SPAD
types are also investigated in Fig. 6. The two subfigures in
the left column (Fig. 6(a)&(c)) are the simulation results
for AQ SPAD while the two subfigures in the right column
(Fig. 6(b)&(d)) are the results for PQ SAPD. It can be
observed that there is a slightly difference between the impact
on AQ SPAD and PQ SPAD, especially in the relatively
short distance range. The achieved BER with the proposed
scheme for AQ SPAD is better than PQ SPAD at the same
distance. This is reasonable because the dead time would
be extended by another photon arrival during the previous
photon detection in PQ SPAD while the dead time of AQ
SPAD retains constant. Therefore, the nonlinearity caused by
PQ SPAD as well as the received signal is mildly worse than
the AQ SPAD.

3) COMPARISON OF OPTICAL CHANNEL MODEL
As is illustrated in Fig. 6, the performance of the proposed
scheme on the received signal generated with different opti-
cal channel models are studied. For fair comparison, their
MLP network parameters are obtained with their own model-
generating training data. An interesting result can be noticed
from Fig. 6(a) & (e), which is the achieved BER is better for
data generated with the numerical optical channel than the
widely used Beer Law model for coastal water at the same
distance. This occurs because a higher received signal power
with the numerical channel model can be obtained compared
to the Beer Law model where the scattering photons are
assumed to be lost. On the other hand, from Fig. 6(c) &
Fig. 6 (f), it can be seen that the distance where the proposed
scheme is working for the data generated with the numerical
optical channel model (i.e., smaller than 75 m) is smaller than
the Beer Law model (i.e., larger than 88 m) in the clear ocean
water case. This is supported by the fact that the beam spread-
ing is considered in the numerical optical channel model,
which causes the additional of optical power loss compared
to the Beer Law model when the light propagates through a

FIGURE 7. Performance comparison of each training epoch for the
proposed network (Training data: coastal water, numerical optical
channel model and AP SPAD model).

long distance. This would further cause the received power of
Beer Law model is higher than the numerical optical channel
model and lead to better received signals.

B. IMPACT OF TRAINING EPOCH
Finally, in Fig. 7, the impact of the training epoch on the
loss function of the validation data and the BER perfor-
mance of the two-connected network is evaluated. In this
case, the water type is the coastal water and the training data
is generated with the numerical optical channel model and
AP SPAD model. Clearly, for the first subnetwork, as the
epoch increases, the value of the loss function continuously
decreases until a stead stable is obtained. However, the loss
function of the second subnetwork firstly decreases and then
slowly rises after the epoch increases to be 45, which is
common (i.e., overfitting) in deep learning network. As a
result, the overall BER trend of the output data of the second
subnetwork goes up. To address this issue, the early stopping
method (i.e., stopping the network trainingwhen a good result
is obtained) is adopted in our simulation [32]. In addition,
the loss as well as the BER goes up and down after the epoch
reaches 65 in spite that the general trends of their values are
climbing up. This is because in each epoch, the training data
is randomly chosen from the dataset and the change of the
data’s quality determines the variations of the loss and BER.

V. CONCLUSION
In this paper, we propose a novel deep learning aided signal
detection scheme for SPAD based UOWC system to deal with
the distortion imposed by the underwater optical channel and
SPAD. Compared to existing channel compensation or chan-
nel equalization methods, the channel side information is no
longer needed for the proposed scheme. With the prior expert
knowledge of the signal processing method, a two-connected
MLP based deep learning network is adopted and embedded
into the receiver. The first subnetwork is built for channel
compensation while the second one works as a demodulator.
Consequently, the two subnetworks are trained sequently
with different loss functions. Besides, to train the proposed
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network properly, vast training data for different water types
are simulated with the numerical optical channel model
and SPAD non-Poisson model. Simulation results show that
the overall BER performance of the proposed scheme is
better than two baselines. In addition, the degree of distance
improvement in clear ocean water with the proposed scheme
is better than that in coastal water as the optical channel
would deteriorate rapidly for a short distance variation in
coastal water.
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