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ABSTRACT In recent years, many studies have examined filters for eliminating or reducing speckle noise,
which is inherent to ultrasound images, in order to improve the metrological evaluation of their biomedical
applications. In the case of medical ultrasound images, said noise can produce uncertainty in the diagnosis
because details, such as limits and edges, should be preserved. Most algorithms can eliminate speckle noise,
but they do not consider the conservation of these details. This paper describes, in detail, 27 techniques that
mainly focus on the smoothing or elimination of speckle noise in medical ultrasound images. The aim of
this study is to highlight the importance of improving said smoothing and elimination, which are directly
related to several processes (such as the detection of regions of interest) described in other articles examined
in this study. Furthermore, the description of this collection of techniques facilitates the implementation of
evaluations and research with a more specific scope. This study initially covers several classical methods,
such as spatial filtering, diffusion filtering, and wavelet filtering. Subsequently, it describes recent techniques
in the field of machine learning focused on deep learning, which are not yet well known but greatly relevant,
alongwith somemodern and hybridmodels in the field of speckle-noise filtering. Finally, five Full-Reference
(FR) distortion metrics, common in filter evaluation processes, are detailed along with a compensation
methodology between FR and Non-Reference (NR) metrics, which can generate greater certainty in the
classification of the filters by considering the information of their behavior in terms of perceptual quality
provided by NR metrics.

INDEX TERMS Diffusion filtering, image pre-processing, metrological evaluation, spatial filtering, speckle
noise, ultrasound images, wavelet filtering.

I. INTRODUCTION
The metrological evaluation of biomedical equipment,
in terms of patient safety, is important in order to avoid
adverse events. Of particular interest in this review are ultra-
sound (US) images, which have become widely-used tools
for clinical diagnosis and therapeutic procedures due to their
non-invasive nature, absence of ionizing radiation, affordabil-
ity, and real-time evaluation [1]. Thus, they are key in mul-
tiple medical fields such as cardiology, urology, obstetrics,
and gynecology. Furthermore, they are commonly used to
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generate vascular imagery of internal structures in the abdom-
inal area in order to guide surgical procedures [2]. However,
US images intrinsically present speckle noise, which is a con-
sequence of the principle of image formation, due to the inter-
ference of coherent constructive and destructive energies of
scattered echoes [3], [4]. This phenomenon produces a degra-
dation of the resolution, makes extracting significant infor-
mation from US images contaminated with speckle noise a
very complicated process, and negatively affects the process-
ing tasks (i.e., segmentation, feature extraction, recording,
and classification). Therefore, reducing noise in US medical
images is an important step that has become a pre-processing
requirement in order to conduct better analyses and diagnoses
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in many applications (such as the visualization of body organs
and object detection), without affecting critical diagnostic
features in the image. However, removing speckle noise from
US medical images poses a challenge because said noise
cannot be uniformly modeled and is tissue-dependent, which
makes its reduction even more complicated [1], [5], [6].

A considerable number of studies of varying relevance
have focused on removing or smoothing speckle noise for
biomedical applications. Some of them are reviews that
gather and describe different approaches, while others seek
to comparatively determine their advantages and limitations
in a well-controlled experimental system, with the aim of
conducting successful metrological evaluations. The latter
is the case of the review in [7], which is a comparative
study into noise elimination methods based on wavelet fil-
ters depending on different threshold values applied to US
images. In their review, Mateo and Fernandez-Caballero
investigated and listed some of the most widely used tech-
niques for smoothing or removing speckle noise from US
images [8]. In [9], the authors reviewed the most commonly
used techniques in the literature for reducing speckle noise,
but they mainly focused on echocardiographic US images.
These techniques are described in detail and compared with
each other applying specific criteria such as speckle noise
reduction in US images, conservation of local features, and
contrast ratio, among others. Rosa and Moteiro [1] analyzed
the development of speckle-noise filters in US images after
they identified that, in [9], the speckle noise used to contam-
inate the simulated images was not consistent with the pre-
dominant noise in real US images. Therefore, they used the
program Field II [10] to conduct a more realistic simulation
of speckle noise, thus generating B-mode (two-dimensional)
US images. More recently, a study briefly reviewed filtering
techniques for US images and later compared them with the
method proposed therein [11].

This paper presents an overview of the concept of speckle
noise in US images and the most common and important
filtering techniques, along with a general discussion of their
biomedical applications. Additionally, it includes some recent
techniques in the field of machine intelligence that, although
not yet well known, have become more relevant, as well as
some modern and hybrid modalities in the field of speckle
noise filtering in US images. It also presents a formal descrip-
tion of these methods, in order to enable the development
of applications with a suitable metrological approach, detail-
ing some common metrics in the filter evaluation process.
Finally, a compensation methodology between FR and NR
measurements is discussed, which enables a more detailed
comparison of the implemented filters.

II. SPECKLE NOISE
In US images, speckle noise presents a multiplicative behav-
ior strongly correlated with non-Gaussian statistics. It mul-
tiplies into the underlying US signal reflected by the tissue,
thus being directly proportional to the local gray-level in that
area. Therefore, speckle noise is dependent on image data,

producing quality deterioration in the form of contrast reduc-
tion, blurry details, and local pseudo features [12]. The pres-
ence of speckle noise is intrinsic to US images [1], and it can
be mathematically modeled through statistical distributions
for multiplicative scattering [6]. As a result, traditional meth-
ods for image analysis based on the Gaussian distribution
(e.g., filtering and segmentation) are not sufficient [12].

A. MODELING
In order to facilitate US image pre-processing, some studies
have focused on mathematically modeling the behavior of
speckle noise for multiplicative scattering [13]. The latter ini-
tially depends on the way the echo envelope signal (detected
by the receiving device for US image formation) is repre-
sented, and it is defined as a reflection of the US waves that
are transmitted into a human body [6]. In general, the final
echo signal that is obtained is comprised of two elements:
the useful signal (which is reflected by the human body)
and the noise (which can be classified into two components:
multiplicative and additive noise) [14], [15].

f (x, y) = g (x, y) n (x, y)+ w (x, y) , (x, y) ∈ Z2 (1)

where n (x, y) and w (x, y) represent the components of the
multiplicative and additive noise, respectively; (x, y), the spa-
tial coordinates in two dimensions; and g (x, y) and f (x, y),
the original and observed signal, respectively. Because the
effect of additive noise on electrocardiograms is consider-
ably less pronounced than that of multiplicative noise [15],
model (1) can be approximated by (2).

f (x, y) = g (x, y) n (x, y) , (x, y) ∈ Z2 (2)

The statistical description of speckle noise n (x, y) gener-
ally depends on the composition and type of tissue or US
imaging system [16]. The Rayleigh distribution is commonly
used to model such noise, which can be identified when the
resolution cell comprises a relatively large number of inde-
pendent scatterers, normally more than 10. For that reason,
the amplitude of the image is said to follow the Rayleigh
distribution [17]. Based on the Signal-to-Noise Ratio (SNR),
two types of representation can be defined: high SNR, which
is usually modeled by a Rician distribution [18], and low
SNR, modeled by a K- or Nakagami distribution [19]. More-
over, the generalized gamma distribution introduced in [20]
is presented in Equation (3). Said formulation is attractive
because it contains several commonly used distributions that
can be expressed by varying parameters in the model, such
as α > 0, a scalar parameter; γ > 0 y υ > 0, shape
parameters; and 0(·), the gamma function. The Probability
Density Function (PDF) is

fN (n;α, υ, γ ) =
γ nγ υ−1

αγ υ0 (υ)
exp

{
−

( n
α

)γ }
. (3)

The PDF, in (3), can represent different distributions by
varying parameters υ and γ , which are frequently used in
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speckle noise reduction processing. For a Rayleigh distribu-
tion (RL), υ = 1 and γ = 2; for a Nakagamai distribu-
tion, γ = 2; and, for a Weibull distribution [21], υ = 1.
In the case of the Rayleigh distribution, n, which can also
be expressed as f (p), is the pixel intensity of an image at
position n, and α is the form parameter of fN related to the
mean of the distribution given by µ = α

√
π
2 . Additionally,

given a spatial neighborhood of pixels with a uniform inten-
sity f (p), α can be calculated using the Maximum Likelihood
Estimation (MLE) [22], [23], which is defined for Rayleigh
functions as

α̂ =

√√√√ 1
2N

∑
q∈�

f (q)2. (4)

Many commercial US imaging systems are forced to com-
press the detected echo envelope signal using a logarithmic
transformation due to their limited display range [16], [24].
For this reason, Equation (2) becomes (5), and it is simplified
in (6).

log (f (x, y)) = log (g (x, y))+ log (n (x, y)) (5)

f (x, y) = g (x, y)+ n (x, y) , (x, y) ∈ Z2 (6)

Thus, the logarithmic transformation turns the multiplica-
tive model of speckle noise into an additive one, which
enables the application of filters designed for additive noises.
However, the nonlinearity of the algorithm alters the statistics
of US images and increases weak backscattering, which is
why the analysis of log-compressed speckle noise is com-
plicated [25]. Nevertheless, speckle noise n (x, y) before the
log-compression can be modeled by a Rayleigh distribution,
and, afterward, it can be approximated to Gaussian noise [6].

B. SPECKLE NOISE REDUCTION
The presence of speckle noise in medical US images has been
determined to be the cause of an eightfold reduction in the
detection of injuries since 1986 [26]. Likewise, the accuracy
of human interpretation and automated diagnostic functions
has been affected by speckle noise [16]. In [27], it is demon-
strated that reducing speckle noise improves segmentation
processes. However, filtering speckle noise from sequences
of images or video clips still poses a problem: most models
developed for video filtering are focused on additive noise.
Therefore, a multiplicative model for video footage should
be created.

Several techniques have been developed in the field
of US image or video pre-processing to reduce speckle
noise adopting different methods, which can be classified
into five categories considering their principle of anal-
ysis: Dynamic Analysis, Time-Frequency, Modern Tech-
niques, Hybrid Techniques (HT) y Machine Learning-Based
Techniques.

III. DYNAMIC ANALYSIS-BASED TECHNIQUES:
ANISOTROPIC DIFFUSION
The reduction of speckle noise in echocardiograms in order
to improve the detection of heart structures is an important
challenge due to the difficulty in completing the process
without negatively affecting the information detailed in the
image. Some authors have proposed the use of techniques
for smoothing images, such as Content-Unaware Smooth-
ing (CUS) and Content-Aware Smoothing (CAS) meth-
ods [28]. CUS is the simplest, most common approach and
is usually implemented with the two-dimensional Gaussian
filter; however, it eliminates the imperfections in the image
at the expense of blurring the edges. CAS comprises a set of
techniques that adjust the behavior based on local features;
one of themost relevant is Anisotropic Diffusion (AD), which
has gained increasing visibility. Nevertheless, compared to
linear smoothing methods, in the literature CAS has had a
limited impact in edge detection [29].

Diffusion takes place in accordance with the Partial Differ-
ential Equation (PDE) (7) described in [9], which details the
dissemination of particles from high-concentration regions
into their low-concentration counterparts. A linear version
of the diffusion equation is used to describe the distribution
of heat in a region over time. A variety of techniques that
adopt nonlinear diffusion methods to treat noise in US images
have been reported in the literature. For instance, in 1990,
Perona and Malik [30] proposed anisotropic diffusion as a
generalization of the diffusion equation to reduce noise in US
images, which was shown in [7], by smoothing homogeneous
areas while preserving the edges. Nevertheless, its effect on
images that present multiplicative noise (such as speckle
noise) was less satisfactory.

∂f (x, y; t)
∂ (t)

= ∇ · [c (|∇fσ (x, y; t)|) · ∇f (x, y; t)]

f (x, y; 0) = f0 (x, y) (7)

where ∇ · () represents the divergence operator, ∇ is the
gradient, | · | indicates the magnitude, and c (|∇fσ (x, y; t)|)
contains function c(·) that controls the diffusion levels at each
position in the image with fσ , which represents a smoothed
version of f .

Later, in 2002, Yongjian and Acton [31] developed a dif-
fusion approach to eliminate speckle noise using statistical
methods, thus creating the Speckle Reducing Anisotropic
Diffusion (SRAD) filter. The latter also uses the diffusion
PDE but with the diffusivity function c (·) comprised of
Instantaneous Coefficients of Variation (ICOV), q, which
are used as signal/edge discriminators. Afterward, Fernández
and López [32] proposed a filter that outperforms SRAD,
Detail Preserving Anisotropic Diffusion (DPAD), as can be
seen in (8), considering the largest neighborhoods to more
accurately estimate the components of the ICOV. Addition-
ally, the approach of estimating the scale function of the
speckle q0 (t), which is the diffusion threshold that controls
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the level of smoothing as the median of [q (x, y; t)], produces
computational savings because it requires fewer calculations
than SRAD [33].

c [q (x, y, t) , q0] =
1+ 1/q2 (x, y, t)

1+ 1/q20 (t)
(8)

Weickert [34] introduced the function of the diffusion
tensor with Coherence-Enhancing Diffusion (CED), allow-
ing the smoothing level to vary directionally. This diffusion
tensor is based on the T-structure tensor, which represents
the gradient of image ∇f

(
fx , fy

)
as in (9), being fx , fy the

gradients in directions x and y. CED employs two smoothing
stages. First, the noise fluctuation in the observed image is
reduced by a variance Gaussian kernel σ 2, denoted as Kσ ;
likewise, fσ = Kσ ∗ f , where ∗ represents the convolution.
The second stage is a second level of smoothing, where the
structure tensor is formed as Tρ (9).

A) T =
(
∇f ⊗∇f T

)
=

(
f 2x fxy
fxy f 2y

)
B) Tρ = Kρ ∗

(
∇fσ ⊗∇f Tσ

)
=

(
T11 T12
T21 T22

)
(9)

where the eigenvalues of Tρ(µ1, µ2) are ordered in such
a way that µ1 ≥ µ2 and the corresponding eigenvectors
(−→ω 1,

−→ω 2) provide the direction of the gradient and the edge,
respectively. The CED process is described by the following
differential equation.

∂f (x, y; t)
∂t

= ∇ · [D∇f (x, y; t)] (10)

where D is the diffusion matrix constructed with the same
eigenvectors of Tρ and eigenvalues (λ1, λ2) [9].

Abd-Elmoniem et al. [16] proposed Nonlinear Coher-
ent Diffusion (NCD) (11) for discriminating different
speckle levels based on the similarity of fully-developed
speckle, i.e., the regions in the image that closely resemble
fully-developed speckle are filtered with a median filter,
while those that are different remain unchanged.

Jρ = Kρ ∗
(
∇f∇f T

)
=

(
Kρ ∗ f 2x Kρ ∗ fxy
Kρ ∗ fxy Kρ ∗ f 2y

)
(11)

NCD is not based on the initial state of (9.B); for that
reason, the structure matrix represents the information of the
gradient from all the details in the image, even the smallest
ones. Therefore, the eigendecomposition of Jρ produces the
eigenvectors (−→ω 1,

−→ω 2), which provide the direction of the
gradient and the contour. In the same way as CED, the dif-
fusion process is given by PDE (10), with D as the diffusion
tensor constructed to have the same eigenvectors as Jρ and
the eigenvalues (λ1, λ2) [9].
Krissianet al. [35] proposed an SRAD method extended to

a matrix diffusion scheme, called Oriented Speckle Reducing
Anisotropic Diffusion (OSRAD), which enables adaptable
diffusion to vary in resistance to the direction of the contour
and the curvature. This technique implements the improve-
ments of the DPAD method, such as the use of a larger

window to estimate q(x, y; t) and its median, to obtain q0(t).
The SRADmethod is extended to a matrix scheme by finding
the local directions of the gradient and the curvature, which
can be done by using the Hessian matrix, as in [36]; however,
in that study, the authors use the structure tensor, similar
to CED and NCD methods. Recently, other authors [37]
proposed the use of a semi-adaptive threshold (SAT) in the
diffusion coefficient function to better protect the detailed
information and improve noise reduction. First they applied
a pre-reduction with the local difference value method,
in order to distinguish between corrupted and noise-free
pixels, thus replacing those contaminated with speckle with
pixels that had been pre-filtered with a Gaussian filter. After
this, the Perona-Malik (PM) anisotropic diffusion model was
implemented with a SAT based on the local gradient over
the function of the diffusion coefficient, which indicates that
the gradient value of the corrupt pixels is introduced in the
threshold, resulting in greater diffusion in smooth areas and
less diffusion in boundary regions. Additional studies into
Magnetic Resonance Imaging (MRI) and US images, such
as [38]–[40], have been recently published. They focus on
finding the optimal value of the Threshold of Gradient Mod-
ulus (TGM), which is one of the most important operating
parameters of the AD filter, because fitting the TGM to its
optimal value by trial and error is subjective, difficult, and
time-consuming [38].

IV. TECHNIQUES BASED ON
TIME-FREQUENCY ANALYSIS
This section describes the methods that work in the wavelet
domain along with spatial domain techniques. Said spatial
domain is associated with adaptive filters that are commonly
applied to Synthetic Aperture Radar (SAR) images.

A. WAVELET-BASED METHODS
Wavelet filtering can be carried out by adjusting to zero
the coefficients of the decomposition levels that represent
noise and maintaining the coefficients that contain informa-
tion about the features of the image. This method is called
Wavelet Shrinkage (WS), and it uses a threshold to determine
which coefficients need to be eliminated. WS is effective in
reducing additive noise in images. For images affected by
multiplicative noise, other authors [41] introduced a speckle
noise reduction method using a threshold of the wavelet
coefficients of the log-transformed image, as shown in (6).
Since the logarithm is a homeomorphic transformation, mul-
tiplicative noise becomes additive noise; thus, the Daubechies
wavelet transform with 4 levels of decomposition was imple-
mented to remove speckle while preserving the resolution of
the original image.
Other studies have sought to improve the thresholding rule

in US images. Such is the case of the speckle-noise reduction
method reported by Zong et al. [15], which is based on
the model in (5). They studied hard and soft thresholding
methods to develop a combined approach in order to reduce
speckle and improve the features of the image by calculating
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the Wavelet Discrete Transform (DWT) formulated in [42],
which describes the j levels of f (m, n), as in (12).

W [f (m, n)]=
{(
W d
j [f (m, n)]

)d=1,2
1≤j≤J

, SJ [f (m, n)]
}

(12)

whereW d
j [f (m, n)] is a wavelet coefficient in the scale of 2

j;
f (m, n), the position; and d , the spatial orientation (d = 1
for horizontal and d = 2 for vertical). The coefficients
of approximation to the closest scale K are indicated by
SJ [f (m, n)] [9], [15].

In [43], a Bayesian formulation was adopted to efficiently
find a threshold for WS; it was based on the observation of
the wavelet coefficients in a subband of the log-transformed
images that can be modeled using the generalized Gaussian
distribution, and such threshold was estimated by minimizing
the Bayes risk function. A different approach was proposed
in [44] with the Nonlinear Multiscale Wavelet Diffusion
(NMWD), a technique that iteratively filters speckle utiliz-
ing a nonlinear diffusivity function over the wavelet coeffi-
cients [2]. When wavelet-based signal/noise discrimination
is combined with anisotropic diffusion, however, the gradi-
ent cannot always accurately separate the image from the
noise in US images because the variations caused by speckle
noise can be higher than those of the underlying image [9].
In [45], the authors presented a technique that can be applied
to different and unknown types of image noise: the Gen-
eralized Likelihood Method (GLM). The GLM employs a
preliminary detection of the wavelet coefficients that repre-
sent the features of interest in order to empirically estimate
the conditional of the coefficients of the Probability Density
Function (PDF) given the useful features and the background
noise, instead of being based on previous knowledge of the
exact distribution of the noise, which, in general, enables the
estimation of the PDF of the noise-free wavelet coefficients
based on the noisy histogram. Recently, other authors [46]
presented an algorithm that has a double filter bank structure,
which consists of two decomposition stages. The first one
involves the decomposition of third-level wavelet packets,
which establishes that the best bases are selected using Adap-
tative Wavelet Packet Transform (AWPT), referring to the
work of Esakkirajan et al. [47]. Subsequently, Singular Value
Decomposition (SVD) is applied to all the subbands, except
for the low frequencies because they are preserved as such
by the AWPT; thus, high-frequency subbands that present
high singular values are selected. During the second stage,
3 levels of the iterated Directional Filter Bank (IDFB) are
applied to each selected subband; subsequently, the modified
NeighShrink rule is applied to the resulting cells to reduce
the high-frequency noise of each additional subband. Finally,
the highest frequency subbands are reconstructed based on
the directional cells using the inverse IDFB. This is fol-
lowed by the reconstruction of the images combining the
low-frequency subbandwith its reconstructed high-frequency
counterparts.

B. SAR-BASED METHODS
Synthetic Aperture Radar (SAR) is a coherent satellite posi-
tioning radar system for image creation that uses the rela-
tive movement between the sensor and the target area [48].
Its products suffer from a degradation similar to that in US
images, and, for that reason, the methods proposed to reduce
speckle in SAR images are also applicable to US medical
images [9]. Lee’s filter [49] features an image processing
algorithm based on the considerations of the local statistics
of the images, and it has the particularity of processing each
pixel separately without waiting for its neighbor pixels to
be processed. That structure makes it naturally adequate for
parallel processing in order to improve contrast and noise
filtering. The basic assumption of said technique is that the
mean of the sample and the variance of a pixel are equal to
the local mean and the variance of all the pixels within a fixed
range that surrounds them. In addition, this technique is an
extension to treat multiplicative and additive noise filtering
based on the simple multiplicative model in [50], approach-
ing (2), and using a linear model to obtain the estimation of
the signal R̂ (13) described in [9].

R̂ (x, y) = f (x, y)+ f (x, y) {1−W (x, y)} (13)

with W (x, y) as the weighting function given by:

W (x, y) = 1− C2
n/C

2
I (14)

where CI is the coefficient of variation of the noisy image
and Cn, the coefficient of variation of the noise.

Another technique that can be applied in this case is the
filter proposed byKuan et al. [51], which is obtained by trans-
forming (2) into a formulation of additive noise dependent on
the signal, instead of the linear approximation used in Lee’s
filter. The same general form of Lee’s filter [52] is used, but
with a weighting function given by (15) and described in [9].

W (x, y) =
1− C2

n/C
2
I

1− C2
n

(15)

Frost et al. [53] proposed a filter that estimates the
noise-free image using the convolution of the image observed
with a spatially variable kernel expressed as R̂ (x, y) =
f (x, y) ∗ m (x, y)). Kernel m (x, y), centered on the pixel at
position (x0, y0), is given as:

m (x, y) = K1e
(
−kC2

n (x0,y0)|x,y|
)

(16)

where parameter K controls the attenuation rate, |x, y| repre-
sents the distance from each pixel in the window to (x0, y0),
andK1 is a normalization constant. Lopes et al. [54] expanded
the approaches of Lee and Frost et al. by adapting local het-
erogeneity and, based on theCI , dividing the image into three
different filtering regions using two additional thresholds.

V. MODERN TECHNIQUES
Some modern techniques have been proposed in recent years.
For instance, Tay et al. [55] presented a Squeeze Box Fil-
ter (SBF) to iteratively remove local extrema, which are
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assumed to be atypical data, in order to later replace them
with the local mean; thus, regions are smoothed while the
edges that define them are preserved. Their work was initially
projected over an ideal squared noise-free signal, and they
start by defining J as the original signal and J̃ = J . In order
to ensure that the filter acts on the local regions of the current
image or signal J̃ , white Gaussian noise with a little variation
is initially and regularly added, as shown in (17).

J̃ (n,m) = J̃ (n,m)+ η (n,m) (17)

Subsequently, at iteration i, the first step is to determine
the set of locations of the local maxima and minima of J̃ . The
location of the local extrema is defined by the set

E =
{
−→n |J̃i−1(

−→n ) satisfies condition 1 or 2
}

Condition 1 : J̃i−1(
−→n ) > J̃i−1(

−→m )

Condition 2 : J̃i−1(
−→n ) < J̃i−1(

−→m ) (18)

where m = n± 1 for 1D signals and −→m = (m1,m2 = (n1 ±
1, n2 ± 1)) for 2D images.
After the local extrema have been identified, each one of

them is replaced with the local mean taken from neighbor
samples without including local maxima and minima (19).
For each (n,m) ∈ E . As a result, the local variance of the
signal or image is gradually reduced, and atypical data are
eliminated.

J̃
(
−→n
)
=

1
|N |

∑
−→s ∈N

J̃i−1(
−→s ) (19)

where N are some local neighbors of −→n and |N | is the
cardinality of set N , with−→n /∈ N . And, when convergence is
achieved, ∑

∀
−→n

|J̃i−1(
−→n )− J̃i(

−→n )| < ε. (20)

If the total number of iterations is not reached at some
predefined ε > 0, the process is repeated from the addition of
Gaussian noise or the location of the local extrema, depending
on whether more low-variance zero-mean noise should be
added or not. If the total number of iterations is reached,
the filtering process stops [55], [56].

Balocco [23] proposed an automatic Speckle Reducing
Bilateral Filter (SRBF) for US images by incorporating
speckle-noise statistics into the weighting scheme based on
the Rayleigh noise distribution, which was integrated into
the framework of a basic filter by Aysal [57] and the Clas-
sical Bilateral Filter (CBF) initially proposed by Tomasi and
Manduchi [58]. The latter does not consider the nature of the
image and it works by replacing the value (or weight) of the
central pixel in the window with the weighted average of its
neighbors. The calculation of the weights depends on spatial
distances and intensity (21)-(22).

h (p) = 0−1 (p)
∫
�(p)

f (ξ )c (ξ, p) s(f (ξ ), f (p))dξ (21)

with a normalization factor of:

0 (p) =
∫
�(p)

c (ξ, p) s(f (ξ ), f (p))dξ (22)

where f is the original image; h, the filtered image; �(p),
the spatial neighbors of a generic pixel p; and ξ , the integra-
tion variable that represents the coordinate of pixels in�. The
classical framework of the bilateral filter defines c and s as
unbiased isotropic Gaussian functions.

c (ξ, p) = exp
(
−
‖p− ξ‖
2σ 2

c

)
(23)

s (f (ξ ), f (p)) = exp
(
−
(f (p)− f (ξ ))2

2σ 2
s

)
(24)

where σc represents the Gaussian standard deviation in the
spatial support and σs is the standard deviation in the range
domain. These two parameters control the weight decrease
in the spatial domain and intensity, respectively, which indi-
cates that the selection of such parameters is important to
eliminate noise from images, considering that high values
produce an excessive smoothing of the image, blurring fine
structures and edges in the image, while low values produce
poor noise elimination results [5]. Therefore, in (23), they
spatially weight the Euclidian distance between p and ξ ,
while in (24) they work in the intensity domain [23], [58].
Nevertheless, regarding US images, it is not valid to assume
a zero mean in the noise statistics, which is typical of the
classical bilateral filter and anisotropic filtering frameworks.
For that reason, the Bilateral Filter (BF) has been expanded
to US images [23], integrating the statistics of speckle noise
into the filter and redesigning the function s as the probability
that f (p) belongs to the Rayleigh distribution (3) that gener-
ated f (ξ ). Given a local neighborhood around p characterized
by a Rayleigh distribution RLp(α), the probability of the
intensity of the central pixel f (p) that belongs to RLx(α) can
be expressed as

p[f (p) ∈ RLξ (α)] =
f (p)

α̂2ξ
exp

(
−
f (p)2

2α̂2ξ

)
. (25)

In [23], α̂ is approximated by the value of pixel f (ξ ), and
s (f (ξ ), f (p)) is established the same as p[f (p) ∈ RLξ (α)].
This is because the BF calculates function s in all the pixels in
the spatial neighborhood, and the errors of the Rayleigh esti-
mation are averaged converging to the local MLE. Therefore,
when the central pixel in a neighborhood x and its neighbors
belong to a similar Rayleigh distribution, function s produces
high values and promotes smoothing. Otherwise, s produces a
low value when there is a contour, thus preserving the edges.

The same as the BF, some techniques propose to adapt
the Non-Local Means (NLM) method to the speckle noise
model. Although the BF and the methods above are based
on the paradigm of local adaptive recovery [59], in which
local pixels are compared, the NLM adopts a new nonlo-
cal recovery paradigm based on patches and proposed by
Buades et al. [60]. According to the latter, the pixels in the
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FIGURE 1. a) Classical NLM filter pixel, b) Blockwise NLM filter [62].

image and the weight of each pixel are averaged based on
the distance of the surrounding patches (26), thus replacing
the local comparison of pixels with the non-local compar-
ison of patches [61]. This paradigm enables the NLM to
achieve a more robust noise elimination performance than the
BF [58]. For that reason, different authors [61] proposed the
Optimized Bayesian NLM (OBNLM), which is an adapta-
tion that employs a Bayesian formulation to define a Pear-
son’s distance in order to compare patches of the damaged
image with speckle noise and makes the most of the block-
wise implementation of the NLM method for the algorithm
acceleration.

NL(f )(xi) =
∑

xj∈�dim

W(xi, xj)f (xj) (26)

where f = (f (xi))xi∈�dim is initially considered as the noisy
image defined over a limited domain �dim

⊂ R+ (which
is usually a rectangle of a �dim

| size); f (xi) ∈ R+ is the
intensity of the noise observed in pixelxi ∈ �dim; dim,
the dimensions of the image (dim = 2 or dim = 3 for 2D
and 3D, respectively); and W(xi, xj), the weight assigned to
value f (xj) to restore pixel (xi), i.e., the weight evaluates the
similarity between the intensities of the local neighborhoods
(patches) Ni and Nj centered at pixels xi and xj, such that
W(xi, xj) ∈ [0, 1] and

∑
xj∈�dim W(xi, xj) = 1 (Figure 1).

In the classical method, for practical and computational
reasons, the number of pixels taken into account in the
weighted average is restricted to a neighborhood and not the
entire image, i.e., a ‘‘search volume’’ Vi of a size (2M+1)dim

centered at the current pixel xi. For each pixel xj ∈ Vi,
the Euclidian distance is calculated with Gaussian weighting
‖·‖

2
2,a between the two patches of image f(Nj) and f(Ni),

as seen in [60], where the central pixels in the patch con-
tribute more to the distance than pixels in the periphery.
This measurement is the traditional L2-norm convoluted with
a Gaussian kernel of standard deviation a. For that reason,
the weights in (26) are calculated as follows.

W(xi, xj) =
1
Zi
exp−

∥∥f(Ni)− f(Nj)
∥∥2
2,a

h2
(27)

where Zi is a normalization constant that ensures that∑
xj∈�dim W(xi, xj) = 1, and h acts as a smoothed parameter

that controls the decrease in the exponential function.
However, when an L2-norm between two patches is consid-

ered, a white Gaussian additive noise model is assumed. For
that reason, some authors have proposed to focus on multi-
plicative speckle noise [61]. This approach is initially derived
from a blockwise NLM formulation proposed in [62], (28),
to reduce the computational load.

NL(u)(Bi) =
∑

Bj∈1ik

W(Bi,Bj)u(Bj) withW(Bi,Bj)

=
1
Zi
exp−

∥∥f(Bik )− f(Bj)
∥∥2
2,a

h2
(28)

where f(Bi) = (f 1Bi, . . . , f PBi)T is a patch of image that
gathers the intensities of block (Bi), and

∥∥f(Bik )− f(Bj)
∥∥ =∑P

p=1(f
p(Bi)− f p(Bj))2.

Afterward, said authors equal the Bayesian formulation
to the estimator of conventional measures, where estimator
v̂(Bik )) of block Bik can be defined as

v̂(Bik ) =

∑|1ik
J=1 f(Bik )p(f(Bik )|f(Bj))∑|1ik

J=1 p(f(Bik )|f(Bj))
(29)

where p(f(Bik )|f(Bj)) denotes the Probability Density Func-
tion (PDF) of f(Bik ) conditioned to f(Bj). The probability,
in the case of a white Gaussian additive noise p(f(Bik )|f(Bj)),

is proportional to e−
∥∥f(Bik )−f(Bj)∥∥22,a/h2 .

To study multiplicative noise, e.g., speckle, models such as
those presented in Section 2.1 should be taken into account.
However, the noise model used for OBNLM is different
because, when the complex formation process of US images
is considered, some of the factors mentioned in [61] come
to light and tend to demonstrate that the Rayleigh model
used for Radio Frequency signals is not adequate to ana-
lyze log-compressed US images. Regardless, in the wavelet
domain for noise elimination [16], [63], [64], multiplica-
tive speckle noise is supposedly transformed into additive
Gaussian noise employing log-compression. Recent studies
into US images also demonstrate that the distribution of
noise is satisfactorily approximated through a gamma distri-
bution [65] or a Fisher-Tippett distribution [66]. Therefore,
we adopted Loupas noise model [67], which has been suc-
cessfully used in many studies [68]–[70], because it is more
flexible and less restrictive than the usual Radio Frequency
model; furthermore, it can capture reliable image statistics
since factor γ depends on the US devices and the addi-
tional processing related to image formation. Furthermore,
Loupas et al. demonstrated that, with γ = 0.5, the model fits
the data better than multiplicative or Rayleigh models.

u(x) = v(x)+ vγ (x)η(x) (30)

where v(x) is the original image; u(x), the observed image;
and η(x) ∼ N (0, σ 2), zero-mean Gaussian noise.
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Then, considering the Bayesian formulation (29) and
Loupas noise model (30), assuming u(x)v(x) ∼ N (v(x),
v(x)2γ σ 2) for each pixel, Pearson’s distance is introduced to
compare the patches in the image.

dp(u(Bi),u(Bj)) =
P∑
p=1

(up(Bi)− up(Bj))2

(up)2γ (Bj)
(31)

Thus, dp(u(Bi),u(Bj)) is defined as Pearson’s distance
with γ = 0.5, which substitutes the usual L2-norm. How-
ever, the OBNLM filter presents certain difficulties because
it can effectively remove the noise from the images that
contain fine structural details, but it produces an excessive
smoothing of the edges and the textures in the picture [5].
Other authors [71] presented a measurement similar to the
OBNLM within the same Bayesian framework they used
to define the Euclidian distance implementing the model in
Equation (30). Their purpose was to iteratively refine weights
W i(x, y) in a low-dimension subspace thorough a Principal
Component Analysis (PCA) in order to improve accuracy and
reduce computational complexity. Nevertheless, they were
not able to preserve low-contrast features because they are
usually very blurry due to the great similarity between the
patches surrounding said features and the patch centered at
the speckle noise. Furthermore, finding similar pixels over
the entire US image takes considerable time [56].

VI. HYBRID TECHNIQUES (HT)
Some authors have proposed the integration of several tech-
niques to improve speckle-noise reduction in US images.
Such integration processes depend entirely on the type of
techniques selected to create the hybrid method.

On the one hand, a hybrid algorithm as a sequential process
that comprises three noniterative stages is proposed in [5].
During the first stage, a Guided Filter (GF) is applied to
eliminate the effect of speckle noise, which was initially
proposed by He et al. [72] to exploit local second-order statis-
tics. Therefore, Choi and Jeong [73] decided to efficiently
use the advantages of the GF focused on speckle reduction
in a wavelet-based algorithm. The main assumption of the
GF [72] is that guide I and filter output Q are related through
a local linear model; as a consequence, in [5], Q is assumed
as a linear transform of I in a window ωk centered at pixel k .

Qi = ak fi + bk . ∀i ∈ ωk (32)

where (ak , bk ) are some linear coefficients assumed to be
constant in ωk . With this linear model, the objective is to
ensure that Q has an edge only if f has an edge because
∇Q = a∇f . Hence, to determine the linear coefficients,
we should find a solution to (32) that minimizes the difference
between Q and the filter input p, more specifically, the cost
function (33) [5].

E(ak , bk ) =
∑
i∈ωk

(ak fi + bk − pi)2 + εa2k (33)

where ε is a regularization parameter that prevents ak from
being excessively large.

ak =
1
|ω|

∑
i∈ωk (fipi − µkpk )

σ 2
k + ε

(34)

bk = pk − µkak (35)

where µk and σ 2
k represent the mean and variance of f in ωk ,

respectively; |ω| is the number of pixels inωk ; and pk denotes
the mean of p in ωk , given as pk =

1
|ω|

∑
i∈ωk pi. Thus,

(ak , bk ) are calculated for all the patches of ωk in the image
and the filter output, as shown in (36).

Qi =
1
|ω|

∑
k:i∈ωk

ak fi + bk = aifi + bi (36)

with ai = 1
|ω|

∑
k∈ωi ak and bi =

1
|ω|

∑
k∈ωi bk .

In the second stage, a Speckle Reducing Bilateral Fil-
ter (SRBF) is applied over the image pre-filtered by the GF
using weights based on the distance of the squared chord,
which employs the speckle noise model in (30) with γ = 0.5.
In the last stage, to preserve the edges and details of the fine
structures, this method proposes a filter that consists in NLM
with weights W(xi, xj) calculated through the Rotationally
Invariant Bilateral (RIB) similarity measure reported in [74].
The objective is to prevent patches with similar structures
to the reference patch, but with different orientations, from
influencing the average; for that reason, in [5], W(xi, xj) for
2D images is defined as follows.

WRIB(xi, xj)

= exp

−1
2

(
u (Ni)− u

(
Nj
))2
+ 2

(
µNi − µNj

)2
r2

 (37)

whereµNi andµNj represent the mean of the reference patch
and the patch that is processed within the search area �dim,
respectively, and ‘‘r’’ is the smoothing parameter. The local
means µNi and µNj are calculated once for the entire image
using small neighborhoods, approximately 5 × 5, to avoid
excessive smoothing of singular structures in the image, and
they are stored in a matrix the same size as the image.
Moreover, the NLM filter with RIB (RIBNLM) presents low
complexity and produces an adequate weighting of patches
with similar structures but different orientations in relation to
the reference patch.

On the other hand, a hybrid method that combines local
statistics with the NLM filter is proposed in [75]. Such
method consists in estimating noise using local statistics over
local patches to change the way the coefficients of the weights
in the NLM filter are calculated because the patch in the
noisy image is not directly evaluated as patches are first
smoothed by local statistics. The procedure of said method
starts with the estimation of the noise-free image utilizing
the Local Linear Minimal Mean-Squared Error (LLMMSE)
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in the following way [76].

v̂LLMMSE (x) = E [v (x)]+
σ 2
v (x)
σ 2
u (x)

[u (x)− E (u (x))] (38)

Taking into account Loupas model (30), v̂LLMMSE (x) is the
estimation of v (x); σ 2

v (x) and σ
2
u (x) are the variances of

v (x) and u (x), respectively; and E [v (x)] and E [u (x)] are
the expectations of v (x) and u (x), respectively.

Since η(x) is a zero-mean Gaussian noise in Equation (30),
we get

E (u (x)) = E [v (x)] (39)

Consequently, variance σ 2
u (x) can be defined as

σ 2
u (x) = E

(
u2 (x)

)
− E (u (x))2

= E
(
v (x)+ vγ (x) η (x)

)2
− E (v (x))2

= σ 2
v (x) = (x)+ σ

2
η (x)E

(
v2 (x)2γ

)
(40)

where σ 2
η (x) is the variance of η(x).

Additionally, in [75], v̂LLMMSE (x)) is revised as

v̂LLMMSE (x)

= E (u (x))+
σ 2
u (x)− σ

2
η (x)E (u(x))

σ 2
u (x)

[u (x)− E (u (x))]

(41)

where γ = 0.5.

v̂LLMMSE (x)

= E (u (x))+
σ 2
u (x)− σ

2
η (x)E (u(x))

2(
1+ σ 2

η (x)
)
σ 2
u (x)

[u (x)− E (u (x))]

(42)

where γ = 1 and E (u (x)) with σ 2
u (x) are approximated

by the local mean. For further information in this regard,
see [75].

Afterward, the coefficients of the weights and the constant
normalization are modified as follows.

W ′(xi, xj)

=
1
Zi

exp

−∥∥v̂LLMMSE (Ni)− v̂LLMMSE
(
Nj
)∥∥2

2,a

h2

 (43)

Z ′

=

∑
xj∈�dim

exp

−∥∥v̂LLMMSE (Ni)− v̂LLMMSE
(
Nj
)∥∥2

2,a

h2


(44)

where h is the smoothing parameter. Therefore, NLM inte-
grated with Local Statistics (LS) is called NLMLS:

NLMLS(ui) =
∑

xj∈�dim

W ′(xi, xj)u(xj) (45)

FIGURE 2. Diagram of the pixel neighborhood. A) 45◦ X-shaped
neighborhood, B) 90◦ +-shaped neighborhood.

FIGURE 3. Wavelet decomposition into the 4 subbands [78], [80].

A hybrid model is also presented in [77] for reducing
speckle noise. However, it is based on first-level DWT com-
bined with a hybrid filter of median and SRAD to analyze
images based on the 4 subbands produced by the wavelet
decomposition (LL, LH, HL, and HH) [78], as can be
seen in Figure 3. In said figure, LL is filtered by SRAD,
which preserves the information of the texture. In the other
three high-frequency subbands, noise is extracted through the
median hybrid filter [79]. This involves an operation divided
into three steps over a 5×5 neighborhood, in which pixels
are classified into two groups, as shown in 2, to examine the
45◦ and 90◦ neighborhoods, including their central pixel. The
three steps are described below.

1) Calculate the median (M ) of the pixels marked with
R (MR) in (46) including the central pixel C in a
5×5 neighborhood.

D ∗ R ∗ D
∗ D R D ∗

R R C R R
∗ D R D ∗

D ∗ R ∗ D

 (46)

2) Calculate the M of the pixels marked with D (MD)
in (46), taking the central pixel into account.

3) Lastly, in (47), M is calculated with the values of MR
and MD plus C .

M1 = median(MR,MC,C) (47)

where M1 is the filter output and the new value of the
central pixel.

After the four filtered subbands have been obtained,
the image is reconstructed by calculating the inverse DWT

VOLUME 8, 2020 15991



C. A. Duarte-Salazar et al.: Speckle Noise Reduction in US Images for Improving the Metrological Evaluation

and subjecting it to a total variation (TV ) filter [81], [82]
to achieve better noise reduction. The TV of a signal is the
measurement of how much the signal has changed within the
range of values of its data. Specifically, the TV of N points in
a signal F(n), 1 ≤ n ≤ N is defined as follows.

TV (F) =
N∑
n=2

|F(n)− F(n− 1)| (48)

Given an input signal Fn, the objective of this method is
to find an approximated signal Gn, which represents a TV
lower than, but close to, xn; and one of the measurements of
proximity is the sum of squared errors (49).

E(F,G) =
1
2

∑
n
(Fn − Gn)2 (49)

As a consequence, the TV approach eliminates the noise
by minimizing the discrete function (50) over signal Gn.

E(F,G)+ λTV (G) (50)

where parameter λ is a positive value that specifies the fidelity
weight that controls the amount of noise reduction.

By differentiating the functionality above from Gn, in the
original approach a corresponding Lagrangian-Eulerian
equation is derived and numerically integrated with the origi-
nal signal Fn as an initial condition. Depending on the behav-
ior of the problem, different optimization techniques can be
used to minimize and find the solution to Gn; for example,
in a convex function [82].

VII. MACHINE LEARNING-BASED TECHNIQUES
Recently, several authors have addressed the problem of
speckle-noise reduction in US images from the field of
machine learning, using new concepts of soft metrology to
develop methods that enable its implementation in low-cost
(portable) US equipment and real-time applications. Here we
reviewmultiple studies that have responded to that challenge.

In [83], the authors presented a method with multi-
resolution Convolutional Neural Networks (CNN) within
the framework of homomorphic filtering, which considers
speckle noise to be multiplicative; therefore, they imple-
mented a logarithmic transformation of the data followed by
the exponentiation of the results, as explained in [84]. First,
they proposed an end-to-endCNNarchitecture for speckle fil-
tering in US images, thus demonstrating that their results are
significantly close to those of state-of-the-art filtering algo-
rithms, working×4 times faster on a GPU and×8-260 faster
on a CPU. The training of the CNNwas focused on converting
regular US images into pictures similar to those of Computed
Tomography (CT), which have better resolution and contrast
while preserving all the relevant anatomical and pathological
elements. This process was based on the use of a dataset of
in-phase and quadrature (IQ) images, derived from radiofre-
quency (RF) pictures through frequency demodulation. It is
important to note that these pictures were obtained using
a fast US data simulation scheme [85] for which patches
extracted from The Cancer Imaging Archive (TCIA) were

employed [86]. Subsequently, the IQ data were applied some
conventional speckle filters, such as TV and NLM, to use
them as reference points when the network was trained and
thus achieve a speckle reduction similar to said filters. Nev-
ertheless, the main focus was to demonstrate the capacity of
CNNs to reconstruct the quality of a CT based on US images,
directly using patches from images in the TCIA instead of
already-filtered pictures for the training. However, in prac-
tice, paired CT-US data are difficult to obtain, and a possi-
ble solution would be the development of a non-supervised/
semi-supervised training framework.

In contrast, other authors [87] adopted a Deep Learning
approach. They proposed a CNN architecture with mod-
ules composed of a deep residual network (ResNet) so that
it could learn how to eliminate speckle using the results
of classical filtering methods, thus avoiding the limiting
task of fitting the parameters they require in accordance
with the input datum. Their method used 380 real US
images of livers collected from sources such as Medanta
Hospital (in Gurgaon, India) and an open-access database
(http://www.ultrasoundcases.info/Cases-Home.aspx). The
images were filtered applying four different techniques:
DPAD, OBNLM, Edge Aware Geometric Filtering
(EAGF) [88], and Anisotropic Diffusion with Memory based
on Speckle Statistics (ADMSS) [89]. As a result, they pre-
sented a first approach using the results of the 4 filters
as ground truth, comparing them with the output of the
CNN model in the training process, and employing the cost
function of the Multiscale Structural Similarity (MS-SSIM)
index [90], where the total loss was calculated as the sum
of the individual losses. In their second approach, they
followed the same process but, in terms of ground truths,
they used the combined results of the filters concerning
ADMSS to produce a better output. In order to train the
CNNmodel, in the last experiment (compared to the previous
one), they used the training dataset to generate samples of 4
different sizes: 32×32, 64×64, 96×96, and 128×128. They
determined that, in a ResNet of 3×3 convolutional layers,
the best performance was achieved with 64×64 samples and,
in the case of 5×5 convolutional layers, with a 128×128 size.

In [91], the authors proposed an architecture based on
ResNet modules as a Despeckling Residual Neural Net-
work (DRNN) over US images to be used within the frame-
work of the Generative Adversarial Network (GAN) as the
generator model (G); in the case of the discriminator (D),
they employed a CNN. The training data came from two sets
of actual US images of livers of healthy subjects obtained
with different equipment; one of the sets contains low-quality
high-speckle (LQHS) images, while the other is comprised
of images with high-contrast and much less speckle (HCLS).
The DRNN, in the framework of the GAN, is trained in two
steps. The first is for pretrainingG andD using structural cost
functions given in (51) and (52) along with synthetic data; for
that purpose, they started with the HCLS set in order to simu-
late the speckle noise over such images (applying the method
reported in [92]) and provide a reference point in the first
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training process. In the second step, the two networks in the
GAN framework have the same input data. To train D, they
used the same loss function (52); however, the loss function
to train G was combined with the discriminating model and
trained with real data for speckle reduction. This combination
occurs when the adversarial cost function imposed by D
is combined with the structural cost function (53), as the
latter acts as a regulator and it helps to produce the expected
results.

L (θ) = L1 (θ)+ LMs−SSIM (θ) (51)

LD (φ) = Ex
[
− log (D (y;φ))

]
+Ex[− log(1− D(G(x; θ );φ))] (52)

where L1 (θ) is the standard cost function `1; LMS−SSIM (θ) is
the MS-SSIM function; and θ and φ represent the parameters
of the G and D models, respectively.

L (θ) = Ex
[
− log (D (G (x; θ) ;φ))

]
+ λL (θ) (53)

The first term in (53) is the adversarial cost function, E[·]
represents the expectation, and D(·) and G(·) are the out-
puts of the discriminant and generation models, respectively,
according to the input parameters. In the presence of that cost,
parameter θ was optimized so that the generated image is
close to HCLS images; and, in order to avoid overestimation
of the features learned by D to differentiate high-quality
images, the structural cost function L(θ ) is accompanied
by parameter λ, which was used with a value of 1 in this
study.

Other studies have focused on enhancing US images
obtained by transmitting a single wave plane (WP) as they
are low quality, in terms of resolution and contrast, compared
to those obtained by applying the classical approach that
uses 31 WPs. The objective of these studies is to reduce
the cost and increase the speed of US image construction,
which is even more necessary in ultrafast US imaging meth-
ods. Said methods have attracted the interest of the scien-
tific community due to their high rate per frame, which has
enabled a wide range of diagnostic modalities, such as elas-
tography and functional US imaging [93]. In [94] and [95],
a method based on CNN was proposed for reconstructing
images from a low- to a high-quality space. Specifically
in [94], the authors demonstrated the capacity of a CNN to
reconstruct a high-quality image from 3 WPs with simulated
and real datasets. Furthermore, an architecture inspired by
the popular U-Net, which consists in a residual CNN with
a coder-decoder structure, has also been reported [95]. Such
a network was trained with synthetic images sourced from
the PICMUS dataset in order to improve the quality of the
images reconstructed from a single WP, thus enhancing the
performance of ultrafast US imaging.

VIII. QUALITY METRICS
The set of quality metrics commonly implemented in metro-
logical evaluations [96] contains FR measures that use

a ground truth to produce the comparison; they include
Pratt’s Figure of Merit (FoM), Structural Similarity (SSIM),
and Mean Squared Error (MSE). Nevertheless, in some stud-
ies, such as [9], they have been proposed along with Contrast-
to-Noise Ratio (CNR) and Signal-to-Noise Ratio (SNRA) to
more thoroughly calculate and determine the effect filtering
has on the quality of US images. The first three metrics
above have a comparative nature, that is, between two images.
In the case of simulated images, each contaminated picture,
after being filtered, is compared with the ideal (noise-free)
reference image. In the case of real images, the metrics are
applied using the non-filtered or original image as a reference.
In contrast, the CNR metric evaluates a single image, which
involves its calculation in the filtered image as well as in the
reference to use the difference between those two values to
measure the change caused by the filter. The SNRA metric is
used to measure noise reduction due to filtering.

Further, other authors confirmed the significant statisti-
cal relationship there is between the metric FoM and the
evaluation, by experts, of the general quality of clinical
echocardiographic videos [96]. They also found a signifi-
cant relationship between the Edge Region MSE and the
clarity of the critical details, as perceived by experts. As a
result, successful filtering is not only based on the crite-
rion of speckle-noise removal, particularly in images used
for medical diagnosis, as reported by other authors [9] who
indicate that the application of objective metrics (such as
FoM and Edge MSE) can quantify other aspects of the fil-
tering process (e.g., measuring the similarity of the edges
between the filtered and the reference image). For that reason,
effective filtering is closely related to the performance that
can be achieved by automatic endocardium edge detection
techniques in US images, thus enabling the classification of
noise fluctuation as edge points [97]. CNR values show how
good the methods of the filters are at increasing the contrast
compared to the reference image. Finally, the measurements
with low SSIM values may indicate a structural difference
concerning the reference image, although the noise levels in
both can be similar.

It is also essential to highlight the role that NR metrics can
play in quality image evaluation because they do not require
an original image to be compared to, which can facilitate this
measurement process since, in many problems, the ground
truth is not available, as it is common in medical imaging
applications. However, in [98], the authors demonstrate the
existence of a relationship between FR distortion measure-
ments and NR perceptual quality employing a mathematical
analysis. They establish that such measurements are not in
agreement, that is, the lower the distortion of an algorithm,
the further its distribution should be from the statistics of
natural scenes, thus generating a degraded perceptual quality.
They empirically demonstrate this compensation in many
popular distortion measurements, including those that were
considered well correlated with human perception. There-
fore, in that work, they conclude that any distortion mea-
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surement on its own is not adequate to evaluate image
restoration methods. For that reason, they propose a method-
ology using NR and FR metrics to graph each algorithm
in a perception-distortion plane to produce a comparison
that provides more information about restoration or filtering
methods.

A. FOM
This metric measures the displacement of the edge pixels
between each filtered image ffil and the reference image fref ,
establishing amap of edges for each image [9], [99]. The FoM
is defined as:

FOM
(
ffil, fref

)
=

1
max(NFilt ,Nref )

N̂∑
i=1

1

1+ d2i α
(54)

where Nfilt and Nref are the number of edge pixels in edge
maps ffil and fref , respectively; α is a constant (generally
established as 1/9); and di is the Euclidian distance of the i-th
pixel between the filtered edge map and the reference edge
map. The FoM can range between 0 and 1, where 1 represents
a perfect preservation of the edge. Themap is calculated using
the most common Canny edge detector [100].

B. SSIM
The SSIM is used to evaluate the preservation of the structural
information during the filtering process [101], and it is given
by

SSIM =
1
M

∑ (2µ1 + C1)(2σ12 + C2)

(µ2
1 + µ

2
2 + C1)(σ 2

1 + σ
2
2 + C2)

(55)

where µ1, µ2 and σ1, σ2 are the mean and the standard devi-
ation of the images to be compared, and σ12 is the covariance
between them. Such values are calculated using local statis-
tics within a total of M windows, and their average is taken
in (55). Constants C1,C2 � 1 ensure stability [101], and,
in [9], they establish the size of M as 32. The values of SSIM
range from 0 to 1, where 1 represents full structural similarity
between images.

C. MSE
This metric measures the absolute averaged difference
between two images as

MSE(ffil, forig) =
1
XY

Y∑
i=1

X∑
j=1

(ffil(x, y)− forig(x, y))2 (56)

where the images have the same size (X ×Y ). Border Region
MSE measures the averaged difference in the border areas
considering only the pixels close to the edges of the image
in (56). Several edge detection approaches are available, such
as [102]–[106]. Nevertheless, this metric does not count spu-
rious edges in images; instead, it considers all the edges that
are sufficiently significant to be found by the implemented
edge detector [9].

D. CNR
The CNR quantifies the contrast between an area of interest
and the background, calculated as (57) [71]. Notwithstand-
ing, in [107], the authors present five types of CNR met-
rics because their definitions include some measurement of
the activation signal intensity, which can be differentiated
depending on the activation signal amplitude and the standard
deviation of the activation as the signal of interest.

CNR =
µ1 − µ2√
σ 2
1 + σ

2
2

(57)

whereµ1 and σ 2
1 are the mean and variance of the intensity of

the pixels in the region of interest, and µ2 with σ 2
2 represent

the mean and the variance of the intensity of the pixels in a
region of the background of the image the same size as the
region of interest.

E. SNRA
In [107], [108], the level of speckle noise is calculated as the
relationship between the mean and the standard deviation of
the amplitude values.

SNRA =
S
σN

(58)

where S and σN represent the mean of the signal and the
standard deviation of noise, respectively.

F. NR QUALITY MEASUREMENTS
Perceptual quality is commonly evaluated in an empirical
way using the mean of scores assigned by subjects who
may be specialists in the field [109], [110]. However, such
quality can also be assessed by algorithms. In particular,
NRmeasurements quantify the perceptual quality of an image
without depending on a reference image. Such measurements
are commonly based on an estimated deviation from static
natural images, as in [111]–[113]. In the latter, a perceptual
quality index is proposed based on the Kullback-Leibler (KL)
divergence between the distribution of the wavelet coeffi-
cients of x̂ and those of the natural scenes. This idea was
further expanded by popularmethods such asDIIVINE [109],
BRISQUE [110], BLIIND-II [114], and NIQE [115], which
quantify perceptual quality employing several deviation mea-
surements based on statistics of natural images in the spatial,
wavelet, and cosine (DCT) domain [98].

Some studies [116]–[118] have already implemented sev-
eral measures for speckle reduction applications. They have
adopted what has been called blind assessment metrics
(BAM), which include beta metric (β), speckle suppression
index (SSI), speckle suppression, and mean preservation
index (SMPI) [117]. The beta metric (β), according to [118],
allows us to quantify the edge preservation capabilities of the
despeckling algorithm, given as

β =

∑
R,C (1fo −1fo)(1fd −1fd )√∑
R,C (1fo −1fo)2(1fd −1fd )2

(59)
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TABLE 1. Advantages and disadvantages of the categories considered in this work.

where 1fo and 1fd represent high-pass filtered versions of
the original and filtered images, respectively; and 1fo and
1fd are the means of 1fo and 1fd , respectively.

In the case of SSI,
√
Var(f (x))/Mean(f (x)) is considered

a measurement of speckle noise intensity over homogeneous

areas; therefore, normalizing it to the original image f (x), it is
defined as

SSI =

√
Var (̂g)

Mean(̂g)
·
Mean(f (x)
√
Var(f (x))

. (60)
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When SSI< 1.0, speckle noise is suppressed, which indi-
cates that the lower the SSI, the greater the filter suppression
capacity. In the cases where the filter overestimates the mean
value, SSI is not reliable; therefore, SMPI is used. The equa-
tion is given as in [116].

SMPI = Q ·
√
Var (̂g)

√
Var(f (x))

(61)

And Q is calculated as follows:

Q = 1+ |mean(f (x))− mean(̂g)| (62)

where lower values of SMPI indicate better performance of
the filter in terms of mean preservation and noise reduction.

IX. CONCLUSION
This paper presented an overview of speckle noise filtering
methods implemented in US images for improving the accu-
racy of their results, which has an impact on legal metrology
for healthcare services focused on patient safety. The most
common approaches in the field were described along with
a group of new techniques and hybrid methods that have
become very relevant in speckle filtering and offer new alter-
natives for solving common problems in US images.

Speckle filtering is usually neglected in subsequent stages
(e.g., segmentation or detection of regions of interest)
because it tends to smooth important features such as geome-
tries and textures. Therefore, this study technically described
a total of 27 different speckle filtering methods in US
images, which were classified into dynamical analysis meth-
ods, time-frequency analyses, newmethods, HT, andmachine
learning-based techniques. Moreover, five FR distortion met-
rics, common in filter evaluation processes, were detailed
along with a methodology of compensation between FR and
NR metrics, which can generate more certainty in the clas-
sification of the filters by taking into account information of
the behavior in terms of perceptual quality, provided by the
NR metrics.

It is noteworthy that Speckle filtering has different trends
according to the groups in which it is analyzed, for exam-
ple, in the diffusion group they have focused on looking
for the function of diffusion coefficients that best allow the
identification of edges, in order to separate regions that can
be filtered from those that cannot (edges). Wavelet-based
techniques focus on improving theway for finding a threshold
that allows separating the coefficients that belong to the noise,
in order for them to be filtered or eliminated. In the case
of modern techniques, they seek to adapt classic methods
of filtering images in general to the reduction of Speckle
noise, by taking into account their multiplicative behavior and
randomness, whose origin is due to the way that US images
are generated. On the other hand, it should be noted that the
Speckle reduction trend can continue in two fields: Hybrid
Techniques andMachine Learning. On one hand, HT provide
accurate results when Speckle is reduced, preserving impor-
tant information, and these are based on identifying those
methods that are compatible and a specific combination that

exploits the advantages of each method used. However, such
techniques are still based on the combination of classic and
new techniques, which involves a manual fitting of parame-
ters, as the response of such filters fluctuates depending on
the type of input. Thus, the results of their implementation
become subjective. In the case of machine learning-based
techniques, these offer advantages compared to the manual
fitting in other methods; nevertheless, they also present lim-
itations as their training requires clean data that adequately
represents the problem, which is difficult to generate in real
situations and even more so for clinical cases.

The observations above and Table 1 can guide future
research on speckle noise filtering in order to improve the
detection of regions of interest and develop methodolo-
gies that offer better solutions to the problems previously
described. Furthermore, the filter evaluation process should
be enhanced, as more robust measurements of NR perceptual
quality are required for real situations in which the ground
truth is not available, such as in clinical cases. As a result,
filter performance can be evaluated without any bias because,
in most cases, it is calculated with FR distortion measure-
ments and assessed with respect to the noisy image.
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