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ABSTRACT Computing the minimum initial marking (MIM) in labeled Petri nets (PN) while considering
a sequence of labels constitutes a difficult problem. The existing solutions of such a problem suffer from
diverse limitations. In this paper, we proposed a new approach to automatically compute the MIM in labeled
PNs in a timely fashion. We adopted a genetic-based algorithm to model the MIM problem. The choice
of such an algorithm is justified by the nature of the MIM process which belongs to the NP-hard class.
We experimentally showed the effectiveness of our approach and empirically studied the initial marking
quality in particular.

INDEX TERMS Labeled Petri nets, minimum initial marking, label sequence, genetic algorithms, optimiza-
tion.

I. INTRODUCTION
Labeled Petri Nets (PNs) have been proposed as a funda-
mental modeling method for discrete event (states oriented)
systems in a wide variety of applications such as manufactur-
ing systems, process-based systems, and so on [1], [2]. One
of the major studied problems in labeled PNs concerns the
minimum Initial Marking (IM) computation while consider-
ing a given label sequence [2], [3]. This estimation is carried
out by computing the Firing Sequence (FS) of a well-known
length, while ensuring a minimum use of resources. The
required FS computation process is interesting as it is used in
different domains and applications (manufacturing systems,
services-based systems, etc.). However, the process of min-
imum IM estimation in Labeled PNs is a difficult and an
NP-hard problem [2].

The minimum IM problem in (labeled) PNs has been
receiving a particular attention in the recent decades. Differ-
ent approaches have been proposed [2], [4]–[6]. While being
interesting, these approaches have different limitations and
do not go further in ensuring a minimal use of resources. The
main objective of this paper is to develop a new approach
to automatically compute the minimum IM in labeled PNs
in a timely fashion. We adopt a Genetic Algorithm (GA)
to address the minimum IM problem. In fact, the GA is a
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powerful tool to deal with combinatorial problems, which
is successfully applied in many other research domains
(services compositions, manufacturing systems, cloud
resource allocation, and so on.). This success motivates our
choice of GA to solve theminimum IMcomputation problem,
which has similar properties in terms of large scale and
problem complexity.

The rest of this paper is organized as follows: In Section II,
we present a review of the state of the art and the basic
concepts of the labeled PN. In Section III describes the mini-
mum IM estimation problem in labeled PNs and its modeling
process using genetic algorithms. The empirical studies of the
proposed approach is provided in Section IV. In particular,
we accentuate the benefits of our approach compared to the
related work. Section V concludes this paper and presents
some future works.

II. BACKGROUND AND RELATED WORK
In this section, we introduce first an overview of genetic
algorithms (GA). Then, we present a summary of the related
work. Finally, we describe the basic concept of the LPN that
will be used throughout the paper.

A. OVERVIEW OF GENETIC ALGORITHMS
Genetic algorithms (GA) are adaptive, heuristic-based search
methods [7], [8]. They are usually used to solve NP-hard
optimization problems like ours. As stated in [8], the imple-
mentation of GA basically requires the following elements:
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• Data encoding: Through this step, each element in the
search space defined by specific data structure, called a
genotype or chromosome (genomes) [7]. We distinguish
several encoding methods, such as binary, integer, real.
The choice of encoding is tightly related to the problem
to be solved.

• Generation of the initial population: this step consists
of generating of an initial set of individuals to evolve at
random according to a uniform distribution.

• Defining of evaluation function: The evaluation function
(fitness function) assigns a quality value for each indi-
vidual in the population. This value allows to measure
the performance of each individual to assess its quality
and if it is well adapted to its environment [8].

• Choice of genetic operators: This is the set of oper-
ation to be applied to individuals: selection, crossing
and mutation. The first operator allows select individ-
uals that will be merged to produce new individuals.
The mutation makes it possible to change a genome of
individuals with a certain probability. The goal of such a
change is to circumvent the problem of local optimums
and ensure the diversity of the population [8].

The power of GA lies in its randomness. Indeed, the GA
execution start with generating an initial population. This
population consists of a set of chromosomes where each one
of them is evaluated throughout fitness function. The best
individuals in this population are selected to undergo genetic
operations (crosses, mutations) and a new population of solu-
tions is produced for the next generation. This process con-
tinues generation after generation, until the stopping criterion
is reached, often the maximum number of generations [7].

B. RELATED WORK
Several approaches are proposed to deal with the mini-
mum IM (initial marking) computation problem in Petri
nets. The work presented in [9]–[11] introduces a technique
for identifying the markings set that are compliant with a
sequence of labels. This technique considers the case inwhich
non-determinism is due to the presence of transitions that
share the same label and that can be simultaneously enabled.
The authors of [12] developed a recursive algorithm for esti-
mating the least-cost transition firing sequence(s) based on
the observation of a sequence of labels produced by transition
activity in a given labeled Petri net.

In [2], Lingxi et al. introduce a recursive algorithm find-
ing all of the initial markings that allow for the firing of
at least one sequence of transitions that is compliant with
the sequence of labels and has the least total number of
tokens. In addition, they define heuristics that can further
reduce the complexity of this algorithm at the cost of obtain-
ing a subset or an approximation of the minimum initial
markings.

In [13], te authors deals with the problem of identifying a
Petri net that models the unobservable behaviour of a system
from the knowledge of its dynamical evolution. We assume

that a partial Petri net model that represents the observable
behaviour of a system is given in which all the transitions
are observable. An identifier monitors the system evolution
and records the observed transition sequence (and possi-
ble corresponding markings). Some unobservable transitions
modelling the unknown system behaviour are identified from
the transition sequence by formulating and solving integer
linear programming problems. These identified unobservable
transitions together with the given partial Petri net model
characterize the whole system, including observable and
unobservable behaviour.

The work presented in [14] proposes a labelled PN-based
approach to specify system’s fault diagnosis. In such an
approach, the faults are defined by unobservable transitions
and the unobservable subnet is acyclic. A new specification is
introduced called an overall fault status, which indicates the
occurrence of faults from a global system perspective.

In [15], the authors address the marking estimation prob-
lem in labelled Petri PN whose initial marking is known
to belong to a given convex set, in the presence of silent
transitions (i.e., transitions labelled with the empty word)
and indistinguishable transitions(i.e.,transitions sharing the
same label with other transitions).First, we demonstrate that
all sets of markings consistent with a given sequence of
observations can be described in linear algebraic terms (as a
union of convex sets); subsequently, this observation is used
to construct (offline) a marking observer under appropriate
boundedness assumptions. Using the marking observer we
show how to derive, at design time, a state feedback control
law under the assumption that all transitions sharing a label
can be enabled or disabled simultaneously as a group; this
way, the most burdensome part of the computations is per-
formed offline.

In [6], Ziyue et al. propose an estimation method of
the labeled PN marking using the representative marking
graph concept. This method takes into account the unob-
servable transitions by classifying them into two groups:
pseudo-observable and strictly unobservable transitions. The
unobservable reach of a marking can be characterized by
the union of the strictly unobservable reach of several basis
markings, called representativemarkings, in the unobservable
subnet. The set of consistent markings can be characterized
by a linear algebraic system based on those representative
markings.

The authors of [16] propose a heuristic algorithm for the
minimum initial marking problem of Petri nets. Given a Petri
net and a firing count vector X, this algorithm is able to find
an initial marking, with the minimum number of tokens, for
which there is a transitions sequence such that each transition
t appears exactly X(t) times. In [17], Maria Paola et al.
proposed a recursive algorithm for initial marking estimation
given a sequence of observed labels in a Markovian PN
setting. This algorithm considers the case of unobservable
transitions.

More recently, [18] proposes an extension of [2] with
unobservable transitions, while introducing algorithms for
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the MIM estimation (MIM-UT). In particular, it assume that
the Petri net structure is given and the unobservable transi-
tions in the net are contact-free. An algorithm is developed
to find the set of MIM(s) with polynomial complexity in
the length of the observed label sequence. Two heuristic
algorithms are also proposed to reduce the computational
complexity.

In [18], heuristic based algorithms was developed to
find the set of minimum initial markings with the com-
plexity that is polynomial in the length of the observed
label sequence. While being interesting, the proposed heuris-
tic algorithms allows to find a partial/approximated set of
solutions.

The various methods mentioned above come up against
the complexity of the MIM problem classified NP-hard and
consequently with long computation due to the combinatorial
explosion of the solution space. For that purpose, we propose
an approach of both to propose an optimal solution or close
to the optimal one with less temporal cost.

C. LABELED PETRI NET MODEL
The Petri net (PN) has been developed as a mathematical
model of the discrete event (states oriented) systems in a
wide variety of applications such as manufacturing systems,
process-based systems, and so on [1]. Labeled PN is an
extended PN model in which an eventual label is assigned
to each transition [2].
Definition 1 (Labeled PN): A labeled PN LN can be for-

mally defined as the following triplet: LN = (N ,L,TL),
where:
• N is a PN model defined as the following quadruplet:
N = (P,T ,Pre,Post), where:
– P = {p1, . . . , pn} is a set of places.
– T = {t1, . . . , tm} is a set of transitions.
– Pre : P × T → N is the weight function of the

transitions’ incoming arcs.
– Post : T × P → N is the weight function of the

transitions’ outgoing arcs.
• L = {l1, . . . , lk} is a set of labels.
• TL : T → L is the transition labeling function. It assigns
a label for each transition.

It should be emphasized that the weighting value of an incom-
ing (Pre) or an outgoing (Post) arc is equal to 1 when it is not
specified in PN model.

Marking a (labeled) PN consists in assigning, for each
place p, a finite number of token. We describe a marking M
of a labeled PN LN = (N ,L,TL) as the following vector:

M =



m0
...

mi
...

mn

 (1)

where mi (M[p]) denotes the number of taken in the place p.

1) TRANSITION FIRING RULES
The firing of a transitions sequence allows to change the state
of the labeled PN from a given marking to another one. For
that purpose the following firing rules are used:
• Rule 1: t is said to be active (can be fired) if and only if
the following condition is true:

∀p ∈ P, M [p] ≥ Pre(p, t) (2)

• Rule 2: the firing of t produces a new marking M’
computed as follows:

∀p ∈ P, M ′[p] = M [p]− Pre(p, t)+ Post(t, p) (3)

2) INITIAL MARKING COMPUTATION OF LABELED PN
As claimed in [19], [20], it is possible to compute the
required initial marking of a (labeled) PN from which a firing
sequence can be executed. This is done according to the
aforementioned transitions firing rules and using the proce-
dure computeInitMarking (see Algorithm 1). More precisely,
this procedure applies the following formula iteratively to
derive the required IM:

∀p∈P, Mj[p]=Mj−1[p]+ Pre(p,FS[j])−Post(FS[j−1], p)

(4)

where j is an iterator that varies from 1 to n. Mj and Mj−1
denote respectively the marking computed at the iteration j
and j−1. FS is a one dimensional vector, where each element
of it is transition. The length of this vector is the number of
the labeled PN transitions.

Algorithm 1 The IM Computation Algorithm
1: procedure computeInitMarking(FS,LN )
2: for p in P do
3: M0(p)← 0;
4: end for
5: m← getLength(FS);
6: j← 1;
7: while j ≤ m do
8: for p in P do
9: Mj[p] ← Mj−1[p] + Pre(p,FS[j]) −
Post(FS[j− 1], p);

10: end for
11: j← j+ 1;
12: end while
13: return Mj−1;
14: end procedure

III. MINIMUM IM COMPUTATION IN LABELED PN USING
GENETIC-BASED APPROACH
In this section, we present a detailed description of the min-
imum IM estimation problem in the context of Labeled PNs.
First, we introduce a statement and a formulation of the
problem. Then, we propose a genetic-based method to model
and solve the IM problem.
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FIGURE 1. The genome encoding method of the minimum IM problem.

A. MINIMUM IM COMPUTATION PROBLEM IN
LABELED PN
The minimum IM computation in labeled PNs is an opti-
mization problem where the goal is to generate the firing
transitions sequence FS producing the IM having the smallest
IM cost, while considering a label sequence.
Definition 2: We formally define this problem as the fol-

lowing triplet (LN ,LS, IMC), where:
• LN = (N ,L,TL) is a labeled PN.
• LS is a label sequence defined as follows: LS =
l1l2 . . . lk , where li ∈ L (1≤i≤k).

• IMC is the following optimization function defined
using the computeIMC algorithm (see Algorithm 2).
Algorithm 2 takes labeled PN and firing sequence
as input. It provides the IMC cost of such a firing
sequence as output while calling to Algorithm 1 (see
line 2) for computing the corresponding initial marking.
For a given labeled PN LN and a firing sequence LN ,
the IMC(FS,LN ) value is computed as follows:

IMC(FS) =
∑
p∈P

IM (FS)[p] (5)

This formula is defined by Algorithm 2 by a loop
‘for’(see lines 4, 5 and 6).

Algorithm 2 The IM Computation Algorithm
1: function computeIMC(FS,LN )
2: IM ← computeInitMarking(FS,LN );
3: IMC ← 0;
4: for p in P do
5: IMC ← IMC + IM [p];
6: end for
7: return IMC ;
8: end function

Definition 3: A firing sequence of transitions is said to be
a valid solution of the minimum IM problem in a labeled PN
if and only if the following condition is met:

IMC(FS) ≤ δ (6)

where δ is the IM quality factor. This factor is a natural
number defined by experimentation.
Proposition 1: The minimum IM computation process is

an NP-hard problem.
Proof: We consider a labeled PN and a label sequence

LS of length p. We denote by m the number of transitions
sharing the same label. There are mp possible combinations
(each combination represents a firing sequence) in the search
space. It is clear that this state-space increases exponentially
with the values of m and p. According to [21], finding the
optimal (minimizing the IMC function) combination from
the possible ones in the search space leads to an NP-hard
problem.

B. GENETIC-BASED ALGORITHM FOR MINIMUM IM
ESTIMATION IN LABELED PN
Several approaches can be used to model the minimum IM
(initial marking) problem in Labeled PNs that we defined in
the previous section, such as the genetic algorithm [7], [22]
and the sequential method. In our work, we aim to propose a
genetic-based algorithm (see Algorithm 3) to generate an IM
of a given labeled PN in a timely fashion. Such an IM needs
to:

• meet all the label sequence constraints;
• minimize the objective function (IMC).

In the sequel, we shall consider a labeled PN including n
transitions, T1,. . . , Tn and k labels l1,. . . , lk . The transitions
sharing a label l are stored in the same array denoted as Vl .

1) GENOME ENCODING
To search for a solution using the genetic algorithms, we have
to encode the minimum IM problem with an appropriate
genome. As illustrated in Figure 1, the genome is represented
by an array of transition indexes (an index is an integer).
It is an individual in the population, which represents a fir-
ing sequence of the labeled PN (see Figure 1). An element
g[i] represents a transition that is encoded as an integer and
labeledwith LS[i]. The size of the array g is equal to the length
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of the label sequence LS. The positions of the array represent
elements of LS.

2) FITNESS FUNCTION AND GENETIC OPERATORS
The second step in genetic modeling is the definition of the
evaluation (fitness) function and genomes as well as choice
of the genetic operators. For the fitness function, we use the
following one:

F(g) = IMC(g) (7)

The genetic operators are the following: selection, crossover
and mutation. The selection operator selects the best two
genomes for the crossing [22]. We adopted the roulette wheel
selection method. This method returns the two genomes with
the lowest fitness value for the crossover. The crossover
operator allows to merge two genomes to produce two
new genomes [22]. In our work, we apply the single-point
crossover operator that randomly generates a cut-point (see
Figure 2). This cut-point is a natural number belonging to the
interval [0, n−1] (where n is the length of the genome).

FIGURE 2. The used single-point crossover operator.

The mutation operator makes it possible to modify a gene
of an existing genome by another [22]. The mutation of a
genome is triggered with a very low probability pm often
belonging to the interval [0.001, 0.01]. The appropriate value
of the probability pm is empirically determined. The mutation
operator ensures the diversity of the population (a set of
genomes). It also ensures that any genome of the search space
can be reached.

3) GENETIC ALGORITHM
The genetic algorithm we used to model and find a solution
for the minimum IM problem is performed in three steps (see
algorithm 3). The first step is an initialization (from line 1 to
line 3). The second step (from line 4 to line 10) attempts to
find a valid solution (firing sequence of the labeled PN). The
third step (from line 11 to line 13) is a finalization in which
we verify the existence of a valid solution for the problem.

At the first step, we randomly generate an initial population
including a fixed number of genomes. Next, we compute
the fitness value of each genome. We initialize a generation
counter, cgen, to 1. The second step is materialized by a loop
with the following condition:

cgen ≤ maxgen ∧ checkValidity() = false (8)

The checkValidity function checks the validity condition
given in Definition 3. At each iteration of the loop, we apply
the selection, crossover and mutation operators. Next, each

Algorithm 3 A Genetic-Based Algorithm
1: initialize(population);
2: evaluate(population);
3: cgen← 1;
4: while cgen ≤ maxgen ∧ checkValidity()= false do
5: selection();
6: crossover();
7: mutation();
8: evaluate(population);
9: cgen← cgen+1;
10: end while
11: if stopCondition() = true then
12: return argmin

g∈population
F(g);

13: end if

new genome generated is evaluated. At the end of each itera-
tion, the value of cgen is incremented by 1. The execution of
the loop stops in the two following cases:
• the value of the variable cgen is larger than themaximum
number of iterations maxgen. In this case, there is no
solution for the problem.

• the algorithm returned a valid solution for the problem
(checkValidity() = true).

Once the second step has completed, the genome val-
idation condition is rechecked. If this condition is true
(checkValidity() = true), our algorithm returns the valid
genome with the lowest fitness value.

IV. EMPIRICAL STUDIES
In this section, we propose the following empirical studies to
evaluate the effectiveness of the proposed approach:
• Studying the impact of the quality factor δ
• Studying the benefits of the proposed approach com-
pared to the related work.

These studies were performed on a computer with an Intel
Core i5 processor, 4 GB of RAM, and running under a
Windows 8 professional edition. For each experiment, our
genetic-based algorithm was executed 50 times and the aver-
age value was finally reported. As a case study, we used a real
labeled PN model (see Figure 3) and the labeling sequence:

LS = ee ff abcddcbabbccaaddgghhdcbaee ff abcddcba

Some of the parameters of our genetic-based algorithm
needed to be configured. These parameters are listed below:
• the population size.
• the mutation probability pm.
• the maximum number of generations maxgen.
• the quality factor δ.

The population size was fixed to 100 for all the experi-
mentation. The mutation probability pm was fixed to 0.001,
while the maximal number of generations was set to 100.
The best value of the quality factor δ was also deter-
mined by experimentation (more details will be shown in
Section IV-A).
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FIGURE 3. The studied labeled PN modeling two parallel machine.

A. STUDYING THE IMPACT OF THE QUALITY FACTOR
The goal of this experiment is to determine the best value
of the quality factor δ. The best value of δ is the smallest
value that allows to generate a solution for the MIM problem
in a timely fashion way. For that purpose, the following
experimentation approach is adopted:
• step 1: we use the label sequence of length 40
(see Figure 3b).

• step 2: we vary the value of δ from 0 to 12.
• step 3: we compute the number of found solutions.

Figure 4 reports the results of this experiment. As shown
by this graph, the number of feasible solutions decreases
when δ decreases. This can be explained by the fact that
with δ becoming stricter, the existence probability for a fea-
sible solution declines. Some of the solutions are rejected
since they don’t satisfy the stop condition of the genetic
algorithm. Starting from the value 9, the genetic algorithm
succeeds to generate a solution. There is no solution when
δ is strictly smaller than 9. At the same time, when the
value of δ increases, the quality of the generated solution
can be decreased. For instance, the IMC value of the solution
generated with the value 9 of δ is better than that generated
with the value 12.

FIGURE 4. Studying the impact of the quality factor.

As a conclusion, the quality of the generated solution is
influenced by the value of δ. In what follows, we choose the
value 9 of δ. This value ensures a good IMC value for the
generated solution in a timely fashion way.

B. STUDYING THE BENEFITS OF THE PROPOSED
APPROACH
In this section, we present an evaluation of the benefits of the
proposed approach compared to Lingxi’s heuristic algorithm

FIGURE 5. The evolution of the number of potential MIM with the length
of labels sequence.

FIGURE 6. Results of studying the benefits of our approach compared to
the Lingxi’s heuristic algorithm and sequential method in terms of quality
of the solution.

that we presented in Section II-B. The evaluation is carried
out as follows:
• step 1: we vary the length of the label sequence from 0 to
40.

• step 2: we determine the computation times, number of
estimated minimum IM (MIM) and the quality of the
generated solution of the two approaches.

The sequential method starts by generating all the transition
sequences that are compliant with the label sequence and it
then selects the appropriate one having the minimum quality
cost. As said above, the number of all possible transition
sequences increases exponentially with the length of the
label sequence. Subsequently, exhaustively creating all these
sequences in order to obtain the optimal minimum IM is very
time-consuming, which makes it an impractical method. This
confirms the empirical results reported in Figure 5.

The results also show that our genetic-based approach
outperforms the two others methods (sequential method and
Lingxi’s heuristic algorithm) not only in terms of computa-
tion times/number of estimated MIM, but also in terms of
IM cost thanks to the quality factor δ (see figures 6 and 7).
Our approach is able to provide a good (in terms of cost)
minimum initial marking of a labeled PN in a timely
fashion.
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FIGURE 7. Results of studying the benefits of our genetic-based approach
compared to the Lingxi’s heuristic algorithm in terms of computation time
of the solution.

It is worth mentioning that the computation time does not
depend on the number of transitions sharing the same labels.
It depends basically on the following parameters: the popula-
tion size, the maximal number of generations (maxgen) and
the length of the sequence of labels.

V. CONCLUSION
In this paper, we first defined the problem of minimum IM
computation in the labeled PNs. In particular, we proposed a
quality factor of the initial marking. The goal of this factor
is to increase the cost of the PN initial marking. Second,
we proposed a genetic-based method to model and solve
the IM problem. Finally, we conducted empirical studies to
evaluate the effectiveness of the proposed work compared to
the related approaches.

For future work, we are making progress on applying the
proposed method on real case studies. We plan to study the
problem of computing the firing sequence that allows to a
minimum resources consumption. This problem is closely
similar to the one studied in this paper.

REFERENCES
[1] T. Murata, ‘‘Petri nets: Properties, analysis and applications,’’ Proc. IEEE,

vol. 77, no. 4, pp. 541–580, Apr. 1989.
[2] L. Li and C. N. Hadjicostis, ‘‘Minimum initial marking estimation

in labeled Petri nets,’’ IEEE Trans. Autom. Control., vol. 58, no. 1,
pp. 198–203, Jan. 2013.

[3] T. Watanabe, T. Tanida, M. Yamauchi, and K. Onaga, ‘‘The minimum
initial marking problem for scheduling in timed Petri nets,’’ IEICE Trans.
Fundam. Electron., Commun. Comput. Sci., vol. 75, no. 10, pp. 1407–1421,
1992.

[4] J. Rodríguez-Beltrán and A. Ramfrez-Trevino, ‘‘Minimum initial marking
in timed marked graphs,’’ in Proc. IEEE Int. Conf. Syst., Man Cybern.,
vol. 4, Oct. 2000, pp. 3004–3008.

[5] T. Watanabe, Y. Mizobata, and K. Onaga, ‘‘Minimum initial marking
problems of Petri nets,’’ IEICE Trans., vol. 72, no. 12, pp. 1390–1399,
1989.

[6] Z. Ma, Y. Tong, Z. Li, and A. Giua, ‘‘Marking estimation in labelled Petri
nets by the representative marking graph,’’ IFAC-PapersOnLine, vol. 50,
no. 1, pp. 11175–11181, Jul. 2017.

[7] M. Srinivas and L. Patnaik, ‘‘Genetic algorithms: A survey,’’ Computer,
vol. 27, no. 6, pp. 17–26, Jun. 1994.

[8] K. F. Man, K. S. Tang, and S. Kwong, Genetic Algorithms: Concepts and
Designs (Advanced Textbooks in Control and Signal Processing). London,
U.K.: Springer-Verlag, 1999, p. 356.

[9] A. Giua, D. Corona, and C. Seatzu, ‘‘State estimation of λ-free labeled
Petri nets with contact-free nondeterministic transitions,’’ Discrete Event
Dyn. Syst., vol. 15, no. 1, pp. 85–108, 2005.

[10] A. Giua, J. Julvez, and C. Seatzu, ‘‘Marking estimation of Petri nets based
on partial observation,’’ in Proc. Amer. Control Conf., vol. 1, Jan. 2004,
pp. 326–331.

[11] A. Giua, C. Seatzu, and D. Corona, ‘‘Marking estimation of Petri nets
with silent transitions,’’ IEEE Trans. Autom. Control., vol. 52, no. 9,
pp. 1695–1699, Sep. 2007.

[12] L. Li, Y. Ru, and C. N. Hadjicostis, ‘‘Least-cost transition firing sequence
estimation in labeled Petri nets,’’ in Proc. 45th IEEE Conf. Decis. Control,
Dec. 2006, pp. 416–421.

[13] G. Zhu, Y. Wang, and Y. Wang, ‘‘Model identification of unobservable
behavior of discrete event systems using Petri nets,’’ J. Control Sci. Eng.,
vol. 2019, pp. 1–11, Mar. 2019.

[14] G. Zhu, L. Feng, Z. Li, and N. Wu, ‘‘Online fault diagnosis of discrete
event systemsmodeledwith labeled Petri nets using an overall fault status,’’
Tech. Rep. hal-02018634f, 2018.

[15] M. P. Cabasino, C. N. Hadjicostis, and C. Seatzu, ‘‘Marking observer in
labeled Petri nets with application to supervisory control,’’ IEEE Trans.
Autom. Control., vol. 62, no. 4, pp. 1813–1824, Apr. 2017.

[16] M. Yamauchi and T. Watanabe, ‘‘A heuristic algorithm for the minimum
initial marking problem of Petri nets,’’ in Proc. IEEE Int. Conf. Syst., Man,
Cybern. Comput. Simul., vol. 1, Nov. 2002, pp. 245–250.

[17] M. P. Cabasino, C. N. Hadjicostis, and C. Seatzu, ‘‘Initial marking esti-
mation in labeled Petri nets in a probabilistic setting,’’ in Proc. 53rd IEEE
Conf. Decis. Control, Dec. 2014, pp. 6725–6730.

[18] K. Ruan, L. Li, and W. Wu, ‘‘Minimum initial marking estimation in
labeled Petri nets with unobservable transitions,’’ IEEE Access, vol. 7,
pp. 19232–19237, 2019.

[19] A. Giua and C. Seatzu, ‘‘Observability of place/transition nets,’’ IEEE
Trans. Autom. Control., vol. 47, no. 9, pp. 1424–1437, Sep. 2002.

[20] A. Giua, ‘‘Petri net state estimators based on event observation,’’ in Proc.
36th IEEE Conf. Decis. Control, vol. 4, Nov. 2002, pp. 4086–4091.

[21] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to
the Theory of NP-Completeness. New York, NY, USA: Freeman, 1990.

[22] H.-L. Fang, ‘‘Genetic algorithms in timetabling and scheduling,’’ Ph.D.
dissertation, Dept. Articial Intell., Univ. Edinburgh, Edinburgh, U.K.,
1994.

HICHEM KMIMECH received the master’s
degree in computer science from the National
School of Engineers of Sfax, in 2005, in the field
of new technologies of dedicated computer sys-
tems. He is currently pursuing his thesis at the
LARATSI Laboratory, National School of Engi-
neers, University of Monastir. He also occupies a
position of Computer Teacher at ISSAT Sousse.
His current research interests include planning and
scheduling, discrete event systems, Petri nets, and

prediction and system identification.

ACHRAF JABEUR TELMOUDI received the
M.Sc. degree in automation and systems engineer-
ing and the Ph.D. degree in electrical engineer-
ing from the University of Tunis, Tunis, Tunisia,
in 2006 and 2011, respectively. Since 2011, he has
been an Associate Professor in automation and
industrial informatics with the Higher Institute of
Applied Science and Technology of Sousse, Uni-
versity of Sousse, Tunisia. He is a member of the
LISIER Laboratory, Higher National Engineering

School of Tunis, University of Tunis, Tunisia. His current research interests
include planning and scheduling, discrete event systems, Petri nets, predic-
tion, and system identification. He serves as a Guest Editor of the Journal
of Systems and Control Engineering and the Transactions of the Institute of
Measurement and Control. He is currently anAssociate Editor of the Interna-
tional Journal of Applied Metaheuristic Computing and a Regular Reviewer
of more than 20 journals including the IEEE SMC: SYSTEMS, the IEEE
TRANSACTIONS ON ROBOTICS, the IEEE TRANSACTIONS ON AUTOMATIC CONTROL,
IEEE ACCESS, Neural Computing and Applications, Energy, the Journal of
Systems and Control Engineering, and RAIRO—Operations Research.

22860 VOLUME 8, 2020



H. Kmimech et al.: Genetic-Based Approach for Minimum Initial Marking Estimation

LAYTH SLIMAN received the Diploma degree in
computer engineering, the master’s degree in com-
puter science (information systems) from INSA
Lyon, France, and the Ph.D. degree from INSA
Lyon, in collaboration with the University of the
Ryukyus, Japan. In 2008, 2009, 2010, 2012, 2013,
and 2014, he did many research stays in the Uni-
versity of the Ryukyus and Ritsumeikan Univer-
sity, Japan. From 2000 to 2010, he worked as
a Lecturer and an Assistant Professor, did his

research and taught computer engineering and information systems in many
universities including INSA, Lyon; the University of the Ryukyus, Japan;
Beijing University of Technology; and the Institute of Visual Informatics,
Malaysia. Since September 2010, he has been an Associate Professor with
the Ècole d’Ingénieur des Technologies de l’Information et de la Communi-
cation (EFREI), a French Engineering School, Paris. His is a Research Fellow
in many international institutes. He is a Managing Editor of the Journal of
Applied Soft Computing (Elsevier) and a member of the editorial board of
many international journals. He delivered many keynotes and invited talks in
France, Italy, Japan, and Spain. He has chaired and organized more than ten
international conferences.

LOTFI NABLI received the B.S. and M.S. degrees
from ENSET, University of Tunis, Tunisia,
in 1989 and 1991, respectively, the Ph.D. degree
in industrial automation from the University of
Sciences and Technologies, Lille, France, in 2000,
the Habilitation Diploma degree from the National
School of Engineers of Monastir, University
of Monastir, Tunisia, in 2010. He is currently
a Full Professor of electrical engineering with
the National School of Engineers, University of

Monastir, Monastir. His research interests include modeling, discrete event
systems, monitoring, and manufactory systems.

VOLUME 8, 2020 22861


	INTRODUCTION
	BACKGROUND AND RELATED WORK
	OVERVIEW OF GENETIC ALGORITHMS
	RELATED WORK
	LABELED PETRI NET MODEL
	TRANSITION FIRING RULES
	INITIAL MARKING COMPUTATION OF LABELED PN


	MINIMUM IM COMPUTATION IN LABELED PN USING GENETIC-BASED APPROACH
	MINIMUM IM COMPUTATION PROBLEM IN LABELED PN
	GENETIC-BASED ALGORITHM FOR MINIMUM IM ESTIMATION IN LABELED PN
	GENOME ENCODING
	FITNESS FUNCTION AND GENETIC OPERATORS
	GENETIC ALGORITHM


	EMPIRICAL STUDIES
	STUDYING THE IMPACT OF THE QUALITY FACTOR
	STUDYING THE BENEFITS OF THE PROPOSED APPROACH

	CONCLUSION
	REFERENCES
	Biographies
	HICHEM KMIMECH
	ACHRAF JABEUR TELMOUDI
	LAYTH SLIMAN
	LOTFI NABLI


