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ABSTRACT This paper studies a full-duplex symbiotic radio network, where a full-duplex access point
(FAP) transmits downlink orthogonal frequency division multiplexing signals to a legacy user (LU)
and simultaneously receives signals backscattered from multiple passive backscatter devices (BDs) with
capability of radio-frequency energy harvesting. A non-orthogonal-multiple-access enhanced dynamic-
time-division-multiple-access (NOMA-DTDMA) transmission scheme is proposed to exploit the channel
dynamics and further improve the spectrum efficiency. In order to maximize the throughput performance and
ensure BD fairness, we maximize the minimum throughput among all BDs by jointly optimizing the FAP’s
subcarrier power allocation, the BDs’ backscatter time allocation and power reflection coefficients, subject to
the LU’s throughput requirement, the BDs’ harvested energy requirements, and other practical constraints.
An efficient iterative algorithm is proposed to solve the formulated non-convex problem, by utilizing the
block coordinated descent and successive convex optimization techniques. The convergence and complexity
of the proposed algorithm are also analyzed. Numerical results show that the proposed NOMA-DTDMA
scheme significantly outperforms the benchmark scheme of dynamic TDMA in terms of both throughput
performance and BD fairness. Also, the trade-off performances between the BDs’ throughput and the LU’s
throughput requirement as well as the BDs’ harvested energy requirements are numerically verified.

INDEX TERMS Full-duplex symbiotic radio network, iterative algorithm, joint resource allocation, non-
orthogonal-multiple-access (NOMA), throughput optimization.

I. INTRODUCTION
Internet-of-Things (IoT) which supports the interconnection
of massive wireless devices, is an important application
scenario of the fifth-generation (5G) and future wireless com-
munication systems [1]–[3]. Massive IoT connections require
huge spectrum and energy resources [4]. Backscatter com-
munication, which enables passive backscatter devices (BDs)
to modulate their information over incident sinusoidal carri-
ers or ambient radio-frequency (RF) carriers without using
costly and power-hungry RF transmitter [5]–[9], is widely
used in certain IoT systems like radio frequency identification
(RFID). Recently, a new symbiotic radio (SR) paradigm was
proposed in [10]–[12], which enables passive IoT devices
to backscatter information by sharing the spectrum and
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infrastructure (e.g., transmitter, receiver) of existing wireless
communication systems. Hence, SR is a promising spectrum-
and energy-efficient as well as cost-efficient communication
technology for future IoT.

Recently, SR has attracted growing research interests
[10]–[15]. In [10], it was shown that the signal from the BD
in an SR system can be exploited as additional multipath
to achieve bit-error-rate performance improvement. In [11],
the transmit beamforming was optimized for an SR system in
fading channels, and the weighted sum rate of the primary
transmission and backscatter transmission is maximized.
In [14], full-duplex technique was introduced into an SR
system, which enables a BD to transmit and receive informa-
tion simultaneously. In [15], the authors derived the closed-
form expressions of the outage probabilities and the ergodic
rate for a system integrating non-orthogonal-multiple-access
(NOMA) into SR.
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On the other hand, NOMA, which transmits (receives)
signals to (from) multiple users in the same radio resource,
is recognized as an important candidate for future wireless
communication systems, due to its appearing advantages such
as enhanced spectrum efficiency and support for massive con-
nections [16]–[18]. Specifically, in power-domain NOMA
systems, multiple users share the same time-frequency
resource block by superposing the messages in power domain
[19], and the receiver adopts the successive interference can-
cellation technique to cancel inter-user interferencewithin the
same cell [20], [21]. The optimal user pairing schemes for
uplink and downlink NOMA were studied in [22] and [23],
respectively. The time and power resource allocation was
optimized in [24] for a NOMA-enhanced wireless powered
communication network. The millimeter-wave communica-
tion with NOMA was studied in [25], and the system’s sum
rate was maximized. Recently, a NOMA-enhanced monos-
tatic backscatter communication system with co-located car-
rier transmitter and backscatter receiver was studied in [26],
where the outage probability and average number of success-
fully decoded bits were analyzed. In [27], the throughput
performance is optimized for a NOMA-enhanced bistatic
backscatter communication network.

A full-duplex symbiotic radio network (FSRN) was pro-
posed in [28], in which a full-duplex access point (FAP) trans-
mits downlink orthogonal frequency division multiplexing
(OFDM) signals to a legacy user (LU) and simultaneously
receives signals backscattered from multiple BDs in a time-
division-multiple-access (TDMA) manner. In practice, such
an FSRN integrates IoT transmission into existing wireless
communication systems, and typical application scenarios
include smart wearable network, smart home, etc. However,
for such TDMA-based FSRN, the throughput of each BD
decreases as the number of BDs increases. To further enhance
its spectrum efficiency, we exploit NOMA for the BDs’
uplink transmission in an FSRN, which has not been studied
in the literature to our best of knowledge.

This paper considers a NOMA-enhanced FSRN over
OFDM carriers as shown in Fig. 1, which consists of an FAP,
an LU and multiple passive BDs. The FAP transmits down-
link OFDM signals to the LU and simultaneously receives
signals backscattered from BDs via a hybrid scheme of
NOMA and dynamic TDMA (NOMA-DTDMA). The BDs
can also harvest energy from their incident OFDM signals.
The main contributions of this paper are summarized as
follows:
• First, a NOMA-DTDMA scheme is proposed for an
FSRN to improve its spectrum efficiency and exploit
the channel dynamics. The throughput performance of
the proposed NOMA-DTDMA scheme is analyzed, for
both cases that the FAP detects BDs’ signals based
on maximum-ratio-combining (MRC) and equal-gain-
combining (EGC), respectively.

• Second, in order to optimize the throughput per-
formance and ensure BD fairness, we formulate a
problem to maximize the minimum throughput among

all BDs, by jointly optimizing the FAP’s subcar-
rier power allocation, the BDs’ backscatter time and
power reflection coefficients, subject to the FAP’s
total-power and peak-power constraints, the LU’s
throughput requirement, the BDs’ harvested energy
requirements and backscatter-time constraints. This
problem optimizes the throughput performance of a
NOMA-enhanced FSRN from multiple design dimen-
sions. It is non-convex due to coupled variables and
complicated constraint functions, and thus difficult to
be solved optimally.

• Third, an efficient iterative algorithm is proposed to
obtain a suboptimal solution of the formulated non-
convex problem, by utilizing the block coordinated
descent (BCD) and successive convex optimization
(SCO) techniques. The convergence and complexity of
the proposed algorithm are also analyzed.

• Finally, numerical results show that the proposed
NOMA-DTDMA scheme for an FSRN significantly
outperforms the benchmark scheme of dynamic TDMA
in terms of both throughput performance and BD fair-
ness. Moreover, the tradeoff performances between the
BDs’ throughput and the LU’s throughput requirement
as well as the BDs’ harvested energy requirements are
validated.

The rest of this paper is organized as follows. Section II
presents the system model for a NOMA-DTDMA based
FSRN over ambient OFDM carriers. Section III formulates
the minimum-throughput maximization problem. Section IV
proposes an efficient iterative algorithm based on the BCD
and SCO techniques. Section V provides the numerical
results. Finally, Section VI concludes this paper.

II. SYSTEM MODEL
As shown in Fig. 1, we consider an FSRN consisting of
an FAP with two antennas for transmitting and receiving,
respectively, an LU, and U (U ≥ 1) BDs each equipped
with a single antenna. The FAP transmits downlink OFDM
signals to the LU and simultaneously receives the uplink
signals backscattered from the BDs. The BDs modulate their
information over the incident OFDM carriers by intention-
ally switching their antenna impedances [29]. Also, the BD
can harvest RF-energy from the incident signals to provide
sufficient energy for their own operation.

FIGURE 1. System description for an FSRN.
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A framed-based transmission scheme is proposed in this
paper, which is an integration of NOMA and dynamic
TDMA. For notational simplicity, we assume that the number
of BDs U = MR withM ≥ 1 and R ≥ 1, and R BDs perform
NOMAmultiplexing to the FAP in them-th transmission slot,
for m = 1, . . . ,M . In practice, the BDs can be grouped
by using the following method. In the first training phase
consisting of MR training slots. The FAP transmits constant
training signal to all BDs, and only one BD backscatters inci-
dent signal with the same (fixed) power reflection coefficient
in its assigned training slot, with all other BDs keeping silent.
For a typical FSRN application example like smart home, tens
of BDs are deployed near the FAP with average distance of
tens of meters, and are static or moving slowly. The FAP-BD-
FAP propagation time is on the level of tens of nanoseconds.
The whole training phase is much shorter than the typical
coherence time of about several milliseconds.

Without loss of generality, the BDs with index from 1 to
MR are indexed in an decreasing order according to their
receiving power levels. The FAP categorizes all BDs into R
groups, and the r-th group consists of the BDs with indexes
from ((r − 1)M + 1) to rM . In the second transmission phase
consisting ofM transmission slots, the FAP schedules the BD
with index ((r − 1)M + m) (i.e., denoted as BD (m, r) in
the sequel) from the r-th energy group, for r = 1, . . . ,R,
to access the FAP in a NOMA manner. The time duration of
data transmission is normalized to one second for notational
simplicity. Denote the time duration of the m-th transmission
slot by τm, 0 ≤ τm ≤ 1, subject to the normalization
constraint

∑M
m=1 τm = 1. Denote the BDs’ backscatter time

vector τ = [τ1, . . . , τM ]T ∈ RM .
We consider the block flat-fading channel model, and

assume that the channel block length is much longer than
the OFDM symbol period. As shown in Fig. 1, denote the
Lh-path legacy channel response from the FAP to the LU by
hl , the Lf-path forward channel response from the FAP to
the (m, r)-th BD by fm,r,l , the Lv-path interference channel
response from the (m, r)-th BD to the LU by vm,r,l , and
the Lg-path backward channel response from the (m, r)-th
BD to the FAP by gm,r,l . The number of subcarriers of
the transmitted OFDM signals is denoted by N (N ≥ 1).
For the forward channel from the FAP to the (m, r)-th BD,
the frequency response at the k-th subcarrier is defined as
Fm,r,k =

∑Lf−1
l=0 fm,r,le

−j2πkl
N , for k = 0, . . . ,N−1. Similarly,

Gm,r,k =
∑Lg−1

l=0 gm,r,le
−j2πkl
N , Vm,r,k =

∑Lv−1
l=0 vm,r,le

−j2πkl
N ,

and Hk =
∑Lh−1

l=0 hle
−j2πkl
N .

Denote the FAP’s transmitted information symbol at the
k-th subcarrier in the n-th OFDM symbol period of the
m-th (transmission) slot by Sm,k (n) ∈ C, with C denoting
the complex number set, which is assumed to follow the
circularly symmetric complex Gaussian (CSCG) distribution
with zero mean and unit variance, i.e., Sm,k (n) ∼ CN (0, 1).
After performing inverse discrete Fourier transform (IDFT)
at the FAP, a cyclic prefix (CP) of length Ncp is added at the
beginning of each OFDM symbol. In each OFDM symbol

period, the transmitted time-domain signal is

sm,t (n) =
1
N

N−1∑
k=0

√
Pm,kSm,k (n)e

j2πkt
N , (1)

where t = 0, 1, . . . ,N − 1, Pm,k denotes the allocated power
at the k-th subcarrier in the m-th slot. P = [p1 p2 . . . pM ] ∈
RN×M denotes the subcarrier power allocation matrix, with
the power allocation vector pm = [Pm,0, . . . ,Pm,N−1]T and
R denoting the real number set.
In the m-th slot, the incident signal of the (m, r)-th BD

can be written as sm,t (n) ⊗ fm,r,l , with ⊗ denoting the
convolution operator. For the (m, r)-th BD, a proportion
αm,r of the incident power is reflected, while the remain-
ing power with proportion (1 − αm,r ) propagates to the
energy-harvesting circuit.1 As a common assumption in
the RF-based wireless power transfer literature [31]–[35],
we assume that the harvested power is linearly propor-
tional2 to the received power and the noise power can-
not be harvested. Denote power reflection coefficient vec-
tor α = [α1,1 . . . α1,R, . . . , αM ,1 . . . αM ,R]T ∈ RMR (with
0 ≤ αm,r ≤ 1). Denote the energy-harvesting efficiency
constant of the (m, r)-th BD by ηm,r (0 ≤ ηm,r ≤ 1). The
total energy harvested by the (m, r)-th BD is given by

Em,r = ηm,r
N−1∑
k=0

|Fm,r,k |2
[
τmPm,k (1− αm,r )

+ . . .

M∑
i=1, i 6=m

τiPi,k

]
. (2)

Let Xm,r ∼ CN (0, 1) denote the transmitted signal of
the (m, r)-th BD in the n-th OFDM symbol period, whose
duration is assumed to be the same as the OFDM symbol
period. The received time-domain signal backscattered in
m-th slot is given by

ym,t (n) =
√
Pm,k

·

R∑
r=1

√
αm,rsm,t (n)⊗ fm,r,l ⊗ gm,r,lXm,r (n)+ wm,t (n), (3)

where wm,t (n) denotes the additive white Gaussian noise
(AWGN) with power σ 2, i.e., wm,t (n) ∼ CN (0, σ 2).
After removing CP and performing discrete Fourier trans-

form (DFT) at the FAP, the received frequency-domain signal
in the m-th slot is given by

Ym,k (n) =
√
Pm,k

·

R∑
r=1

√
αm,rSm,k (n)Fm,r,kGm,r,kXm,r (n)+Wm,k (n), (4)

where Wm,k (n) ∼ CN (0, σ 2).

1Energy harvesting can prolong IoT devices’ service life by extracting
energy from the external natural environment. The possibility of powering
IoT devices by using ambient RF sources like TV and cellular signals has
been demonstrated [30].

2The linear energy-harvesting model is adopted for analytical tractability
and performance optimization in this paper, although some non-linear mod-
els are also available [34].
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According to the demodulation rule in uplink NOMA,
the FAP decodes the signals from BDs with indexes
from group 1 to group R. We assume that the FAP
detects the BD symbols Xm,r (n)’s based on MRC or
EGC [36]. When the FAP adopts MRC detector ω1

m,r,k =√
Pm,kαm,rF∗m,r,kG

∗
m,r,k

||

N−1∑
k=0

Pm,kαm,r |Fm,r,kGm,r,k |2||
to decode signals from the k-th

subcarrier of the (m, r)-th BD, the corresponding signal-to-
interference-plus-noise ratio (SINR) of the (m, r)-th BD is

γ 1
m,r =


αm,r

θ (p, α)+σ 2

N−1∑
k=0

Pm,kAm,r,k , 1 ≤ r ≤ R− 1

αm,R

σ 2

N−1∑
k=0

Pm,kAm,R,k , r = R

(5)

where Am,r,k = |Fm,r,kGm,r,k |2, and θ (p, α) =∑N−1
k=0 Pm,kαm,rAm,r,k

∑R
i=r+1 Pm,kαm,iAm,i,k∑N−1

k=0 Pm,kαm,rAm,r,k
represents the interfer-

ence from other BDs. Note that there is no interference
when r = R since other BDs’ signals have been decoded
successfully.

When the FAP adopts EGC detector ω2
m,r,k =

Fm,r,kGm,r,k
|Fm,r,kGm,r,k |

to decode signals from the k-th subcarrier of the (m, r)-th BD,
the corresponding SINR of the (m, r)-th BD is

γ 2
m,r =



N−1∑
k=0

Pm,kαm,rAm,r,k

N−1∑
k=0

R∑
i=r+1

Pm,kαm,iAm,i,k+Nσ 2

, 1 ≤ r ≤ R− 1

αm,R

Nσ 2

N−1∑
k=0

Pm,kAm,R,k , r = R

(6)

where
∑N−1

k=0
∑R

i=r+1 Pm,kαm,iAm,i,k represents the interfer-
ence from other BDs. Similarly, there is no interference when
r = R, since other BDs’ signals have been decoded success-
fully. It is standard to prove that γ 1

m,r > γ 2
m,r through some

algebra operations.
Hence, the (m, r)-th BD’s throughput is given by

Rm,r (τm, αm,r ,pm) =
τm

N
log

(
1+ γ im,r

)
, ∀i = 1, 2 (7)

where i = 1 and i = 2 correspond to the cases where the FAP
performs MRC and EGC, respectively.

The LU receives both the downlink legacy signal and the
backscattered signals from BDs. Similar to (4), the received
frequency-domain signal at the LU is given by

Zm,k (n) =
√
Pm,k

R∑
r=1

√
αm,rFm,r,kVm,r,kSm,k (n)X(m,r)(n)

+
√
Pm,kHkSm,k (n)+ W̃m,k (n), ∀k,m (8)

where W̃m,k (n) ∼ CN (0, σ 2).

The signals backscattered from BDs are interferences, thus
the throughput of the LU can be written as

R̃(τ ,α,P)

=
1
N

M∑
m=1

τm

N−1∑
k=0

log

1+
Pm,k |Hk |2

Pm,k
R∑
r=1

αm,rBm,r,k+σ 2

, (9)

where Bm,r,k = |Fm,r,kVm,r,k |2.

III. PROBLEM FORMULATION
In this section, in order to optimize the throughput perfor-
mance and ensure BD fairness, we maximize the minimum
throughput among all BDs, by jointly optimizing the FAP’s
subcarrier power allocation (i.e., P), the BDs’ backscatter
time (i.e., τ ) and power reflection coefficients (i.e., α). Math-
ematically, the problem is formulated as follows

max
Q,τ ,α,P

Q (10a)

s.t.
τm

N
log

(
1+ γ im,r

)
≥ Q, ∀i,m, r (10b)

M∑
m=1

τm

N

N−1∑
k=0

log

1+
Pm,k |Hk |2

Pm,k
R∑
r=1

αm,rBm,r,k+σ 2

≥D
(10c)

ηm,r

N−1∑
k=0

|Fm,r,k |2
[
τmPm,k (1− αm,r )+

M∑
i=1, i 6=m

τiPi,k
]

≥ Ēm,r , ∀m, r (10d)
M∑
m=1

N−1∑
k=0

τmPm,k ≤ P̄ (10e)

M∑
m=1

τm ≤ 1 (10f)

τm ≥ 0, ∀m (10g)

0 ≤ Pm,k ≤ Ppeak, ∀m, k (10h)

0 ≤ αm,r ≤ 1, ∀m, r . (10i)

Note that i = 1 and i = 2 in (10b) correspond to the cases
where the FAP detects the BD signals based on MRC and
EGC, respectively. (10b) is the throughput constraints for all
BDs; (10c) is the required minimum throughput D constraint
for LU; (10d) is the required minimum energy Ēm,r con-
straint for BDs; (10e) is the maximum transmission-power
P̄ constraint for FAP; (10f) and (10g) are the normalization
constraint and the non-negative constraint for each backscat-
ter time, respectively; (10h) is the peak-power Ppeak con-
straint and non-negative constraint for each subcarrier power;
(10i) is the reflection coefficient constraint.
Problem (10) aims to optimize the throughput performance

of an FSRN from multiple design dimensions. However,
it is non-convex and thus difficult to be solved optimally.
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The nonconvexity comes from the coupled optimization vari-
ables in (10b), (10c), (10d), and (10e), as well as the compli-
cated constraint functions in (10b) and (10c).

IV. OPTIMAL SOLUTION
In this section, an efficient iterative algorithm is proposed
to solve problem (10). Since problem (10) is not jointly
convex with respect to the variables α and P, we utilize
the BCD [37] (i.e., block coordinate descent) and SCO [38]
(i.e., successive convex optimization) techniques to obtain a
suboptimal solution. In the sequel, the superscript {j} (with
j = 1, 2, . . .) in τ , α and P to indicate their values in the j-th
algorithmic iteration. After presenting the overall algorithm,
its convergence and complexity are also analyzed.

A. SOLUTION FOR FSRN WITH MRC-BASED FAP
In this subsection, the case i = 1 in (10b) is considered, which
means that the FAP detects the BD signals based on MRC.

1) BACKSCATTER TIME ALLOCATION OPTIMIZATION
In iteration j, j ≥ 1, for given power reflection coefficient
vector α{j} and subcarrier power allocation matrix P{j}, the
backscatter time allocation vector τ can be optimized by
solving the following problem

(P1-a) : max
Q,τ

Q (11a)

s.t. (10b), (10c), (10d), (10e), (10f), (10g). (11b)

Since problem (11) is a standard linear programming (LP),
it can be solved efficiently by CVX [39].

2) REFLECTION POWER ALLOCATION OPTIMIZATION
For given backscatter time allocation vector τ {j} and sub-
carrier power allocation matrix P{j}, the power reflection
coefficient vector α can be optimized by solving

(P1-b) : max
Q,α

Q (12a)

s.t. (10b), (10c), (10d), (10i). (12b)

Since the constraint function R̃1(α)|τ {j},P{j} in (10b) and
R̃2(α)|τ {j},P{j} in (10c) are non-concave with respect to
αm,r , problem (12) is non-convex. The constraint function
R̃1(α)|τ {j},P{j} can be rewritten as follows

R̃1(α)|τ {j},P{j} =
τ
{j}
m

N

[
− log

(
Cm,r

)
+ . . . log

(
Cm,r+(

N−1∑
k=0

P{j}m,kαm,rAm,r,k )
2

)]
,

1 ≤ r ≤ R− 1 (13)

where we define Cm,r ,
∑N−1

k=0 [P
{j}
m,kαm,rAm,r,k ×

(
∑R

i=r+1 P
{j}
m,kαm,iAm,i,k + σ 2)], for convenience of

expression.
Since the constraint (10b) is in the form that the constraint

function is greater than or equal to a certain value, this
constraint is convex on condition that its constraint function

is concave. However, the convex component (i.e., the first
negative item in square brackets in (13)) makes the con-
straint function in (13) neither convex nor concave in general.
Hence, the constraint (10b) is non-convex. In the following,
we exploit the SCO technique to deal with this nonconvex-
ity. Specifically, we need to find a concave lower bound to
approximate the constraint function of (10b). From the fact
that any convex function can be lower bounded by its first-
order Taylor expansion at any point, we obtain the following
concave lower bound at the local point α{j}m,r

R̃1(α)|τ {j},P{j}

≥
τ
{j}
m

N

[
log

(
Cm,r + (

N−1∑
k=0

P{j}m,kαm,rAm,r,k )
2

)
− . . . log

(
C {j}m,r

)

− . . .

N−1∑
k=0

P{j}m,kAm,r,k (α
{j}
m,r

R∑
i=r+1

P{j}m,kAm,i,k )α̃
{j}
m,r

C {j}m,r

− . . .

N−1∑
k=0

P{j}m,kAm,r,k [(σ
2
+

R∑
i=r+1

P{j}m,kα
{j}
m,iAm,i,k )α̃

{j}
m,r ]

C {j}m,r

]
, R̂lb

1 (α)|τ {j},P{j} , ∀m, 1 ≤ r ≤ R− 1 (14)

where α̃{j}m,r = αm,r − α
{j}
m,r .

Similarly, we obtain the following lower bound on the
constraint function of (10c)

R̃2(α)|τ {j},P{j}

≥

M∑
m=1

τ
{j}
m

N

N−1∑
k=0

[
log

(
P{j}m,k

R∑
r=1

αm,rBm,r,k+P
{j}
m,k |Hk |

2
+σ 2

)

− log

(
P{j}m,k

R∑
r=1

α{j}m,rBm,r,k + σ
2

)

−

P{j}m,k
R∑
r=1

Bm,r,k (αm,r − α
{j}
m,r )

P{j}m,k
R∑
i=1
α
{j}
m,rBm,r,k + σ 2

]

, R̂lb
2 (α)|τ {j},P{j} . (15)

With given local pointsα{j} and lower bounds R̂lb
1 (α)|τ {j},P{j}

and R̂lb
2 (α)|τ {j},P{j} , by introducing two slack variables

Qlb
rpa1(‘‘rpa’’ means ‘‘reflection power allocation’’) and Dlb

rpa
for the BD-throughput constraints and LU-throughput con-
straint, respectively, problem (12) is approximated as

(P1-b’) :

max
Qlb

rpa1,D
lb
rpa,α

Qlb
rpa1 (16a)

s.t. R̂lb
1 (α)|τ {j},P{j} ≥ Q

lb
rpa1, ∀m, r = 1, 2 . . .R− 1

(16b)
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τ
{j}
m

N
log

(
1+

N−1∑
k=0

P{j}m,kαm,RAm,R,k
σ 2

)
≥Qlb

rpa1, ∀m

(16c)

R̂lb
2 (α)|τ {j},P{j} ≥ D

lb
rpa, (16d)

(10d), (10i). (16e)

Problem (16) is a convex optimization problem which
can also be efficiently solved by CVX. It is worth noting
that the feasible set of problem (16) is always a subset of
that of problem (12) for the lower bounds taken in (16b),
(16c), and (16d). Therefore, the optimal objective value of
problem (16) is a lower bound of that of problem (12).

3) SUBCARRIER POWER ALLOCATION OPTIMIZATION
For given backscatter time allocation vector τ {j} and power
reflection coefficient vector α{j}, the subcarrier power alloca-
tion matrix P can be optimized by solving

(P1-c) : max
Q,P

Q (17a)

s.t. (10b), (10c), (10d), (10e), (10h). (17b)

Notice that the constraint function R̃3(P)|τ {j},α{j} in (10b)
and R̃4(P)|τ {j},α{j} in (10c) are non-concave with respect to
Pm,k , problem (17) is non-convex. After performing SCO
method, we have the following concave lower bound at the
local point P{j}m,k

R̃3(P)|τ {j},α{j}

≥
τ
{j}
m

N

[
log

(
Dm,r + (

N−1∑
k=0

Pm,kα{j}m,rAm,r,k )
2

)

− . . . log
(
D{j}m,r

)
−

σ 2
N−1∑
k=0

α
{j}
m,rAm,r,k P̃

{j}
m,k

D{j}m,r

− . . .

2
N−1∑
k=0

P{j}m,kα
{j}
m,rAm,r,k

R∑
i=r+1

α
{j}
m,iAm,i,k P̃

{j}
m,k

D{j}m,r

]
= R̂lb

3 (P)|τ {j},α{j} , ∀m, 1 ≤ r ≤ R− 1 (18)

where we define Dm,r =
∑N−1

k=0 [Pm,kα
{j}
m,rAm,r,k ×(

∑R
i=r+1

Pm,kα
{j}
m,iAm,i,k +σ

2)], P̃{j}m,k = Pm,k −P
{j}
m,k , for convenience.

As such, we can obtain the following lower bound on the
constraint function of (10c)

R̃4(P)|τ {j},α{j}

≥

M∑
m=1

τ
{j}
m

N

N−1∑
k=0

[
−

R∑
r=1

α
{j}
m,rBm,r,k (Pm,k − P

{j}
m,k )

P{j}m,k
R∑
i=1
α
{j}
m,rBm,r,k + σ 2

− log

(
P{j}m,k

R∑
r=1

α{j}m,rBm,r,k + σ
2

)

+ log

(
Pm,k

R∑
r=1

α{j}m,rBm,r,k + Pm,k |Hk |
2
+ σ 2

)]
= R̂lb

4 (P)|τ {j},α{j} . (19)

With given local pointsP{j} and lower bounds R̂lb
3 (P)|τ {j},α{j}

and R̂lb
4 (P)|τ {j},α{j} , by introducing two slack variables

Qlb1
spa(‘‘spa’’ means ‘‘subcarrier power allocation’’) and Dlb

spa
for the BD-throughput constraints and LU-throughput con-
straint, respectively, problem (17) is approximated as

(P1-c’) :

max
Qlb

spa1,D
lb
spa,P

Qlb
spa1 (20a)

s.t. R̂lb
3 (P)|τ {j},α{j} ≥ Q

lb
spa1, ∀m, r = 1, 2 . . .R− 1

(20b)

τ
{j}
m

N
log

(
1+

N−1∑
k=0

Pm,kα
{j}
m,RAm,R,k
σ 2

)
≥Qlb

spa1, ∀m

(20c)

R̂lb
4 (P)|τ {j},α{j} ≥ D

lb
spa, (20d)

(10d), (10e), (10h). (20e)

Similarly, problem (20) is a convex optimization problem
that can be solved by CVX, and the optimal objective value
obtained from problem (20) is in general a lower bound of
that of problem (17).

B. SOLUTION FOR FSRN WITH EGC-BASED FAP
In this subsection, the case i = 2 in (10b) is considered,
which means that the FAP detects the BD signals based on
EGC. Notice that the only difference between the formulated
problems in the case of EGC and MRC is that the constraint
function in (10b). The same parts of the discussion are omit-
ted here for brevity.

1) BACKSCATTER TIME ALLOCATION OPTIMIZATION
In iteration j, j ≥ 1, for given power reflection coefficient
vector α{j} and subcarrier power allocation matrix P{j}, the
backscatter time allocation vector τ can be optimized by
solving the following problem

(P2-a) : max
Q,τ

Q (21a)

s.t. (10b), (10c), (10d), (10e), (10f), (10g). (21b)

Problem (21) is also a standard LP and can be solved
efficiently by CVX.

2) REFLECTION POWER ALLOCATION OPTIMIZATION
For given backscatter time allocation vector τ {j} and sub-
carrier power allocation matrix P{j}, the power reflection
coefficient vector α can be optimized by solving

(P2-b) : max
Q,α

Q (22a)

s.t. (10b), (10c), (10d), (10i). (22b)
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Note that the constraint functions R̃5(α)|τ {j},P{j} in (10b) and
R̃2(α)|τ {j},P{j} in (10c) are non-concave with respect to αm,r ’s,
problem (22) is non-convex. After exploiting SCO technique,
we obtain the following lower bound on the constraint func-
tion R̃5(α)|τ {j},P{j} at the local point α

{j}
m,r

R̃5(α)|τ {j},P{j}

≥
τ
{j}
m

N

[
log

(
N−1∑
k=0

P{j}m,k

R∑
i=r

αm,iAm,i,k + Nσ 2

)

− log

 N−1∑
k=0

R∑
i=r+1

P{j}m,kα
{j}
m,iAm,i,k + Nσ

2



−

N−1∑
k=0

R∑
i=r+1

P{j}m,kAm,i,k (αm,i − α
{j}
m,i)

N−1∑
k=0

R∑
i=r+1

P{j}m,kα
{j}
m,iAm,i,k + Nσ

2

]

= R̂lb
5 (α)|τ {j},P{j} , ∀m, 1 ≤ r ≤ R− 1. (23)

With given local pointsα{j} and lower bounds R̂lb
5 (α)|τ {j},P{j}

and R̂lb
2 (α)|τ {j},P{j} , by introducing two slack variables Qlb

rpa2
and Dlb

rpa for the BD-throughput constraints and LU-
throughput constraint, respectively, problem (22) is approxi-
mated as

(P2-b’) :

max
Qlb

rpa2,D
lb
rpa,α

Qlb
rpa2 (24a)

s.t. R̂lb
5 (α)|τ {j},P{j} ≥ Q

lb
rpa2, ∀m, r = 1, 2 . . .R− 1

(24b)

τ
{j}
m

N
log

(
1+

N−1∑
k=0

P{j}m,kαm,RAm,R,k
Nσ 2

)
≥Qlb

rpa2, ∀m

(24c)

R̂lb
2 (α)|τ {j},P{j} ≥ D

lb
rpa, (24d)

(10d), (10i). (24e)

Problem (24) is a convex optimization problem which can
be solved by CVX, and the optimal objective value obtained
from problem (24) is in general a lower bound of that of
problem (22).

3) SUBCARRIER POWER ALLOCATION OPTIMIZATION
For given backscatter time allocation vector τ {j} and power
reflection coefficient vector α{j}, the subcarrier power alloca-
tion matrix P can be optimized by solving

(P2-c) : max
Q,P

Q (25a)

s.t. (10b), (10c), (10d), (10e), (10h). (25b)

Notice that the constraint functions R̃6(P)|τ {j},α{j} in (10b)
and R̃4(P)|τ {j},α{j} in (10c) are non-concave with respect to
Pm,k , problem (25) is non-convex. After performing SCO

method, we obtain the following lower bound on the con-
straint function R̃6(α)|τ {j},P{j} at the local point P

{j}
m,k

R̃6(P)|τ {j},α{j}

≥
τ
{j}
m

N

[
log

(
N−1∑
k=0

Pm,k
R∑
i=r

α
{j}
m,iAm,i,k + Nσ

2

)

− log

N−1∑
k=0

R∑
i=r+1

P{j}m,kα
{j}
m,iAm,i,k + Nσ

2



−

N−1∑
k=0

R∑
i=r+1

α
{j}
m,iAm,i,k (Pm,k − P

{j}
m,k )

N−1∑
k=0

R∑
i=r+1

P{j}m,kα
{j}
m,iAm,i,k + Nσ

2

]

= R̂lb
6 (P)|τ {j},α{j} , ∀m, 1 ≤ r ≤ R− 1. (26)

With given local pointsP{j} and lower bounds R̂lb
6 (P)|τ {j},α{j}

and R̂lb
4 (P)|τ {j},α{j} , by introducing two slack variables Qlb

spa2
and Dlb

spa for the BD-throughput constraints and LU-
throughput constraint, respectively, problem (25) is approxi-
mated as

(P2-c’) :

max
Qlb

spa2,D
lb
spa,P

Qlb
spa2 (27a)

s.t. R̂lb
6 (P)|τ {j},α{j} ≥ Q

lb
spa2, ∀m, r = 1, 2 . . .R− 1

(27b)

τ
{j}
m

N
log

(
1+

N−1∑
k=0

Pm,kα
{j}
m,RAm,R,k
Nσ 2

)
≥Qlb

spa2, ∀m

(27c)

R̂lb
4 (P)|τ {j},α{j} ≥ D

lb
spa, (27d)

(10d), (10e), (10h). (27e)

Similarly, problem (27) is a convex optimization problem
that can be solved by CVX, and the optimal objective value
obtained from problem (27) is in general a lower bound of
that of problem (25).

C. OVERALL ALGORITHM
When the FAP detects the BD signals based on either
MRC or EGC, there are three blocks of variables to be
optimized, i.e., P, τ , and α. We use the BCD technique to
obtain the optimal (suboptimal) solution iteratively. In each
iteration, we optimize one block of variables with the other
two blocks of variables fixed, and the optimal (suboptimal)
solution of the variable obtained in this iteration is served as
the input of the next iteration. The details are summarized in
Algorithm 1.

The convergence of BCD algorithm requires that each
subproblem should be solved optimally while optimizing
one block of variables in each iteration [37]. In the above
algorithm 1, we only solve the approximate subproblems of
the original subproblems (P1-b), (P1-c), (P2-b), and (P2-c),
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Algorithm 1 Proposed Iterative Algorithm for Solving
Problem (P1) or (P2)

1: Initialize P{0}, τ {0}, α{0}, Q{0} with P{0}m,k =
1
MN , τ

{0}
m =

1
M , α

{0}
(m,r) = 0.5, Q{0} = 100, and set small threshold

constant ε = 10−4. Let j = 0.
2: while |Q{j+1} − Q{j}| ≥ ε do
3: Solve (P1-a) or (P2-a) under fixed α{j} and P{j}, and

the optimal solution is obtained as τ {j+1}.
4: Solve (P1-b’) or (P2-b’) under fixed τ {j+1}, P{j}, and

α{j}, and the optimal solution is obtained as α{j+1}.
5: Solve (P1-c’) or (P2-c’) under fixed τ {j+1}, α{j+1}, and

P{j}, and the optimal solution is obtained as P{j+1}.
6: Update iteration index j = j+ 1.
7: end while
8: Return the optimal solution P? = P{j−1}, τ ? = τ {j−1}

and α? = α{j−1}.

thus the convergence of Algorithm 1 needs to be verified,
as follows.
Theorem 1: Algorithm 1 is guaranteed to converge.
Proof: In step 3, we obtain the optimal solution τ {j+1}

under fixed α{j} and P{j}, thus the minimum throughput satis-
fies the following inequality

Q(τ {j},α{j},P{j}) ≤ Q(τ {j+1},α{j},P{j}). (28)

In step 4, we obtain the suboptimal solution α{j+1} based
on SCO method, under fixed τ {j+1} and P{j}. The following
relationships are established

Q(τ {j+1},α{j},P{j})
(a1)
= Qlb

rpa(τ
{j+1},α{j},P{j})

(b1)
≤ Qlb

rpa(τ
{j+1},α{j+1},P{j})

(c1)
≤ Q(τ {j+1},α{j+1},P{j}), (29)

where (a1) comes from that the Taylor expansions in (14),
(15), and (23) are tight at given local points, which indicates
that the objective functions of (P1-b) and (P2-b) at α{j} are the
same as that of (P1-b’) and (P2-b’), respectively; (b1) is true
since the optimal solutions to (P1-b’) and (P2-b’) are α{j+1};
(c1) is because the objective values of original problems
(P1-b) and (P2-b) are lower bounded by that of problem
(P1-b’) and (P2-b’), respectively.

Similarly, in step 5, the minimum throughput satisfies the
following relationships

Q(τ {j+1},α{j+1},P{j})
(a2)
= Qlb

spa(τ
{j+1},α{j+1},P{j})

(b2)
≤ Qlb

spa(τ
{j+1},α{j+1},P{j+1})

(c2)
≤ Q(τ {j+1},α{j+1},P{j+1}), (30)

as such, (a2) comes from that the Taylor expansions in (18),
(19), and (26) are tight at given local points, which indicates
that the objective functions of (P1-c) and (P2-c) at P{j} are the
same as that of (P1-c’) and (P2-c’), respectively; (b2) is true

since the optimal solutions to (P1-c’) and (P2-c’) are P{j+1};
(c2) is because the objective values of original problems
(P1-c) and (P2-c) are lower bounded by that of problem
(P1-c’) and (P2-c’), respectively.

From (28), (29), and (30), it is straightforward that

Q(τ {j},α{j},P{j}) ≤ Q(τ {j+1},α{j+1},P{j+1}). (31)

The inequality (31) indicates that the objective values of
(P1) and (P2) are always non-decreasing after each iteration.
Besides, the objective values of (P1) and (P2) are upper-
bounded by some finite positive number, since the objective
function is continues over the compact feasible set. Therefore,
the proposed Algorithm 1 is guaranteed to converge. The
convergence proof is completed. �

It is noted that Algorithm 1 can obtain a (locally at least)
optimal solution, althoughmultiple first-order Taylor approx-
imations are used. As shown in the above proof steps, a better
objective value can be obtained after each iteration, the vari-
ables will get closer and closer to the optimal points, as the
number of iterations increases. The first-order Taylor expan-
sion is getting tighter as the algorithm converges, which is
also adopted and shown in references like [40].

Since only three convex optimization problems need to be
solved in each iteration, the algorithm’s complexity is afford-
able. Moreover, as will be numerically shown in Section V,
Algorithm 1 converges in about five iterations. Therefore,
the proposed Algorithm 1 can be practically implemented
with fast convergence for an FSRN.

V. NUMERICAL RESULTS
This section provides numerical results. We consider inde-
pendent Rayleigh fading channels and the power gains of
multiple paths are exponentially distributed. For each chan-
nel link, its first-path channel power gain is assumed to be
10−3d−2.5, where d is the distance with unit of meter (m).
We assume the number of multi-path channels to be Lf =

Lg = 4, Lh = 8, and Lv = 6. We fix M = 2,R = 2,
i.e., four BDs are considered. The OFDM parameters are
N = 64,Ncp = 16. Let Ēm,r = Emin,∀m, r . We set
P̄ = 1, ε = 10−4, and ηm,r = 0.5. The FAP-to-LU distance
is 7 m. The FAP-to-BD distances are 3.8 m, 3.6 m, 2.2 m,
and 2 m for BD 1, 2, 3, and 4, respectively. The BD-to-LU
distances are 5 m, 6 m, 7 m, 8 m for BD 1, 2, 3, and 4,
respectively. The BDs adopt the instantaneous-channel-
power-based dynamic head-tail paring strategy which was
given in Theorem 4 and proved to be optimal for max-
min rate optimization in uplink NOMA [22]. The results are
based on 1000 channel realizations. For comparison, we con-
sider a benchmark scheme of dynamic TDMA, in which
the four BDs individually backscatter signals to the FAP in
four orthogonal slots and the slot durations are optimized to
maximize the minimum throughput among all BDs. Notice
that as in [37], the exhaustive approach is not considered
as a benchmark in this section, since its complexity for the
problem (10) with four blocks of continuous-value variables
is too high. Parameter settings are summarized in Table 1.

22716 VOLUME 8, 2020



Y. Liao et al.: Resource Allocation in NOMA-Enhanced FSRN

TABLE 1. Parameter settings.

FIGURE 2. BDs’ throughput versus SNR (NOMA-DTDMA, MRC).

Fig. 2 and Fig. 3 plot the BDs’ throughput versus SNR
for the proposed NOMA-DTDMA scheme in the case that
the FAP performs MRC and EGC, respectively. Both Fig. 2
and Fig. 3 show that BDs’ total throughput increases as SNR
increases. From Fig. 2 and Fig. 3, moreover, we observe that
BD 1 and BD 2 with weaker (average) channel strength,
achieve almost the same throughput, which is comparable
to those of BD 3 and BD 4 with stronger channel strength.
This verifies that throughput fairness among all BDs can

FIGURE 3. BDs’ throughput versus SNR (NOMA-DTDMA, EGC).

be achieved by the proposed NOMA-DTDMA scheme.
Furthermore, notice that the gap of BDs’ throughput in Fig. 2
is smaller than that in Fig. 3, which implies that MRC
outperforms EGC in terms of BD fairness for the proposed
NOMA-DTDMA scheme.

Fig. 4 compares the BDs’ total throughput for the pro-
posed NOMA-DTDMA scheme and the benchmark of the
dynamic TDMA scheme. We observe that the proposed
scheme achieves significant throughput gain compared to the
benchmark scheme. For instance, in the case that the FAP
detects BDs’ signals based on MRC, the total throughput
of the NOMA-DTDMA scheme is 195.61%, 117.70% and
98.63% higher than that of the dynamic TDMA scheme
when the SNR is 0, 10 and 20 dB, respectively. In addition,
MRC achieves higher throughput than EGC with the same
SNR for the proposed NOMA-DTDMA scheme, and the gap
between them is enlarged as SNR increases. The reason is
that the selection of weighting gains in MRC can strengthen
the effect of high SNR branch and weaken the effect of low
SNR branch, while all the branches have the same weight-
ing gain in EGC. However, when the FAP-BD-FAP prod-
uct channel coefficients (MRC’s weighting coefficients) are

FIGURE 4. Comparison of BDs’ total throughput between NOMA-DTDMA
and dynamic TDMA versus SNR.
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unknown or it is advisable to apply EGC which needs only
the phase information of the channel coefficients. There is a
tradeoff between performance and complexity.

Fig. 5 plots the BDs’ total throughput versus the LU’s
throughput requirement D under different SNRs (i.e., 0 and
10 dB). As expected, the BDs’ total throughput with SNR =
10 dB is far greater than that with SNR= 0 dB at sameD both
for the proposed NOMA-DTDMA scheme and the dynamic
TDMA scheme. We further observe that the BDs’ total
throughput decreases as the LU’s throughput requirement D
increases, indicating the trade-off performance between the
BDs and LU in terms of throughput. Moreover, consider-
ing SNR = 10 dB,the BDs’ total throughput for the pro-
posed NOMA-DTDMA scheme based on MRC is 98.71%,
104.94%, and 288.52% higher than that of dynamic TDMA
scheme based on MRC when D is 1, 3, and 5 bps/Hz,
respectively.

FIGURE 5. BDs’ total throughput versus LU’s throughput requirement D
under different SNRs.

Fig. 6 plots the BDs’ total throughput versus the BDs’
harvested energy requirement Emin under different SNRs
(i.e., 0 and 10 dB). Similarly, the BDs’ total throughput with
SNR = 10 dB is significantly greater than that with SNR =
0 dB at the sameEmin for both the proposedNOMA-DTDMA

FIGURE 6. BDs’ total throughput versus BDs’ harvested energy
requirement E under different SNRs.

scheme and the benchmark dynamic TDMA scheme. Also,
we observe that the BDs’ total throughput decreases as Emin
increases, indicating the tradeoff performance between the
BDs’ throughput and harvested energy requirement. Further-
more, it is shown that when Emin is greater than 23 milli-
joules, even the proposed NOMA-DTDMA scheme based on
MRC with SNR = 0 dB achieves higher throughput than the
dynamic TDMA scheme based on MRC with SNR = 10 dB.

Fig. 7 plots the BDs’ total throughput versus the number of
subcarriers N at SNR= 10 dB. It’s shown that the BDs’ total
throughput decreases as N increases. The reason is that the
power allocated to each subcarrier decreases in general as N
increases, since the FAP’s maximum transmission-power P̄
is a constant value. The throughput gain obtained by the
combining technique cannot compensate for the reduction of
subcarrier power.

FIGURE 7. BDs’ total throughput versus the number of subcarriers N
under different SNRs.

Fig. 8 plots the average convergence performance of the
proposed Algorithm 1. We observe that the NOMA-DTDMA
scheme based on either MRC or EGC takes about five itera-
tions to converge. The converged average max-min through-
put is 0.0156 bit/Hz and 0.00170 bit/Hz for MRC and EGC,
respectively. Thus, the convergence speed of Algorithm 1 is
fast.

FIGURE 8. Convergence behavior of Algorithm 1.
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In order to evaluate the effect of distance on the throughput
performance, we scale the distances between all pairs of
nodes by a positive factor θ > 0. Fig. 9 plots the BDs’
total throughput versus the distance scaling factor θ , for
different LU’s throughput requirements D’s. It is observed
that the BDs’ total throughput decreases as θ increases, since
the increase of distance weakens the channel strength. It is
reasonable to choose the previous distance values with θ = 1,
which is practical for smart-home applications. In addition,
the tradeoff between the BDs’ total throughput and the LU’s
throughput is observed in Fig. 9.

FIGURE 9. BDs’ total throughput versus the distance scaling factor θ

(NOMA-DTDMA, MRC).

VI. CONCLUSION
This paper has studied the resource allocation problem in
a NOMA-enhanced FSRN. A NOMA-DTDMA transmis-
sion scheme is proposed to exploit the channel dynamics
and further improve the spectrum efficiency. The minimum
throughput among all BDs is maximized by jointly optimiz-
ing the FAP’s subcarrier power allocation, the BDs’ backscat-
ter time and power reflection coefficients, subject to the LU’s
throughput requirement, the BDs’ harvested energy require-
ments, and other practical constraints. An efficient iterative
algorithm based on block coordinated descent and succes-
sive convex optimization techniques is proposed to obtain a
suboptimal solution to the formulated non-convex problem.
Numerical results show that the proposed NOMA-DTDMA
scheme significantly outperforms the benchmark dynamic-
TDMA scheme in terms of both throughput performance and
BD fairness. Moreover, the tradeoff performances between
the BDs’ throughput and the LU’s throughput requirement as
well as the BDs’ harvested energy requirements are numer-
ically verified. This work can be further extended to the
scenarios like a multi-antenna FAP and imperfect channel
state information in practice.
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