
Received December 19, 2019, accepted January 6, 2020, date of publication January 17, 2020, date of current version January 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2967217

CAT-TWO: Counter-Based Adaptive Tree,
Time Window Optimized for DRAM
Row-Hammer Prevention
INGAB KANG 1, EOJIN LEE 1, AND JUNG HO AHN 1,2, (Senior Member, IEEE)
1Department of Transdisciplinary Studies, Seoul National University, Seoul 08826, South Korea
2Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, South Korea

Corresponding author: Jung Ho Ahn (gajh@snu.ac.kr)

This work was supported in part by the IDEC (EDA Tool), in part by the NRF of Korea Grant (NRF2017R1A2B2005416), and in part by
the Research and Development Program of MOTIE/KEIT (10077609).

ABSTRACT Row-hammering flips bits in a victim DRAM row by frequently activating its adjacent rows,
compromising DRAM integrity. Several studies propose to prevent row-hammering by counting the number
of activates to a DRAM row and refreshing the corresponding victim rows before the count surpasses a row-
hammer threshold. However, these approaches either incur a significant area overhead or a large number
of additional activations (ACT) that could degrade the system performance. In this paper, we propose
CAT-TWO, a time-window-optimized version of the existing Counter-based Adaptive Tree (CAT) scheme
for row-hammer prevention. We first ensure that the victim rows are always refreshed at the last level of the
tree without counter overflow by configuring the threshold and the number of CAT-TWO counters based on
the fact that the maximum number of ACTs is limited within the refresh window. We further reduce the size
and latency of CAT-TWO by applying high-radix rank-level CAT-TWOwith multiple tree roots. CAT-TWO
incurs less than 0.7% energy overhead on a baseline DDR4 DRAM device, and generates less than 0.03%
additional ACTs to refresh victim rows in the worst case, which hardly affects system performance.

INDEX TERMS DRAM chips, DRAM reliability, row-hammering.

I. INTRODUCTION
In modern computer systems, DRAM has been the de facto
standard for main memory for decades because it offers a
large capacity at a small cost compared to its alternatives.
DRAM stores data in rows of DRAM cells and a cell uses
a single capacitor to store a single bit of data. If a cell is fully
charged, the data would be one; if the cell is not charged,
the data would be zero. However, the use of capacitors makes
DRAMdynamic; charge leaks out of DRAMcells, and if they
are not refreshed within a specific time period, the data would
be lost [2]. To prevent the loss of data, DRAM standards
[11], [12] define tREFW, the time interval within which a
DRAM row must be refreshed to retain data.

Recently, due to process scaling, it has been found
that activating a DRAM row (aggressor row) creates a
disturbance to its neighboring rows (victim rows), which
expedites the charge loss. If the disturbance accumulates

The associate editor coordinating the review of this manuscript and

approving it for publication was Stavros Souravlas .

enough due to repeated activation (ACT), the neighboring
rows eventually lose charge earlier than tREFW, and hence
data is flipped. This phenomenon is called row-hammering
[17], [22], and since its discovery, the exploitation and protec-
tion of row-hammering have been an active area of research.
Row-hammering was initially a DRAM reliability problem,
but because an attacker could choose to target a specific row
to flip bits, it was soon shown that row-hammering is also
a system security problem as it could be leveraged to attack
systems [3], [5], [18], [24], [25], [32].

Numerous solutions have been proposed to mitigate
row-hammering [7], [15]–[17], [19], [20], [26], [27],
[29], [33], [34], where these previous row-hammer mit-
igation schemes can be classified as probabilistic or
counter-based (deterministic). Probabilistic solutions prevent
row-hammering with very high probability and with mini-
mum hardware overhead, but counter-based solutions provide
better protection as they can guarantee that a row under
attack is refreshed before its neighbor rows are activated by
a certain number of times (called a row-hammer threshold).

17366 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2125-0573
https://orcid.org/0000-0003-2739-2924
https://orcid.org/0000-0003-1733-1394
https://orcid.org/0000-0002-9602-2663

I. Kang et al.: CAT-TWO for DRAM Row-Hammer Prevention

Furthermore, because counter-based solutions can carry out
targeted refreshes, the number of additional row ACTs
incurred by the deterministic solutions can be smaller. How-
ever, deterministic solutions often require a large storage table
because they have to count the number of ACTs to a specific
row.

Among the schemes which have been proposed to mitigate
this storage overhead problem [15], [19], [20], [26], [27],
Counter-based Row Activation (CRA) [15] suggests to store
the counters in DRAM and bring the data to an on-chip cache
whenever aDRAMACT command is sent. This scheme relies
on memory access locality; when DRAM accesses concen-
trate on a small number of DRAM rows at a given time,
a small cachewould be sufficient to catch themajority of ACT
commands. However, it incurs additional DRAM accesses to
manage CRA when it misses the cache and hence performs
poorly for applications with the limited locality.

Other proposals target to reduce the total number of coun-
ters and reduce the size of tables, where Counter-based
Adaptive Tree (CAT) [26], [27] and Time Window Coun-
ters (TWiCe) [19], [20] are representative. CAT proposes to
reduce the number of counters by counting ACTs per group
of DRAM rows. It further divides the group into subgroups
when the number of ACTs passes a threshold. In this way,
groups that are activatedmore frequently are split into smaller
groups of rows, thereby tracking rows that are more likely to
cause row-hammering in a fine-grained manner, and saving
counters on groups that are not frequently activated and less
likely to cause row-hammering. However, if CAT runs out
of counters or if it cannot divide the row groups into small
enough groups, it must refresh a handful of rows at once
because it cannot discern which exact row in the row group
is a row-hammer victim.

TWiCe takes a different approach to reduce coun-
ters. TWiCe maintains a one-counter-per-row approach but
reduces the total number of necessary counters by periodi-
cally pruning rows that are not activated frequently enough
and therefore deemed innocuous. This intuition stems from
the observation that the maximum frequency of ACTs to a
DRAM bank is limited by tRC, which limits the number
of ACTs within tREFW. Therefore, if a row is not acti-
vated frequently enough, it cannot be activated enough to
trigger row-hammering within tREFW. However, while this
approach cuts down the total number of counters to a few
hundred counters, it requires a larger table compared to CAT.

Tomaintain a small table size while detecting row-hammer
aggressors with high accuracy, we propose CAT-TWO,
a Time Window Optimized version of CAT. CAT requires
a smaller table compared to TWiCe, but it cannot pin-
point row-hammer aggressor rows. By contrast, CAT-TWO
increases the number of tree levels such that the last level
groups (leaves) correspond to individual DRAM rows. It
also ensures that all the refreshes for row-hammer prevention
occur at the last level of the tree by provisioning CAT-TWO
with the exact number of counters required to prevent coun-
ters from overflowing. The number of counters needed is

deduced by borrowing the intuition from TWiCe that the
number of ACTs within tREFW is limited, which limits
the number of tree splits and so the number of counters.
As the number of counters differs by how the tree level
thresholds are set, we conduct a sensitivity study to explore
when the number of counters is minimized as we vary the
threshold values of the tree. Through the study, we config-
ure CAT to have equally spaced thresholds throughout all
levels.

We optimize CAT-TWO to require fewer counters and to
reduce the table size by populating multiple roots, deploy-
ing CAT-TWO per rank (not per bank), and changing the
CAT table structure. Because the spacing (number of counts)
between level thresholds are inversely proportional to the
number of levels, we configure CAT-TWO to have multiple
roots. Initializing a tree to have multiple roots reduces the
levels needed for the last level to have only one associated
row. This increases the spacing between level thresholds
and reduces the maximum number of splits and hence the
maximum number of counters. We further reduce the size
of CAT-TWO by deploying CAT-TWO per rank. Because the
maximum frequency of ACTs to a DRAM rank is smaller
than the sum of maximum frequency of ACTs to all banks
in a rank, by consolidating all CAT-TWO tables that were
deployed per bank into one large CAT-TWO table per rank,
we can reduce the maximum number of ACTs by 46%, reduc-
ing the table size. Lastly, we propose to unify the counter
table and the search table to reduce the size of the tables and
eliminate one surplus table access.

Deploying CAT-TWO per rank reduces the interval
between two ACTs, which increases CAT-TWO clock speed
to around 4 GHz. As this speed is too high for a memory
controller or DRAM devices, it must be reduced to match
DRAMclock speed.We reduce the clock speed of CAT-TWO
by implementing the CAT-TWO tree as a high-radix tree.
Because a high-radix tree split a counter into more than two
children every time a level threshold is reached, fewer levels
are needed to divide row groups to a single row. Therefore,
high-radix trees require fewer table accesses between ACTs,
reducing the clock speed of CAT-TWO.

Our analysis shows that CAT-TWO requires less than half
the size of TWiCe, only requiring a 1.2 KB table per 1 GB
DRAM bank. When running multi-programmed workloads
and synthetic workloads emulating row-hammer attack sce-
narios, CAT-TWO performs on par with TWiCe, incurring
little to no additional ACTs. The cost of maintaining CAT
tables was negligible, requiring only 0.7% more energy on
table updates and 0.2% more energy per table reset.

In this paper, we make the following key contributions:
• We propose CAT-TWO, a time window optimized ver-
sion of CAT that minimizes the number of additional
ACTs while retaining a small table size, a key benefit of
CAT. CAT-TWO performs on par with TWiCe, whereas
requiring half the table size.

• We show that the size of CAT-TWO can be reduced
by employing multiple roots, deploying CAT-TWO per

VOLUME 8, 2020 17367

I. Kang et al.: CAT-TWO for DRAM Row-Hammer Prevention

rank, not bank, and fusing its search and counter tables
without an increase in the number of additional ACTs.

• We reduce the clock speed of CAT-TWO by employing
a high-radix tree.

II. BACKGROUND
A. DRAM BASICS
A DRAM rank is a collection of DRAM chips that operate in
tandem; A DRAM bank is an array of DRAM cells within
a rank that can load and store data independent of other
banks [9], [14]. A single DRAM cell is connected to a local
wordline (WL) and a bitline (BL), and the local WLs are
connected to the global WL. The DRAM cells connected to
the same WL form a DRAM row. When the data in a row is
accessed, thememory controller must first send a row activate
command to raise the WL voltage to be high and connect
the corresponding cells to the BLs. Before the cells are con-
nected, the BLs are at a precharged state, with its voltage at
VDD/2, but when the cells are connected, the charge in the
cells flows to the BLs and causes a disturbance, which is then
amplified by the BL sense amplifiers (BLSA) at the bottom
of the BLs. Because the charge in a cell is lost in the course
of distribution when the WL voltage is raised, it must be
restored when BLSAs amplify the charge. After a row is acti-
vated, to access a different row, the BLs are first precharged
(PRE) before a different row is activated. The minimum time
that two consecutive ACT commands to the same bank can
be issued is tRC, which limits the maximum frequency of
ACTs on a bank. However, ACT frequency on a rank is
limited by row-to-row delay (tRRD) and four activatewindow
(tFAW). tRRD restricts the minimum time interval between
two ACT commands to a rank, and tFAW is the time window
in which no more than four ACT commands could be sent to
a rank.

Another characteristic of DRAM is that it must be
refreshed in a specific time period. DRAM cells leak charge
over time, and therefore the charge must be refreshed before
the data is lost. This time period within which a DRAM
cell must be refreshed is called a refresh window (tREFW).
As there are many rows in a DRAM bank, it is impossible
to refresh all rows of a bank at the same time. Therefore,
DRAM refreshes are distributed across tREFW where a sub-
set of the rows in a bank is refreshed every DRAM refresh
interval (tREFI) for the duration of a row refresh cycle time
(tRFC). However, with the discovery of row-hammering [17],
it has been found that activating rows causes disturbances to
neighboring rows, expediting the loss of charge in DRAM
cells. If an aggressor row is activated frequently enough
within tREFW, the charge in neighboring rows can have its
data flipped before being refreshed. This phenomenon poses
a severe breach to DRAM integrity as it means data in rows
can be tainted even without being directly accessed. In order
to mitigate row-hammering, rows adjacent to a row that is
activated frequently must be refreshed by activating the rows
before bit flips.

B. PREVIOUS ROW-HAMMER SOLUTIONS
PARA: Probabilistic Adjacent Row Activation (PARA) is
a probability-based row-hammer protection scheme [17].
PARA protects against row-hammering by activating adja-
cent rows to a row that has been activated with a low prob-
ability. Even though the adjacent rows are activated with a
low probability, as the number of times that a row is activated
increases, the probability that the adjacent rows are refreshed
becomes higher. Therefore, by the time it is likely that a row
would cause row-hammering to adjacent rows, it is highly
likely that the adjacent rows would have been refreshed.
However, this approach often causes more refreshes than
counter-based solutions because it must also refresh rows that
are not likely to have their bits flipped (false positives).
TWiCe: TWiCe is a per-row counter-based row-hammer

prevention solution based on the intuition that the number
of ACTs within tREFW is limited [19]. In order to cause
row-hammering, a row must be activated frequently enough
such that it must surpass a row-hammer threshold (RHth),
a threshold beyond which adjacent rows are deemed unsafe,
and therefore must be refreshed. However, because all rows
of a bank are refreshed within tREFW, if RHth is not reached
within tREFW, row-hammering could not occur. Therefore,
if we monitor all ACTs to individual rows, but periodically
prune out rows that are not being activated frequently enough
to reach RHth within tREFW, we can count ACTs per row
while bounding the total size of counter tables down to the
number of potential rows that could reach RHth. A model
TWiCe suggested in [19] requires only 553 counters per 1 GB
of DRAM bank, which is orders of magnitude fewer than
the total number of rows per bank (65,536 rows). However,
TWiCe requires a larger table than CAT, therefore in certain
situations where reducing die size is crucial, CAT could be a
better row-hammer mitigation solution.
CAT: CAT is a counter-based solution where row-

hammering is mitigated by counting the ACTs to a group
of DRAM rows and refreshing the group of rows and their
adjacent rows when the count reaches RHth [27]. Especially,
CAT grows a tree of counters to determine howmany rows are
counted by a counter according to the frequency of ACTs. For
example, CAT begins by allocating a single counter at the root
of the tree for the entire rows in a DRAM bank. Each counter
holds an ACTCNT value, and each time that an ACT command
is sent to a row associated with a counter, the corresponding
ACTCNT is increased by one. If the ACTCNT of a counter
reaches a level threshold, the group is split into two child
counters initialized with the ACTCNT of the parent counter.
The number of splits from the root counter to the currently
active counter is called the level of the counter, with the root
counter having the lowest level 0 and the last level having
the highest level. Whenever a counter splits, the counter’s
level is increased by 1. We denote the level threshold of
a counter at level n as Lvth[n]. As the splitting continues,
the counters span a tree where counters that are frequently
activated are at the higher levels, covering fewer rows per
counter. By contrast, less-frequently activated counters are at

17368 VOLUME 8, 2020

I. Kang et al.: CAT-TWO for DRAM Row-Hammer Prevention

the lower levels, covering more rows per counter. If a counter
is at the last level L, and Lvth[L] is reached, all the rows in
that counter and the two rows adjacent to the row group is
refreshed, and ACTCNT is reset to zero. Lvth[L] is named the
refresh threshold as it is unique in that this threshold does not
cause the counter to split, but refreshes the rows that belong to
the counter. Counters that are not at level L continues to split
every time Lvth[n] is reached until there are no free counters
left in CAT, in which case Lvth[n] of all counters are set to
Lvth[L], and they are refreshed once they reach Lvth[L]. The
CAT tree is reset back to a single counter every tREFW as all
the rows within a bank would have been refreshed once.

The rationale behind this scheme is that the more fre-
quently activated rows are more likely to cause row-
hammering; therefore, they are allocated more counters and
counted at a more fine-grained level. Thus, only a small num-
ber of rows would be refreshed when a group reaches RHth.
However, if not provisioned with enough levels and counters,
CATmust refresh rows in groups too, whereas TWiCe counts
and targets potential aggressors per row. Therefore, CAT
incurs a high additional ACT overhead when compared to
TWiCe.

III. EXPLORING CAT
Although CAT requires a smaller table size than TWiCe,
it incurs too many additional ACTs compared to TWiCe
on adversarial memory access patterns [19]. However, CAT
could be improved to significantly reduce the number of
additional ACTs by slightly increasing its table size. Prior
to showing how CAT could be optimized, we first show why
CAT incurs excessiveACTs and describe the structure of CAT
in detail.

A. PROFUSE REFRESHES
[27] sets the number of levels, the level thresholds, and
the maximum number of counters without considering the
number of additional ACTs CAT incurs. Having a sufficient
number of levels is crucial because it affects how many rows
are refreshed together when a counter is at the last CAT level.
For example, in [27] the number of levels is set to 11 for
a DRAM bank with 65,536 (= 216) rows, which means 32
(= 216−11) rows that belong to a group and twomore adjacent
rows are refreshed at the same time when Lvth[L = 10]
is reached for a counter at the last level. Moreover, when
DRAM rows are remapped to correct faulty rows [4], [8],
[30], the group of rows may not be physically contiguous in
DRAM, in which case additional rows must be refreshed to
account for the remapped rows.

If an attacker attempts to compromise DRAM integrity,
a simple row-hammer attack would be to repeatedly acti-
vate one specific row as often as possible. Figure 1 shows
the number of ACTs each row-hammer mitigation scheme
incurs to refresh rows under this single-row attack scenario.
Although CAT is a counter-based solution, it incurs 17 times
more ACTs than TWiCe, even higher than PARA, to prevent
row-hammering. Because such a high number of additional

FIGURE 1. The number of additional ACTs per DRAM bank of PARA,
TWiCe, and the original CAT [27] when a single row is repeatedly
activated. PARA refreshes adjacent rows with 0.001 probability upon each
ACT (PARA-0.001) and CAT employs 256 counters with 11 levels (CAT-256).

ACTs defeats the purpose of a counter-based solution, CAT
must be improved to incur fewer additional refreshes.

Another crucial element of CAT is that it must have a
sufficient number of counters to prevent profuse refreshes. If
CAT is implementedwith a small number of counters, it could
experience a case that a counter reaches its level threshold
when all the available counters are occupied, and hence CAT
cannot further split the counter. In this case, the counters that
cannot split could reach RHth while maintaining a large row
group, requiring CAT to refresh the entire row group and
two adjacent rows to the group to prevent row-hammering,
which incurs a large number of additional ACTs. In the worst
case, if an attacker recognizes that DRAM is protected against
row-hammering using CAT, the attacker could split all the
rows in one side of a tree to deplete CAT’s free counters and
start activating the rows in the other side, in which case, half
the rows in a DRAM bank (= 216−1 rows) would have to be
refreshed when Lvth[L] is reached, as shown in [19].

B. CAT IMPLEMENTATION
[27] proposes to implement CAT as a linked list; to access a
counter, you must iterate through a table that records the tree
structure (search table) to access the address of the counter,
which is stored in a separate table (counter table). As CAT
begins with one counter and for every split, one counter and
one split entry is added to the counter table and the search
table, respectively. The number of counters is always one
more than the number of splits, so for a CATwith a maximum
of M counters, a search table with a size of M-1 entries
are needed. An exemplar CAT table is shown in Figure 2b.

FIGURE 2. An exemplar CAT tree (left) and its corresponding CAT tables
(right).

VOLUME 8, 2020 17369

I. Kang et al.: CAT-TWO for DRAM Row-Hammer Prevention

A single search table entry is comprised of two fields and two
flags; (L_addr , R_addr) fields and (L_leaf , R_leaf) flags.
L_addr and R_addr point to the next table entries whereas
L_leaf and R_leaf represent whether the next entry could be
found in the search table or the counter table. A single counter
table entry only holds ACTCNT , which records the number of
ACTs to a row group.

An exemplar CAT tree and the corresponding CAT table is
shown in Figure 2a and 2b. Once the target row addressA (0 ≤
A < (number of rows in a bank)) of a row ACT command
is received by CAT, CAT must increment the ACTCNT of
c2 in the counter table entry ct2, which counts the ACTs to
the row group of row A. To access c2, search table entry s0
is first accessed, and the first bit of A is used to determine
whether c2 is in the left node or the right node. As c2 is in
the left node, L_leaf flag is checked. Seeing that L_leaf is 0,
CAT uses L_addr value to access the next entry in the search
table (s1), and the next bit in address A is used to determine
which node c2 belongs to in this entry. CAT iterates through
this process until it finds the entry in which _leaf flag is 1
(s2), indicating that _addr field points to a counter in the
counter table. Therefore, _addr is used to access the counter
table, finally accessing c2 and incrementing the ACTCNT . By
implementing CAT as a linked list, the maximum time to
access a counter entry in CAT becomes directly proportional
to the maximum level of the CAT tree because one additional
search tree access is required per counter level increase. This
makes CAT scalable in size, as the latency to access a counter
is proportional to the number of accesses to CAT, which is
determined by the levels of CAT rather than the number of
entries in the CAT table. In Section IV-D, we show how this
property can be exploited to reduce the table size of CAT.

C. EVALUATING CAT WITH RESPECT TO TIME WINDOW
The reason why CAT incurs the most additional ACTs in
Figure 1 and in [19] is that CAT has to refresh rows in groups,
whereas TWiCe can pinpoint which exact rows have the
potential to cause row-hammering and refresh just two adja-
cent rows whenever the refresh threshold is reached. If CAT
is constructed with 17 levels (levels 0-16) for a DRAM bank
with 65,536 (= 216) rows, a counter at the 17th (level 16)
level would be associated with a single DRAM row as the
number of rows per counter is halved every level. Therefore,
we only need to refresh the two adjacent rows adjacent to the
row when Lvth[L] is exceeded for a counter at the 17th level.
However, increasing the number of levels also decreases the
number of ACTs between level thresholds, which increases
the number of splits. Therefore, increasing the number of
levels makes it more likely that all counters in CAT would
be active, aggravating the problem outlined in Section III-A
where a very large row group is allocated to a single counter
because counters cannot be split further.

To prevent CAT counters from being overflowed as the
number of levels increase, CAT must be provisioned to
the maximum possible number of counters within tREFW.
To evaluate precisely how many counters are needed,

we leverage the intuition from TWiCe that the number of
ACTs within a refresh window is bounded. Because one
additional counter is needed every time an existing counter
reaches Lvth[n] and splits, the maximum number of counters
that could be used in tREFW is (maximum number of splits in
tREFW) + (initial counters). If we can calculate how many
splits could occur using the maximum number of ACTs in
tREFW, we can deduce the number of counters CAT needs to
stop its counters from being overflowed.

We name this time window optimized version of CAT as
CAT-TWO, which differs from CAT in that it refreshes rows
on a per-aggressor-row basis, without running out of counters
to allocate whenever a counter needs to be split. To calculate
the exact number of counters that would stop CAT-TWO from
overflowing, we should first decide how to set Lvth[n].

D. CAT-TWO COUNTERS VERSUS LVTH [n]
We conduct a Lvth[n] sensitivity analysis, evaluating the
maximum number of counters needed depending on how
Lvth[n] is set. We configure the difference between consecu-
tive Lvth[n] (1[n] = Lvth[n]−Lvth[n−1]) to be an arithmetic
sequence and set the common difference to three different
cases; when the common difference is smaller than zero,
when the common difference is zero (when1[n] = 1[n−1]),
and when the common difference is larger than zero.
Figure 3a shows the change in Lvth[n] when 1[n] is decreas-
ing. Setting1[n] to be a+n×d , when d (common difference
of arithmetic sequence) is less than 0, 1[n] decreases as
the level goes higher; therefore counters in the higher levels
require fewer ACTs to split. This trend flips when d is greater
than 0, where 1[n] increases as the level gets higher, and
when d is 0, 1[n] is the same regardless of the counter’s
level. With 1[n] set as an arithmetic series, the maximum
number of splits in tREFW can be calculated by using a
greedy algorithm: a counter with the least ACTs to Lvth[n]
is chosen to be split repeatedly until the maximum number
of ACTs within tREFW is reached. When d < 0, a counter
at the highest level is chosen to be split over other counters,
and when d > 0, a counter at the lowest level is chosen to be
split. Because 1[n] is the same across all levels when d = 0,
any counter can be chosen in this case.

FIGURE 3. The Figure of a CAT-TWO with L levels when 1[n] is an
arithmetic sequence with a negative common difference (d) (left). Graph
of the maximum number of splits in tREFW versus d (right). The maximum
number of splits steadily decreases as d is increased from -100 to 0 and
steadily increases as d is increased from 0 to 100.

17370 VOLUME 8, 2020

I. Kang et al.: CAT-TWO for DRAM Row-Hammer Prevention

Figure 3b depicts the maximum number of splits within
tREFW when d is increased from −100 to 100. The number
of splits steadily decreases as d gets close to 0 and starts rising
as d passes zero because if there are levels that have lower
1[n] than other levels, ACTs can be focused on those coun-
ters to incur more splits with fewer ACTs. As the capacity to
hold counters is doubled with each level, this phenomenon is
more prevalent when the higher levels need fewer ACTs to
split. Therefore, more counters can be split with fewer ACTs,
and less prevalent when the higher levels need fewer ACTs to
split. This is why the number of splits increases more steeply
when d is decreased from 0 rather than when it is increased
from 0.

Therefore, the maximum number of splits is minimized
when the 1[n] is the same throughout all levels. Setting the
equal difference between Lvth[n] brings another benefit; it is
easy to analyze howmany splits could occur in tREFW.When
the 1[n] is the same throughout all levels, it does not matter
which counter is chosen to split as all counters would require
the same amount of ACTs to split. Therefore, the maximum
number of splits would be (# of ACTs in tREFW)/a and the
number of counters would be:

counters =
ACTs in tREFW

1
+ # of roots,

1 = 1[n] = Lvth[n]− Lvth[n− 1] =
RHth
Lvs

(1)

IV. OPTIMIZING CAT-TWO
Given the aforementioned new restrictions, there are more
optimization opportunities to reduce the number of counters
or reduce the size of CAT-TWO.

A. MULTIPLE TREE ROOTS
From eqnarray (1), if we reduce the number of levels,
we increase the difference between Lvth[n] (1), decreasing
the number of counters. Previously, it was assumed that
CAT-TWO stems from a single root. If we start frommultiple
roots, we can reduce the number of levels needed for the last
level to count only one row. For example, if we start from
4 tree roots, only 15 levels are needed to split the counters to
individual rows. Lvth[n] becomes Lvth[L]/15, which is larger
than Lvth[L]/17. However, increasing the number of roots
means that counters that do not receive ACT commands and,
therefore, would not have split are initially split, increasing
the total number of counters. Therefore, the number of roots
must balance the decrease in the maximum number of splits
and the increase in initial counters. Figure 4 depicts the
number of maximum counters versus the number of roots.
Initially, the maximum number of counters decreases as the
number of levels is decreased. When the number of roots
surpasses 64, the number of counters increases as the number
of roots becomes a dominant source of counters. Therefore,
we implement CAT-TWO with 64 roots and 11 levels.

The idea of using multiple roots is also discussed in [27].
However, multiple roots in our scheme reduce the number of
levels, whereas [27] maintains the number of levels, choosing

FIGURE 4. Number of roots vs. maximum number of counters.

to pre-split all nodes of a tree to a certain level M and not
to alter the tree structure. If the tree structure is maintained,
the number ofACTs for the first split is increased from Lvth[0]
to Lvth[M]. By contrast, in CAT-TWO, as the number of
counters must be provisioned to accommodate the worst-case
memory access pattern, this approach increases the number of
counters rather than decreasing it. It is because after reaching
Lvth[M], the number of ACTs needed for the next splits is
1 regardless which level CAT-TWO is pre-split to, and the
number of initial counters that are pre-split (2M) is greater
than the number of counters saved by preventing splits until
Lvth[M] ACTs (M). Therefore, the maximum number of
counters is increased from when the tree is grown from one
initial node, which does not benefit our effort to reduce the
size of CAT-TWO.

B. RANK-LEVEL CAT-TWO
All previous row-hammer mitigation solutions were designed
to be deployed on a per-bank basis. However, the frequency
of DRAM ACTs are limited by tRC for a DRAM bank, but
the frequency of DRAM ACTs for a DRAM rank is limited
by tRRD and tFAW. As an example, a DDR4 DRAM whose
tRC is set to be 44.5 ns amounts to 1,351,680 ACTs per bank
in tREFW; however, tFAW is set to 21 ns, which amounts
to 11,632,640 ACTs per rank in tREFW. For a DRAM rank
consisting of 16 banks, this means the sum of ACTs per
bank, 1,351,680× 16= 21,626,880, is about 1.85 times more
than the maximum ACTs per rank. Therefore, rather than
distributing a smaller CAT-TWO table to each bank, if we
implement CAT-TWO at a per-rank basis and aggregate the
tables to create one large CAT-TWO table to track all ACTs
to a rank, we can cut down the maximum number of ACTs
in tREFW, reducing the aggregate number of splits and coun-
ters. While TWiCe is also affected by the maximum number
of ACTs per tREFW, this idea does not apply to TWiCe as
content addressable memories are needed to manage TWiCe
tables, and the total latency would increase too much when
implementing one big table for the entire DRAM rank.

Although rank-level CAT-TWO reduces the total number
of counters of a rank, it comes at the cost of increasing the size
of a single search table entry. When CAT-TWO is modified
from being deployed per bank to per rank, the number of
entries of a single CAT-TWO table (search and counter)
increases from hundreds to several thousand as a single

VOLUME 8, 2020 17371

I. Kang et al.: CAT-TWO for DRAM Row-Hammer Prevention

FIGURE 5. Original CAT tables (left) and unified tables (right).

CAT-TWO table covers the entire rank. In this case, the width
of _addr entries would have to be increased to be over 10 bits,
increasing the size of a single entry. In the next section,
we propose unifying the search and counter tables together
to reduce the size of CAT-TWO despite the increase in the
width of an entry.

Another challenge to rank-level CAT-TWO is the increase
in CAT-TWOclock speed. The clock speed of CAT-TWOwas
not a problemwhen it was deployed per bank as themaximum
frequency of ACTs for a bank is limited by tRC (44.5 ns
for DDR4). A CAT-TWO with 11 levels would require a
maximum of 13 table accesses per ACT (When a counter
split, the total number of accesses would be 13; 11 accesses
to read ACTCNT , plus one access to write-back the location of
the split counter, plus one access to record the new counter),
which requires CAT-TWO to operate at a minimum clock
speed of 13 accesses/44.5 ns = 0.292 GHz. If CAT-TWO
is deployed per rank, the throughput of ACTs to a rank is
limited by tFAW/4, which translates to 13 accesses/(21 ns
/ 4) = 2.48 GHz in clock speed. However, this frequency
is too high to be implemented in a wide range of systems,
and while the average time between ACTs is limited by
tFAW/4, the minimum time between two ACTs is limited
by tRRD (3.3 ns). Therefore, if CAT-TWO operates below
13 accesses/3.3 ns = 3.93 GHz, CAT-TWO needs buffers to
store the ACT commands and a more complicated control
logic. To deploy CAT-TWO on a wide range of systems,
CAT-TWOmust operate at lower speeds while satisfying both
tFAW and tRRD timing constraints, for which the number
of levels of CAT-TWO must be decreased to reduce the
number of table accesses. Employing multiple tree roots
cuts down the number of levels of CAT-TWO, but using the
idea to reduce the levels beyond 10 levels is impractical as
the number of counters grows exponentially with each level
reduction. To solve this problem, we introduce high-radix
CAT-TWO, which will be discussed in Section IV-D.

C. UNIFIED TABLES
Instead of separating the search and counter tables as
[27] suggests, we propose to unify the two tables together
to reduce CAT-TWO size and table accesses. Rank-level
CAT-TWO requires over 10 bits for _addr , which is

FIGURE 6. CAT-TWO radix vs. table size (bar) and clock speed (line).

comparable to the 15 bits that the counter table requires to
record ACTCNT . Therefore, instead of separating the search
table and counter table, it makes sense to reduce the total size
of CAT-TWO by increasing the width of _addr to 15 bits to
be used as both _addr and ACTCNT .
A rank-level CAT-TWOwith 64 roots requires 4,416 coun-

ters, which means _addr would have to be 13 bits wide to
cover all counters in CAT-TWO.When the search and counter
tables are separated, the search table would have M-1 entries
with 28 bits/entry (R_addr+L_addr+L_leaf+R_leaf) and a
counter table withM entries with 15 bits/entry, which equates
to a consolidated size of 43 bits per entry. However, if wewere
to increase the size of the _addr fields to 15 bits and use the
field to point to the next table entry when _leaf entry is 0 and
use the field as ACTCNT when _leaf is 1, this reduces the
bits per counter to 32 bits per entry. Therefore, unifying the
search table and the counter table reduces the total table size
by about 26%. Moreover, the unified table reduces one table
access as there is no need to check the last search table entry
in checking the address of the counter in the counter table.

D. HIGH-RADIX CAT-TWO
CAT-TWO has been assumed to have a binary tree. However,
if CAT-TWO has a higher-radix tree that splits to more than
2 counters every time a counter splits, the number of levels
required to count a single row per counter at the last level
would decrease. For example, a CAT-TWOwith radix-4 with
a single root would require only 8 levels to divide the initial
rows to a single counter, while a binary CAT-TWO required
16 levels. Therefore, high-radix CAT-TWO could be used
to reduce the number of table accesses to access a counter,
reducing CAT-TWO clock speed. However, while doubling
the radix roughly halves the number of levels, it also increases
the number of new counters per split, increasing the total
number of counters.

Figure 6 depicts the change in CAT-TWO table size and
clock speed, as the radix of CAT-TWO is increased from
2 to 16. CAT-TWO is assumed to be deployed per-rank, with a
unified table and 64 roots, and finishes counter updates within
tRRD. Table size is used to compare the tables because the
number of counters does not offer a fair comparison when the
radix is changed, as higher radix CAT-TWO requires fewer
_out fields to record the structure of the tree. When the radix
increases from 2 to 4, there is only an 8% increase in size,

17372 VOLUME 8, 2020

I. Kang et al.: CAT-TWO for DRAM Row-Hammer Prevention

whereas the size increases 39% and 56% when the radix
incremented from 4 to 8 and 8 to 16, respectively. The reduc-
tion in clock speed is the highest when the radix is increased
from 2 to 4, and the clock speed reduction diminishes when
the radix is increased to 8 and 16. We choose to implement
CAT-TWO with a radix-4 tree as it can be operated at a
low enough speed. When reducing the clock speed is crucial,
further increasing the radix at the cost of an increase in size
is a viable option.

V. EVALUATION
A. EXPERIMENTAL SETUP
We analyzed the energy and timing of CAT-TWO, and com-
pared the table size and performance, in terms of an increase
in ACTs, against other row-hammer solutions. We assessed
the increase in ACTs due to the row-hammer solutions on
a system simulated with McSimA+ [1]. The row-hammer
prevention schemes were assumed to be implemented on a
multi-core system with DDR4-2400 DRAM. Other simula-
tion parameters are summarized in Table 1.

From SPEC CPU2006 benchmarks [6], we created
29 SPECrate workloads and 2 mixed multi-programmed
workloads to run in the simulations. The most representa-
tive 100M instructions were extracted from each application
using Simpoint [28], and 16 copies of the same applica-
tion were used as a multi-programmed workload. Mix-high
workload was created using 9 applications with the most
memory access per kilo-instructions (MAPKI) (mcf, milc,
leslie3d, soplex, GemsFDTD, libquantum, lbm, sphinx3, and
omnetpp), and mix-blend workload was created using 16 ran-
dom SPEC CPU2006 applications regardless of MAPKI.
We also evaluated the protection schemes against targeted
row-hammer attack scenarios, where a single row in a bank
(single-bank attack) or rows distributed across multiple banks
(9 banks of the same rank, multi-bank attack) are repeatedly
activated at maximum frequency. Because ACTs to a bank are
limited by tRC and ACTs to a rank by tFAW, only 8 banks can
be activated at themaximum frequency of ACTs to a bank and
1 bank at 60% of the maximum frequency of ACTs to a bank.

Table size and increase in ACTs were evaluated between
PARA, original CAT with 64 counters per bank (CAT-64),
original CAT with 256 counters per bank (CAT-256), CAT-
TWO, and TWiCe. CAT-TWO was designed to be radix-4,
6 levels, and 64 roots with 2,386 table entries, where each
entry is 64 bits wide, holding a maximum of 4 counters.
Parameters for the DRAM that the row-hammer prevention
schemes were deployed to are summarized in Table 2.

B. RESULTS
1) TIMING AND ENERGY
We analyzed the energy overhead of CAT-TWO tables using
CACTI-6.5 [31] with 32 nm process and derived DRAM
energy usage from DDR4 SDRAM system-power calcula-
tor [21]. While the logic layer of CAT-TWO contributes to
the energy, it incurs negligible energy overhead compared to

TABLE 1. Parameters of simulated system.

TABLE 2. DRAM parameters [10].

TABLE 3. Timing/energy of CAT-TWO/DRAM operations.

the CAT-TWO tables. Therefore, we focus on the CAT-TWO
table accesses in this paper.

We designedCAT-TWOas one bank of SRAMwith 8 bytes
of data per line with 2,386 lines, amounting to 19 KB per
8 GB DRAM rank, and CAT-TWO is assumed to operate at
2.44 GHz. As the number of accesses to increment ACTCNT
differs by the level that the counter is in, we show the min-
imum and maximum energy consumption and timing. The
number of accesses to increment ACTCNT equals to the tree
traversal to locate the ACTCNT and another write access to
increment the ACTCNT . Hence, the number of accesses at

VOLUME 8, 2020 17373

I. Kang et al.: CAT-TWO for DRAM Row-Hammer Prevention

the bottom level is 2 while the number of access at level 5,
the last level, is 6. Splits require one additional access than
normal ACTCNT increment as the newly created entry must
be allocated. However, as splits only occur until the second
to last level, the maximum number of accesses remains the
same. Refreshes require finding a counter at the last level and
resetting theACTCNT back to zero, incurring the same number
of accesses as when the ACTCNT of a counter at the last level
is incremented. Periodic resetting requires CAT-TWO to reset
256 entries (entries per bank× number of banks= 16× 16),
requiring 256 writes.

The timing requirements of CAT-TWO are within DRAM
timing parameters, and the energy overhead is negligible
compared to DRAM operations. The longest time to update
the table is 2.46 ns, which is less than tRRD of 3.3 ns, and the
time it takes to reset the table is 104.8 ns while tRFC is 350 ns.
The CAT-TWO table operations take less time than DRAM
operations, causing no performance overhead. The energy
overhead is negligible compared to DRAM operations, with
0.7% maximum energy overhead per table update, and 0.2%
energy overhead per reset.

FIGURE 7. Row-hammering prevention scheme table sizes.

2) TABLE SIZE
Figure 7 shows the table size of each row-hammer preven-
tion scheme in bytes per DRAM bank. The table size of
CAT-TWO is the amortized size per bank; the table size per
rank divided by the number of banks. PARA, which does not
use a table, incurs zero table size overhead. CAT-64 has the
next smallest table as it uses a small number of counters. The
size of CAT-256 and CAT-TWO is comparable to each other,
with CAT-TWO being 13% larger than CAT-256. TWiCe
requires the largest table, 2.32 times the size of CAT-TWO.

3) ADDITIONAL ACTs
Figure 8 shows the results from the simulation. Benchmarks
with the highest increase in ACTs were selected to be shown
in the figure. On average of SPECrate, PARA incurred the
most increase in ACTs, 0.1%, followed by CAT-64 and
CAT-256, 0.0487% and 0.0318%, respectively. However,
CAT-64 incurred a higher increase in ACTs than PARA in
soplex, GemsFDTD, libquantum, and mix-high, reaching as
high as 0.25% in mix-high. CAT-256 also incurred a higher
increase in ACTs than PARA in soplex and libquantum,
reaching as high as 0.21% for libquantum. This is due to
the effects of limited number of counters and levels, and the
effect of duplicated ACTs. CAT-TWO incurred a 0.000006%

increase in ACTs on average, which is less than 0.02% of the
increase in ACTs incurred by CAT-256. In detail, CAT-TWO
incurred no increase in ACTs except for the omnetpp appli-
cation, where the number of ACTs is increased merely by
0.00018%. TWiCe incurred no increase in ACTs across all
tested applications.

In the targeted row-hammer attacks, when attacking a sin-
gle row of one bank (single-bank attack), PARA, CAT-64, and
CAT-256 all incurred around 0.1% increase in ACTs, while
CAT-TWO and TWiCe both incurred 0.006% increase in
ACTs. In the multi-bank attack, CAT-64 and CAT-256 incur
a slight decrease in ACTs, incurring slightly less than 0.1%
increase in ACTs. This is because not all the rows that are
being attacked can be activated at the maximum frequency
as it is being limited by tFAW. CAT-TWO and TWiCe again
incur the same increase in ACTs at 0.006%.

All in all, CAT-TWO incurs the same rate of additional
ACTs to TWiCe in all the applications but omnetpp, where
CAT-TWO has slightly more ACTs. PARA, CAT-64, and
CAT-256 all incur significantly more ACTs as they incur over
5,151 times and 16 times the additional ACTs of CAT-TWO
in the SPECrate benchmarks and the targeted attack scenar-
ios, respectively.

4) WORST-CASE ANALYSIS (MAXIMUM NUMBER OF
ADDITIONAL ACTs)
Although CAT-64, CAT-256, CAT-TWO, and TWiCe all have
the same RH_th, in some applications, CAT-64 and CAT-
256 incurred additional ACTs while CAT-TWO and TWiCe
did not. It is because, at all levels except the last level, CAT
based row-hammer mitigation solutions track ACTCNT in
groups of rows and duplicate the ACTCNT whenever the coun-
ters are split. When ACTs are sent to rows of the same group,
ACTCNT increases indiscriminately of the row that receives
the ACT. Therefore, the difference between the ACTCNT of a
row and the actual number of ACTs the row receives is large
when ACTs are concentrated to the rows of the same group.
This phenomenon becomes problematic if the traffic pattern
is such that the duplicated ACTCNT is used to trigger refreshes
to rows that are not vulnerable to row-hammering, and hence
the additional row refreshes incur a large overhead. There-
fore, we analyzed the maximum number of ACTs caused
by the duplicated ACTs to verify that CAT-TWO would not
hamper system performance under the worst traffic pattern.

A greedy algorithm was used to assess the maximum num-
ber of increased ACTs when duplicated ACTCNT is exploited.
Figure 9 depicts the algorithm that was used to maximize
refreshes. First, the CAT tree is grown by continuously send-
ing ACTs to a single row (mapped to counter A) until it is
split to the last level, then the row is activated again until it
is refreshed. Once refreshed, the ACTCNT of counter A resets
to 0. Therefore, the subsequent ACTs are sent to the row of
counter B, which requires the least number of ACTs to be
refreshed. While no ACTs were sent to the row of counter B,
because ACTCNT s were duplicated by CAT while the row of
counter A was activated, counter B is at the last level with

17374 VOLUME 8, 2020

I. Kang et al.: CAT-TWO for DRAM Row-Hammer Prevention

FIGURE 8. Increase in the number of ACTs according to workload. Applications with the highest increase are ACTs is shown.

FIGURE 9. The attack algorithm to maximize ACTs from ACTCNT
duplicates. The tree is grown by concentrating ACTs on one row, then
counters with the least ACTCNT to Lvth[L] are selected to be refreshed.

TABLE 4. The number of worst-case additional ACTs within tREFW.

Lvth[L − 1] as ACTCNT , requiring only 1[L] ACTs to be
refreshed. When counter B is refreshed, counter C is then
selected to be refreshed as it requires the least number of
ACTs. The algorithm continues until all ACTs in tREFW
is used to refresh rows or until all counters are used at the
original CAT.When all counters are being used, the algorithm
targets the lowest level counters that can reachRH_thwith the
remaining ACTs to maximize the number of refreshes.

Figure 4 shows the number of refreshes in a bank within
tREFW when the duplicate ACTs are exploited on the
original CAT-64, CAT-256, and CAT-TWO. CAT-64 incurs
2,166,964 additional ACTs and the most refreshes out of
all schemes as 64 counters are used up within tREFW, and
the counter at level 1 is targeted to maximize the number of
additional ACTs. CAT-256 does not use up all counters, but
the number of additional ACTs is 14,784 and still large as
every time a counter reaches RH_th, 34 rows are refreshed.
CAT-TWO incurs only 368 additional ACTs, the least num-
ber of additional ACTs, and less than 2.5% of either CAT
configurations. This result concurs with the simulation results
in figure 8 where CAT-64 and CAT-256 incurs a large num-
ber of refreshes because of the duplicated ACTs, whereas
CAT-TWO incurs negligible to zero additional ACTs.

Additionally, this result also highlights that even in the
worst case, the additional ACTs are negligible for CAT-TWO
because CAT-TWO only incurs 368 maximum additional
ACTs in tREFW, which is only 0.03% of the maximum
number of ACTs in tREFW to a bank.

C. DECREASING 1[L]
While 1[n] affects the number of splits in tREFW, 1[L]
does not, because a counter that reaches Lvth[L] is refreshed.
Therefore, if we were to decrease 1[L] and use the surplus
ACTs to increase other 1[n], we can reduce the number of
ACTs in tREFW and decrease the total number of coun-
ters. However, this optimization comes at the expense of
increasing the effect of duplicated ACTCNT s. As more ACTs
are accumulated before counters are split, more ACTCNT
is duplicated and increases the maximum number of addi-
tional ACTs.

Figure 10 shows the number of additional ACTs and the
number of entries per bank against the reduction in 1[L].
When the reduction in1[L] goes from 0 to 5,400, the number
of entries per bank decreases from 149 to 127, and the addi-
tional ACTs increases from 368 to 1,192.While the additional
ACTs increases steeply with the reduction in 1[L], if the
additional ACTs are within a tolerable envelope or if it is
crucial to reduce the size of CAT-TWO, this optimization
could be used to trade CAT-TWO table size with an increase
in the maximum number of additional ACTs.

FIGURE 10. The number of additional refreshes and number of entries
per bank against reduction in 1[L].

VOLUME 8, 2020 17375

I. Kang et al.: CAT-TWO for DRAM Row-Hammer Prevention

VI. CONCLUSION
We have proposed CAT-TWO, a time window optimized
counter-based adaptive tree that counts theACTs to a group of
rows, but always refreshes rows on a per-aggressor-row basis.
CAT-TWO is guaranteed to refresh rows adjacent to a single
aggressor row by provisioning it with enough counters such
that a counter that passes Lvth[n] can always split. We further
optimize CAT-TWO to shrink its table size by analyzing the
effect of Lvth[n] to the number of counters, utilizing multi-
ple tree roots, deploying CAT-TWO per rank, and unifying
CAT-TWO tables. We also reduce the number of accesses to
a CAT-TWO table to reduce the clock speed by utilizing a
high-radix tree. Our analysis shows CAT-TWO incurs only
0.7%more energy on table updates and 0.2%more energy on
table resets. CAT-TWO performs on par with TWiCe with
regard to the increase of ACTs and 16× to 5,151× better
than CAT-256. The table size of CAT-TWO is less than half
of that of TWiCe and only 13% larger than that of CAT-256.
Furthermore, even in the worst-case CAT-TWO only requires
0.03% of the maximum number of ACTs within tREFW to
ensure row-hammer prevention.

REFERENCES
[1] J. H. Ahn, S. Li, S. O, and N. P. Jouppi, ‘‘McSimA+: A manycore sim-

ulator with application-level+ simulation and detailed microarchitecture
modeling,’’ in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS),
Austin, TX, USA, Apr. 2013, pp. 74–85.

[2] I. Bhati, M.-T. Chang, Z. Chishti, S.-L. Lu, and B. Jacob, ‘‘DRAM refresh
mechanisms, penalties, and trade-offs,’’ IEEE Trans. Comput., vol. 65,
no. 1, pp. 108–121, Jan. 2016.

[3] S. Bhattacharya and D. Mukhopadhyay, ‘‘Advanced fault attacks in soft-
ware: Exploiting the rowhammer bug,’’ in Fault Tolerant Architectures
for Cryptography and Hardware Security. Singapore: Springer, 2018,
pp. 111–135.

[4] S. Cha, S. O, H. Shin, S. Hwang, K. Park, S. J. Jang, J. S. Choi, G. Y. Jin,
Y. H. Son, H. Cho, J. H. Ahn, and N. S. Kim, ‘‘Defect analysis and cost-
effective resilience architecture for future DRAM devices,’’ in Proc. IEEE
Int. Symp. High Perform. Comput. Archit. (HPCA), Austin, TX, USA,
Feb. 2017, pp. 61–72.

[5] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’connell,
W. Schoechl, and Y. Yarom, ‘‘Another flip in the wall of Rowhammer
defenses,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 245–261.

[6] J. L. Henning, ‘‘SPEC CPU2006 memory footprint,’’ SIGARCH Comput.
Archit. News, vol. 35, no. 1, p. 84, Mar. 2007.

[7] N. Herath and A. Fogh, ‘‘These are not your grand Daddys CPU perfor-
mance counters—CPU hardware performance counters for security,’’ in
Proc. Black Hat Briefings, 2015.

[8] M. Horiguchi and K. Itoh, Nanoscale Memory Repair. New York, NY,
USA: Springer, 2013.

[9] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk.
San Mateo, CA, USA: Morgan Kaufmann, 2007.

[10] DDR4 SDRAM Standard, Standard JESD79-4B, JEDEC, 2012.
[11] Low Power Double Data Rate 3 (LPDDR3), Standard JESD209-3C,

JEDEC, 2013.
[12] Low Power Double Data Rate 4 (LPDDR4), Standard JESD209-4B,

JEDEC, 2014.
[13] D. Kaseridis, J. Stuecheli, and L. K. John, ‘‘Minimalist open-page:

A DRAM page-mode scheduling policy for the many-core era,’’ in
Proc. 44th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Porto Alegre, Brazil, 2011, pp. 24–35.

[14] B. Keeth, R. J. Baker, B. Johnson, and F. Lin, DRAM Circuit Design,
2nd ed. Piscataway, NJ, USA: IEEE, 2008.

[15] D.-H. Kim, P. J. Nair, and M. K. Qureshi, ‘‘Architectural support for
mitigating row hammering in DRAM memories,’’ IEEE Comput. Archit.
Lett., vol. 14, no. 1, pp. 9–12, Jan. 2015.

[16] M. Kim, J. Choi, H. Kim, and H.-J. Lee, ‘‘An effective DRAM address
remapping for mitigating Rowhammer errors,’’ IEEE Trans. Comput.,
vol. 68, no. 10, pp. 1428–1441, Oct. 2019.

[17] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, ‘‘Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,’’ in Proc. ACM/IEEE
41st Int. Symp. Comput. Archit. (ISCA), Jun. 2014.

[18] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, ‘‘RAMBleed: Reading bits
in memory without accessing them,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), 2020.

[19] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, ‘‘TWiCe: Preventing
row-hammering by exploiting time window counters,’’ in Proc. 46th Int.
Symp. Comput. Archit. (ISCA), Phoenix, AZ, USA, 2019, pp. 385–396.

[20] E. Lee, S. Lee, G. E. Suh, and J. H. Ahn, ‘‘TWiCe: Time window counter
based row refresh to prevent row-hammering,’’ IEEE Comput. Arch. Lett.,
vol. 17, no. 1, pp. 96–99, Jan. 2018.

[21] DDR4 SDRAM System-Power Calculator, Micron Technol., Boise, ID,
USA, 2016.

[22] O. Mutlu and J. S. Kim, ‘‘RowHammer: A retrospective,’’ IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., to be published.

[23] O. Mutlu and T. Moscibroda, ‘‘Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems,’’ in
Proc. Int. Symp. Comput. Archit., Beijing, China, Jun. 2008, pp. 63–74.

[24] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, ‘‘Flip
Feng Shui: Hammering a needle in the software stack,’’ in Proc. USENIX
Secur. Symp., Austin, TX, USA, 2016, pp. 1–18.

[25] M. Seaborn and H. Flake, ‘‘Exploiting the DRAMRowhammer bug to gain
kernel privileges,’’ in Proc. Black Hat Briefings, 2015.

[26] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, ‘‘Counter-based tree
structure for row hammering mitigation in DRAM,’’ IEEE Comput. Archit.
Lett., vol. 16, no. 1, pp. 18–21, Jan. 2017.

[27] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, ‘‘Mitigating wordline
crosstalk using adaptive trees of counters,’’ in Proc. ACM/IEEE 45th Annu.
Int. Symp. Comput. Archit. (ISCA), Los Angeles, CA, USA, Jun. 2018,
pp. 612–623.

[28] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, ‘‘Automatically
characterizing large scale program behavior,’’ in Proc. ASPLOS, San Jose,
CA, USA, 2002, pp. 45–57.

[29] M. Son, H. Park, J. Ahn, and S. Yoo, ‘‘Making DRAM stronger against row
hammering,’’ in Proc. 54th Annu. Design Autom. Conf. (DAC), Austin, TX,
USA, 2017, pp. 1–6.

[30] Y. H. Son, S. Lee, O. Seongil, S. Kwon, N. S. Kim, and J. H. Ahn, ‘‘CiDRA:
A cache-inspired DRAM resilience architecture,’’ in Proc. IEEE 21st Int.
Symp. High Perform. Comput. Archit. (HPCA), Burlingame, CA, USA,
Feb. 2015, pp. 502–513.

[31] S. Thoziyoor, J. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi,
‘‘A comprehensive memory modeling tool and its application to the design
and analysis of future memory hierarchies,’’ in Proc. ISCA, Beijing, China,
2008, pp. 51–62.

[32] V. Van Der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, ‘‘Drammer: Deterministic
Rowhammer attacks on mobile platforms,’’ in ACM CCS, Vienna, Austria,
2016, pp. 1675–1689.

[33] Y. Wang, Y. Liu, P. Wu, and Z. Zhang, ‘‘Detect DRAM disturbance error
by using disturbance bin counters,’’ IEEE Comput. Archit. Lett., vol. 18,
no. 1, pp. 35–38, Jan. 2019.

[34] J. M. You and J.-S. Yang, ‘‘MRLoc: Mitigating Row-hammering based
on memory locality,’’ in Proc. 56th Annu. Design Autom. Conf. (DAC),
Las Vegas, NV, USA, 2019, pp. 1–6.

INGAB KANG received the B.S. degree in electri-
cal and computer engineering from Seoul National
University, where he is currently pursuing the
M.S. degree with the Graduate School of Conver-
gence Science and Technology. His research inter-
ests include secure computing and secure memory
systems.

17376 VOLUME 8, 2020

I. Kang et al.: CAT-TWO for DRAM Row-Hammer Prevention

EOJIN LEE received the B.S. degree in electrical
and computer engineering from Seoul National
University, in 2013, where he is currently pursuing
the Ph.D. degree with the Graduate School of Con-
vergence Science and Technology. His research
interest includes memory system optimization and
computer architecture for accelerating emerging
applications.

JUNG HO AHN (Senior Member, IEEE) received
the B.S. degree in electrical engineering from
Seoul National University, and the M.S. and Ph.D.
degrees in electrical engineering from Stanford
University, Stanford, CA, USA.

He is currently a Professor with the Gradu-
ate School of Convergence Science and Technol-
ogy, Seoul National University. He is interested in
bridging the gap between the performance demand
of emerging applications and the performance

potential of modern and future massively parallel systems.

VOLUME 8, 2020 17377

	INTRODUCTION
	BACKGROUND
	DRAM BASICS
	PREVIOUS ROW-HAMMER SOLUTIONS

	EXPLORING CAT
	PROFUSE REFRESHES
	CAT IMPLEMENTATION
	EVALUATING CAT WITH RESPECT TO TIME WINDOW
	CAT-TWO COUNTERS VERSUS LVTH[n]

	OPTIMIZING CAT-TWO
	MULTIPLE TREE ROOTS
	RANK-LEVEL CAT-TWO
	UNIFIED TABLES
	HIGH-RADIX CAT-TWO

	EVALUATION
	EXPERIMENTAL SETUP
	RESULTS
	TIMING AND ENERGY
	TABLE SIZE
	ADDITIONAL ACTs
	WORST-CASE ANALYSIS (MAXIMUM NUMBER OF ADDITIONAL ACTs)

	DECREASING [L]

	CONCLUSION
	REFERENCES
	Biographies
	INGAB KANG
	EOJIN LEE
	JUNG HO AHN

