IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 20, 2019, accepted January 7, 2020, date of publication January 17, 2020, date of current version January 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2967676

Gaussian Mixture Model Based Probabilistic
Modeling of Images for Medical Image
Segmentation

FARHAN RIAZ"!, SAAD REHMAN"'!, MUHAMMAD AJMAL “2, REHAN HAFIZ 3,
ALI HASSAN', NAIF RADI ALJOHANI#, RAHEEL NAWAZ “5, RUPERT YOUNG "¢,
AND MIGUEL COIMBRA™7

! Department of Computer and Software Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
2Department of Computer Science and Mathematics, University of Derby, Derby DE22 1GB, U.K.

3Department of Computer Engineering, Information Technology University, Lahore 54000, Pakistan

“#Information Systems Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia

SDepartment of Computing and Mathematics, Manchester Metropolitan University, Manchester M15 6BH, U.K.

6School of Engineering and Informatics, University of Sussex, Brighton BN1 9QT, U.K.

7Faculty of Sciences, Instituto de Telecomunicagdes, University of Porto, 4169-007 Porto, Portugal

Corresponding author: Saad Rehman (saadrehman @ceme.nust.edu.pk)

This work was supported in part by National University of Sciences and Technology, Manchester Metropolitan University.

ABSTRACT In this paper, we propose a novel image segmentation algorithm that is based on the probability
distributions of the object and background. It uses the variational level sets formulation with a novel region
based term in addition to the edge-based term giving a complementary functional, that can potentially result
in a robust segmentation of the images. The main theme of the method is that in most of the medical
imaging scenarios, the objects are characterized by some typical characteristics such a color, texture, etc.
Consequently, an image can be modeled as a Gaussian mixture of distributions corresponding to the object
and background. During the procedure of curve evolution, a novel term is incorporated in the segmentation
framework which is based on the maximization of the distance between the GMM corresponding to the object
and background. The maximization of this distance using differential calculus potentially leads to the desired
segmentation results. The proposed method has been used for segmenting images from three distinct imaging
modalities i.e. magnetic resonance imaging (MRI), dermoscopy and chromoendoscopy. Experiments show
the effectiveness of the proposed method giving better qualitative and quantitative results when compared
with the current state-of-the-art.

INDEX TERMS Gaussian mixture model, level sets, active contours, biomedical engineering.

I. INTRODUCTION

Image segmentation is a non-trivial task in computer vision
and medical image analysis. In spite of significant advances
in various methods that have been developed for image
segmentation, achieving better segmentation results remains
a significant challenge in medical imaging. This is mainly
because most intended applications for image segmentation
such as surveillance, object segmentation, etc. are mainly
derived from the image edges. Although good results are
obtained in such scenarios, differential features (edges, cor-
ners, blobs, etc.) when applied to medical images may not
lead to good results mainly due to the organic nature of texture
in medical images. These features may lead to significant
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clues about the relevant objects in the images which are
subjected to segmentation. Keeping this in view, most of
the research on medical image segmentation is focused on
the variants of state-of-the-art segmentation methods tailored
for specific imaging modalities (incorporating relevant visual
structures). This paper aims to investigate the effects of
incorporating prior knowledge in the existing segmentation
methods based on active contours.

A. BACKGROUND

Recently, the segmentation methods based on partial differ-
ential equations (PDEs) are being widely investigated in the
context of segmentation of medical images [1]. The most sig-
nificant PDE based segmentation methods are based on active
contours [2], which are dynamic fronts that move towards
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boundaries of objects. The level sets formulation was pro-
posed by Osher et al. [3] and implicitly represents a contour as
a level set ¢ of high dimensional space. Level sets have been
used to implement active contours for image segmentation
scenarios. The basic idea is to represent a contour as a level
set function and evolve it according to a PDE scheme.

The evolution of PDE for a level set function can be derived
by minimizing an energy functional [3]-[5] that is defined
on a level set method. Such types of variational methods,
when applied to image segmentation, can be very useful as
they can incorporate additional information about the images
in the level set functions such as shape information, region
characteristics, etc. This gives rise to the detection of accurate
boundaries and the proper segregation of the image regions
representing distinct information.

The energy functionals in active contours integrate the
image characteristics (external energy) and geometric char-
acteristics of the contours (internal energy). Minimization of
these functionals is solved as a set of PDEs. The external
energy functions play a fundamental role in image segmen-
tation. Efforts have been done in the past to propose external
energy functions where most of the methods concerning these
functions are divided into the following main categories:
region based methods [6], [7] and edge based methods [2],
[8] depending on the methodology of employing image data
for the evolution of active contours.

The edge-based methods mainly rely on the edge fea-
tures in the images. In some specific imaging modalities,
the edges may not have the requisite strength for segmen-
tation. Kimmel et al. [9] proposed a level set method that
integrates an alignment term for settling the active contours
to the object boundaries. This term aims at aligning the
normal vector of the zero level set curve to the image gra-
dient. A similar approach was proposed by Riaz et al. [10]
using creaseness features for measuring the image gradi-
ent. Although more accurate segmentation results have been
demonstrated, the methods significantly lack in handling the
images in which the gradient related to the object boundaries
are not strong. Belaid et al. [11] proposed a phase-based level
sets method which calculates phase-based features from the
images and aligns them with the contours’ normal direction of
movement. Given that the phase features are more sensitive
to variations, good segmentation results are obtained in the
case of images with weaker object boundaries. The downside
of the algorithm is that the method calculating the edge maps
requires careful tuning of the parameters.

In contrast to the edge-based methods, the region-based
methods rely on the properties of image regions. The overall
homogeneous properties of the objects and background are
often less sensitive to noise and are better captured by the
region-based methods. Such methods can perform well even
if the strength of the edges is weak [12]-[14]. For example,
Ji et al. [15] propose a local region-based active contour
image segmentation model which uses the variations in local
means and variances of local spatial regions to construct a fit-
ting term. Although good results are obtained, the algorithm
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requires the existence of well-differentiated regions for cor-
rect segmentation which is typically not true for medical
images. Zhou et al. [16] propose to combine the effects of
edge-based methods and a region-based method in which the
edge term is formulated using a fitting term that incorporates
a dense vector field and a region-based term that localizes the
Chan-Vese external force [17]. The effects of the two models
are adjusted using the image gradients. This model does not
perform well in the case of intensity inhomogeneities which
commonly happens in the case of medical images.

In summary, most of the existing methods are aimed at
solving some of the common issues that take place during
curve evolution using different variants for calculating the
edge features from the images followed by the control of
flow of the evolving curves [11], [18]-[22]. Although these
methods achieve good segmentation results, there are limita-
tions that mostly come from the lack of incorporation of com-
plementary edge and area-based terms into the mathematical
frameworks.

B. CONTRIBUTIONS

Keeping this in view, we aim to devise an external energy
term that is based on two distinct strategies, one based
on the edge-based features from the images and the other
which is based on the regional characteristics of the contour.
To cater for the edge-based features, we use the edge indicator
function whereas for the region based features, we devise a
novel term that is incorporated into the distance regularized
level sets formulation to perform segmentation. To do this,
the curve fitting is performed by formulating an energy term
assuming that a mixture of Gaussians can be used to model
animage. A contour is initialized followed by curve evolution
which maximizes the distance between the empirical distribu-
tion for the object and the background using the Bhattacharya
distance. The proposed objective function is mathematically
solved using differential calculus and implemented using the
finite difference scheme. The proposed term is integrated with
the existing level sets scheme proposed by Li et al. [23].
A resulting optimization problem is a hybrid approach that
is composed of both the edge features and an area term.
We validate the segmentation framework on images from
three distinct medical imaging modalities: MRI, dermoscopy,
and chromoendoscopy. The experimental results are used to
validate the effects of adding a region-based term within the
segmentation frameworks.

The paper is organized as follows: Section II outlines the
background of level sets (LS) followed by a description of
the proposed method (Section III). These are followed by
experiments (Section IV and V) followed by conclusions
(Section VI).

Il. BACKGROUND

A. FORMULATION OF ENERGY TERM

Let us assume that we have an image / that can also be indi-
cated by €2, that is a combination of two mutually exclusive
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regions: the object Rp and the background Rp ie. Q €
{Ro, Rp} separated by a curve ¢. After initialization of ¢,
the gradient descent algorithm is used to evolve ¢ to the
boundaries of the object that has to be segmented by opti-
mizing an energy functional:

J =y R(@) + Eexi (@) ey

where R(¢) is the regularization term for level sets and
Eext (@) is the external energy term that is dependent on the
data of interest. For instance, for an image segmentation
application, the external energy term is derived from the
image data. The levels sets regularization term is defined as

1
R(§) = 5 /Q (Vo — 1)2dS )

The external energy term &, is defined such that it
achieves a minimum when the zero level set contour ¢ is
located at the desired position. The purpose of adding the
regularization term is not just to impose a smoothing effect
and also to impose a signed distance property i.e. V¢p = 1.

B. ENERGY MINIMIZATION

The minimization of the energy term 7 can be done using
the calculus of variations. A standard way to minimize the
energy functional is to find the steady-state of the gradient
flow equation

9 __9J
ar ¢

where 0.7 / d¢ is the Gateaux derivative (first variation) of
the functional 7. This is an evolution equation of an active
contour which is time dependent ¢(x, ¢) with a spatial vari-
able x in the domain Q2 and a temporal variable t > 0.
The evolution of gradient flow starts with an initial con-
tour ¢(x,0) = ¢ followed by iterations in the direction
—0J / d¢ which is the steepest descent direction of the
functional 7 (¢)

3

0T R | 9Eeu

= o)
¢ 09 d¢
where 0R / 0¢ can be written as [24]:
IR V¢
— =—|A¢p—-V.—— 5
d¢ [ ¢ |V¢|} ©)

0Eext / d¢ is the Gateaux derivative of the external energy
term with respect to ¢p. The gradient flow of 7 can be written
as

ar Vel ¢ ©

This PDE is the level set evolution equation derived from
the formulation in equation 1. The main scope of the design
of an efficient level sets segmentation strategy is to devise a
relevant external energy term. The standard implementation
of the DRLSE framework formulates the external energy term
as a combination of two distinct terms:

Eext = L(P) + Al9) (N

9 _[ap-v. 0] b
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where L is the length term, which when minimized settles the
contour at the boundaries of the objects whereas A is the area
term which controls the speed of the active contour. £ can be
written as [24]

L) = /ngs(qﬁ)IV(bldQ ®)

where § is the Dirac delta function and g is the edge indicator
function given as:

1
1+ VG, + 12

where G, is a Gaussian kernel with standard deviation o . The
first variation of the length term is given by [24]:

gg [56)v W;] (10)

The term A(¢) controls the speed of the curve evolution
and is composed of two components:

A@) = Ac + Ay (11)

For A,., we follow the definition which is similar to that
in [23]

g= &)

AeZ/ gH(=¢)d 2 12)
Q

where H(¢) is the Heaveside function and g is defined as in
equation 9. This term controls the speed of the curve evolution
(for details, please see reference [23]) and mainly relies on
edges in the images. The first variation of this term can be
written as

A,

a9

The term A, is formulated assuming that an image can

be modeled as a mixture of Gaussians which is the main
contribution of this paper.

= g8(9) (13)

lll. GMM BASED BHATTACHARYA FLOW

In this section, we aim to derive an external energy term
assuming that an image is modeled as a mixture of Gaussian
functions.

A. GAUSSIAN MIXTURE MODEL (GMM)

The GMM is constructed from an image assuming that the
groups of pixels in the images can be written as a multivariate
Gaussian distribution. For an image segmentation problem,
such a mixture for object and background can be written as

p) = pI|Ro) + p(I|Rp) (14)
where p(I|Rp) and p(I|Rp) can be given by
PUI|Ro) ~ N(1o, o)
pU|Rp) ~ N(up, Ep)

where (1o is mean and X is the variance of the distribution of
the object whereas up and X p are the parameters for the back-
ground. Generically if the distance between the object and
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background distributions is maximized using curve evolution,
segmentation can be performed. Several metrics can be used
for the calculation of this distance [25]. When considering
these metrics, it was observed that in most practical cases,
the Bhattacharyya metric turns out to give better results as
compared to its counterparts [26]. Moreover, another advan-
tage of using this metric is that it has a particularly simple
analytic form. Therefore, we use the Bhattacharya distance
to measure the difference between two distributions.

B. BHATTACHARYYA BASED DISTANCE

Given that the distributions for the regions inside and outside
the contour ¢ are represented as pp and pp respectively,
the closed form Bhattacharyya distance between two multi-
variate Gaussian distributions can be written as

1, 1 det 2!
Dp(pp.po) = g X+ = In

—) (15)
8 2 Jdet Xp det Xp

where

n= o — 1B (16)

Ko and up are the mean of the distributions of the object
and background respectively. In the same way, if Xp is a
variance of the object distribution and X p is a variance of the
background distribution, X is defined as

0 B\ 1
Y= (%) (17)

The first term in equation 15 calculates the difference
between the means o and up weighted by the covariance
matrices Xp and Xpg. The second term calculates the differ-
ence between the covariance matrices X and Xp only and is
not dependant on the means s and .

C. FORMULATION OF Ay

For the area term, we formulate an optimization problem
by simply maximizing the distance between the empirical
distributions of the object and the background

Au(¢) = argmax {Dp((p(I [Ro)I|(p(Rp)))} (13)

where p(I|Rp) is the empirical distribution for the object
whereas p(I|Rp) is the empirical distribution of the back-
ground, respectively. This maximization can be converted to
a minimization problem as follows

Au(¢) = —argming {Dp((p(IRo)I|(p(Rp))}  (19)

D. GRADIENT FLOW
The proposed external energy functional can be minimized by
taking the partial differential of equation 19. Both mixtures
pertaining to the object and background are composed of
two variables i.e., means and standard deviations. Effectively,
the derivative of equation 19 can be written as

04, 94, 0dA4,

9 _ on 9% 20)
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where © and ¢ take definitions from equations 16 and 17
respectively. The partial derivative of A, with respect to X
is as follows

A, [D((pU [Ro))I|(p(R0)))]
020 n 020

d [1 R detE,! }
—| = —In| ———————
0% | 81107OHOT 3 M\ Vderso det g
Given that the derivation is a linear operator,

A, 9 [1 'y
%0 = %0 Mo &oMo

8
a1 detx,!
0202 Jdet Xpdet Xp
Using equations (72) and (55) from Petersen et al. [27],
the above expression can be simplified as follows

aA, 1

1 1
T ! —E __E_l 21
%0 8M0M0+2 0~ 7%0 2D

Now taking the partial derivative of O with respect to o
and using p. 11 (81) from [27], we obtain

A 1
— = —Sopo (22)
3,LLO 8

Similarly, we can conclude that

A, 1, 1 1,
= — —Yp——X 23
055 gHBip + S¥B = %8 (23)
and
0A, 1
-3 24
s 8 BUB (24

Substituting these results in equation 20, we obtain

A, 1, 1 1, 1 (I

o0 =§MOM0+§EO—ZEO +§20M0+§MBMB
+123—12—1+123M3 (25)
2 478 g

The overall optimization function is obtained by substitut-
ing 0.4,/3¢ into Eq. 6

0 \% A%
T -y [Aqs - v.—"’} A5V - 5@

g Vol Vol
+[1 IS L,
8M0M0 20t g oMo 7%0 8//«BMB
e ls 12—1] (26)
) B 3 BMUB 4 B

The third term in equation 26 is based on region based
terms (object and background distributions) and exhibits the
most fundamental difference of the proposed method from
DRLSE [23].
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IV. ACTIVE CONTOURS IMPLEMENTATION

The time dependent evolution function ¢(x,y,t) is a 2D
function for which the spatial derivatives d¢ / dx and d¢ / ay
are approximated using the finite differences scheme [23].
Fixed space steps of Ax = Ay = 1 are considered
to compute spatial derivatives. Given that a time dependent
function ¢(x, y, t) can be written as ¢{f i the level set evolution

equation can be discretized as (q&f?‘l — qb;." /.) / At = L{‘j

where Lik f is obtained as an approximation of the right hand
side of the evolution equation (eq. 26). The iterative scheme
to update the level sets function can be written as:

G = i AL @)

which is an iterative process of curve evolution and can be
used for numerically implementing the proposed framework.
The steps involved in the curve evolution algorithm are as
follows:

1) The zero level contour is initially constructed by initial-
ization of ¢ at t = 0 such that the region lying inside ¢
is considered as an object while that lying outside ¢ is
considered as background.

2) The histogram-based features are obtained for both the
object and background for calculating the term A,.

3) Assuming a specific time step Az, we calculate qbl{fjﬂ
using equation 27 which yields the new curve.

4) The steps (2) and (3) are repetitively performed until
curve evolution stops or its speed becomes very small.
The speed of curve evolution will slow down as the
curve settles at the object boundaries since that will lead
to the solution of the optimization problem.

A. ASSUMPTIONS AND LIMITATIONS

The proposed model for segmentation using active contours
is based on modeling the object and the background using
the Gaussian mixture models followed by a gradient flow
for which the closed-form solution exists. However before
we proceed to calculate the gradient flow, the statistical
assumptions encompassing the solution should be underlined.
Firstly for the two distinct regions that have to be segmented,
the samples of /(x, y) can be characterized by two conditional
density functions p(I/|Rp) and p(I|Rp) which describe the
probability distribution of a specific feature in the images for
the object and background respectively. For the calculation
of these distributions, we have used the EM algorithm [28]
assuming that the object and the background distributions
are mutually independently and identically distributed (i.i.d).
This assumption has an obvious disadvantage that it is not
possible to take into consideration the dependency structure
between the samples of I(x, y). This assumption is mainly
meant to simplify the implementation of the optimization
algorithm. Taking into account this dependency can be done
using, for example, the theory of Markov fields [29] that
could rather improve the precision of the algorithm. However,
such rigorous mathematical modeling will induce a very high

16850

computational cost to the overall segmentation process and
will not add significant value to the output of the algorithm.

B. SELECTED IMAGE FEATURES

There could be a wide range of possibilities as far as the
nature of image features is concerned. The methodology is
based on convex optimization between two density functions.
Therefore, the histogram-based features can be used in this
implementation. Given that we have an image I(x,y) : Q2 —
R to a vector-valued variable J(x) : € — RN, which is
an N- dimensional feature that is obtained as a result of a
transformation W such that J(x) = W{I(x, y)}. In the current
implementation, the histogram of gray levels of I(x,y) is
used for calculating the density function for segmentation
purposes given that this choice has proven to be successful
in various practical settings [30], [31]. Therefore, any color
image belonging to any imaging modality is first converted to
its gray scale counterpart. This is followed by the selection of
an initial contour, based on which the object (inner part of the
initial contour) and background (area lying outside the initial
contour) distributions are created using the EM algorithm.
The contour is later evolved, and the updated distributions are
estimated to lead to the proposed optimization. Flow diagram
of the proposed method is shown in Fig. 2 along with the
implementation of the iterative algorithm with progressive
curve evolution (Fig. 1).

V. EXPERIMENTAL RESULTS

Since the proposed segmentation method incorporates a sta-
tistical framework in addition to the use of edge features,
our main aim for the experiments is to show the general-
ization capability of the segmentation method. Therefore,
instead of focusing on a specific imaging scenario, we have
performed our experiments on images that come from rad-
ically different imaging modalities. Accordingly, our aim is
not to claim that we obtain the best results for a specific
(or all) imaging modality but to do a broader analysis of the
proposed method. In this section, two distinct experiments
are performed. In the first experiment, we demonstrate the
proposed concept by using the segmentation method for seg-
menting medical images from two distinct imaging modal-
ities: Computed Tomography (CT) and Ultrasound (US).
Later, we perform experiments on an open dataset from three
radically different imaging modalities: Magnetic Resonance
Imaging (MRI), Dermoscopy and Chromoendoscopy. For
these datasets, the manual annotations done by experts are
available. The proposed methods are evaluated using the
Dice similarity coefficient [32]. We have compared the seg-
mentation results of the proposed method with Li’s distance
regularized level sets (DRLSE) [23], the Chen-Vese imple-
mentation (C-V) [33] and the Kullback-Leibler based level
sets (KL-LS) [34].

Regularization and length terms are implemented using
Li’s method [24]. A Gaussian mixture of gray level dis-
tributions is used for object and background (differentiated
by ¢). As ¢ evolves, the GMM parameters start to change
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FIGURE 1. Results of iterative implementation of segmentation algorithm after every 20 steps.

—

g EM Algorithm

Gray scale
image

9ouagianuod UON

Convergence Curve

Evolution

FIGURE 2. Flow diagram showing the implementation of the iterative
framework for performing curve evolution.

until they converge to some specific values. The resulting
¢ is the contour that differentiates between the object and
background. The proposed method is implemented in Matlab
and utilizes the DRLSE implementation model with the same
parameter values as used by Li et al. [23]. For all images,
a small square at the center of the lesion is taken as an initial
contour which is subjected to evolution. The curve evolution
is stopped if the curve does not evolve during 5 consecutive
iterations or the number of iterations exceeds a specific count.

A. PROOF OF CONCEPT

We have used three images each from two distinct imaging
modalities: computed tomography (CT) and ultrasound (US).
We have two CT images from the liver and one image from
the brain for segmenting lesions in the respective organs.
Among ultrasound images, we have used one image each
from ovarian, abdominal and renal scans of the patients. This
is a diverse dataset given that the images are based on two
distinct technologies i.e., x-rays and acoustics which exhibit
distinct visual characteristics.

VOLUME 8, 2020

We will focus our attention to two main aspects: 1). Noise
robustness, and 2). Weak edge preservation. The DRLSE
method is highly reliant on the object boundaries which
are typically weak in medical imaging (Fig. 3 and 4). Con-
sequently, the leaking of active contours across the object
boundaries takes place very often. In the case of CT images
(Fig. 3) the lesion boundaries are weak resulting in lack of
convergence of DRLSE. In ultrasound images (Fig. 4) there
is a lot of speckle-noise due to which the contours leak across
the lesions. Due to higher sensitivity to noise, the formation of
small contours inside the segmented lesions also takes place.
The overall segmentation results for DRLSE are better in

FIGURE 3. CT images: First row shows implementation of our method,
the second row shows DRLSE.

FIGURE 4. Ultrasound images: The first row shows implementation of our
method, the second row shows DRLSE.
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FIGURE 5. Segmentation of MRI images using manual annotations (white), DRLSE implementation (red), C-V region based active contours
model (green) and the proposed implementation (yellow). The curves are initialized with a small rectangle in the centre of the left ventricle.

the case of dermoscopy (Fig. 7) due to a relatively higher
contrast but the formation of small segments is most dominant
due to the higher texture (hair, vessels etc.) in the images.
The C-V method performs curve evolution without edges
and converges conservatively. The curve evolution does not
encapsulate the true boundaries of the objects that can poten-
tially lead to imprecise measurements of the objects in the
case of ultrasound and CT images [35], [36]. The proposed
method shows good segmentation results in comparison to its
counterparts and its strength lies in its complementary nature:
the edge term uses local curvature-based features for curve
evolution whereas the area term penalizes it by relying on
the region based characteristics of the images. This allows
the proposed method to generalize well to radically different
imaging modalities.

Next, to quantitatively assess the proposed method,
we need to make a selection of the relevant datasets. Since
method is based on initially modelling an image as a GMM of
the object and the background, a well suited imaging modality
should conform to the underlying assumption. In this context,
Dermoscopy and Gastroenterology are two imaging modali-
ties which are quite suitable to evaluate the performance of
the proposed method. In contrast to these, we have chosen
another imaging modality (MRI) in which the conformity
of the data strongly to the GMM based modeling is not
applicable. This combination of three imaging modalities is
complementary and thus can help us in fairly assessing the
performance of the proposed method.

B. SEGMENTATION OF MRI IMAGES
Our next set of experiments were performed on short-axis
cardiac '"MRI image sequences acquired from 33 subjects.

1http://Www.cse.yorku.czl/ mridataset/
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Most of the images displayed a variety of abnormalities
including cardiomyopathy, aortic regurgitation and enlarged
ventricle. All subjects were under the age of 18 years. The
dataset is publicly available for research purposes (details
about the data can be obtained from the webpage). The Gaus-
sian mixture is constructed from the gray level distribution
of the images. The segmentation algorithms are initialized
with a small region in the center of the left ventricle and the
curves are subjected to evolve outwards until the endocardial
contour is encapsulated. The results are compared with the
manual annotations using two measures: the Dice similarity
coefficient (DSC) and Jaccard index (JI). If A is the manual
annotation and S is the segmented region, the DSC between
A and S can be represented as
ANS
DSC =2—— (28)
A+S

The DSC values range between 0 and 1 for no overlap and
identical contours, respectively, for annotated and segmented

regions. Similarly, the JI can be represented as follows
= Ans (29)

AUS

Again the JI values range between 0 and 1 for no overlap
and identical contours, respectively. Our results demonstrate
that the proposed method shows very good performance in
segmenting MRI images with a DSC of 0.77 and JI of 0.63.
Visual inspection of the segmentation results (Fig. 5) qualita-
tively validates the findings given that the proposed method
shows good segmentation results in comparison to the manual
annotations. The proposed method also outperforms the other
methods that have been considered in this paper. The main
difference in performance comes from two important factors:
The epi- and endocardial boundaries in the image exhibit
weaker boundaries and the DRLSE and C-V methods result
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TABLE 1. Segmentation results obtained for MRI images using average
dice similarity coefficient.

Methods  DSC 1)

Proposed  0.77  0.63
KL-LS 0.79  0.65
DRLSE 0.74  0.59

Cc-v 0.75  0.60

in leaking of the contours due to weaker edges (e.g., Fig. 5:
col 4). Secondly, the DRLSE and C-V implementations are
unable to incorporate the papillary tissues within the segment-
ing contour resulting in imperfection in some images. In such
cases, the papillary muscles are considered as part of the
myocardium whereas the algorithm excludes it from the seg-
mentation resulting in segmentation errors. When the region
based term is used, the segmentation results improve giving
better quantitative measurements. In summary, we conclude
that adding an area based term to the existing edge-based
DRLSE implementation improves the segmentation results.
The KL-LS method shows the best results with a DSC
of 0.79 and JI of 0.65. The proposed method performs about
2% lower than that of KL-LS. We attribute this lower perfor-
mance of the proposed method to the fact that by definition,
the assumption of an image being modeled as GMMs with
distinct Gaussians for both the object and background does
not precisely apply to this scenario, thus leading to the imper-
fections in the segmentations.

C. SEGMENTATION OF DERMOSCOPY IMAGES
Our next set of experiments were performed on dermoscopy
images. This selection of the imaging modality is comple-
mentary in nature as compared to MRI imaging given that
they are obtained from a dermoscopy, which uses white light
for the illumination of the skin tissues for visual inspec-
tion. The dataset that we have used for our experiments was
acquired from the Hospital Pedro Hispano, Matosinhos [37].
The dataset is composed of 200 dermoscopic images which
have been annotated (for identifying skin lesions) by experts.
The dataset along with its annotations have been made pub-
licly available. We perform automatic segmentation of der-
moscopy images and compare them to the manual annotations
(available publicly) quantitatively using the DSC and JI.
Good results are obtained using the proposed method
(Table. 2). When DRLSE is used, a relatively lower DSC
and JI are observed. We attribute the low performance to the
fact that it uses the edges of images which exhibit a weak

TABLE 2. Segmentation results obtained for dermoscopy images using
average dice similarity coefficient.

Methods DSC JI
Proposed 0.84  0.72
KL-LS 0.82  0.69
DRLSE 0.82  0.69
C-v 0.81  0.68
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distinction between the lesion and the background for some
images (e.g. Fig. 7 row one column one, row one column
two, row one column three). In the former, there is excessive
hair in the image which causes leakage of the active contour
whereas, in the last case, the lesion has weaker edges leading
to leaking of the active contour. When the region-based term
is integrated in the segmentation framework, better segmen-
tation results are obtained and we get a high Dice coefficient.
The C-V model also shows lower performance, which is
also attributed to the lack of clear boundaries between the
lesion and the background. The active contour exceeds the
desired boundaries in these cases, giving rise to erroneous
segmentation. With the addition of the region based term,
we obtain a DSC of 0.84 and JI of 0.72. Given this, our
experimental results are consistent with those obtained for
the MRI images in that the addition of area terms in the
segmentation framework improves the segmentation results.
The proposed method also outperforms KL-LS in contrast to
the results on the MRI imaging modality due to the fact that
the GMM based model fits well into the dermoscopy imaging
scenario.

D. SEGMENTATION OF GASTROENTEROLOGY IMAGES
Our next set of experiments were performed on chromoen-
doscopy (CH) images. Specifically, we have done experi-
ments on the vital stained magnification endoscopy images.
This is a very different imaging modality in which the
images of the upper gastrointestinal tract are stained using a
dying agent such as methylene blue followed by the visual
inspection of the tissue under observation for finding gas-
tric lesions. The inspection of the tissue is typically done
using an endoscope which has a camera attached to its tip
that uses white light to illuminate the tissue. The dataset is
composed of 176 images, which have been acquired during
live endoscopic examinations given their clinical relevance
(details about the dataset can be obtained from [38]). We
perform automatic segmentation of CH images and compare
the results with the manual annotations using the DSC and JI.
The most significant difference of CH images from the
other imaging modalities that have been considered in this
paper is that the CH images have a very high texture. This
makes this segmentation problem very challenging as the
presence of high texture signifies the visual patterns which are
relevant for clinical evaluation of the images. Effectively, all
the methods which are based on edges are not expected to per-
form well. The C-V model does not work well on images with
intensity inhomogeneities, which is a very common scenario
in CH images after the tissues are stained with methylene
blue. This results in the inferior performance obtained by the
C-V method resulting in the formation of small segments in
areas having intensity inhomogeneities. The DRLSE method
is based on the edge indicator function which does not show
good performance either. This is attributed to the rich texture
in the images, resulting in convergence issues. The exper-
imental results are consistent for the CH images and the
other two imaging modalities given that the proposed method
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FIGURE 6. Segmentation of Dermoscopy images using Manual annotations (white), DRLSE implementation (red), C-V region based active contours
model (green) and the proposed implementation (yellow). The curves are initialized with a small rectangle in the centre of the skin lesions.

FIGURE 7. Segmentation of CH images using manual annotations (white), DRLSE implementation (red), C-V region based active contours model (green)
and the proposed implementation (yellow). The curves are initialized with a small rectangle in the centre of the gastric lesions.

TABLE 3. Segmentation results obtained for CH images using average
dice similarity coefficient.

Methods  DSC I

Proposed 0.73  0.57
KL-LS 070  0.54
DRLSE 0.66  0.49
C-v 0.63 046

outperforms the other methods that have been considered in
this paper with the most significant impact on the results
made by the addition of region-based information to the
DRLSE method. The proposed method also performs better
than KL-LS given that the modeling of an image as GMMs
often applies to Gastroenterology images.

16854

VI. CONCLUSION

In this paper, we have proposed a novel framework to segment
objects in medical images with poorly defined boundaries.
The variational level sets framework is extended to incorpo-
rate a novel term which maximizes the distance between the
object and background distributions using the Bhattacharya
distance. The proposed method is complementary given that
it is composed of an edge term, that relies on the edges
of the objects, and an area term that takes the probability
distributions of the objects and background into account.
To validate the effectiveness of the algorithm, we have first
performed a proof of concept on ultrasound and computed
tomography images. Comprehensive experiments have been
performed on images from three distinct imaging modalities

VOLUME 8, 2020
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i.e., magnetic resonance images, dermoscopy and chromoen-
doscopy images. Our results show that the proposed method
performs well for these imaging modalities, both qualitatively
and quantitatively.
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