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ABSTRACT Object tracking is one of the important research topics in computer vision. Despite the
great progress in this area, effectively and efficiently tracking object in videos still remains challenging
especially in scenarios of rapid movement of objects, illumination changes, appearance of similar objects
in the background. In this work, we propose an object tracking method by improving the state-of-the-art
tracker MDNet based on channel attention, which can distinguish among similar objects by suppressing the
background and highlighting the object. We integrate the channel attention module and group normalization
into MDNet network. To validate the effectiveness of the proposed tracker, we compare it with a number
of existing state-of-the-art trackers in terms of success rate and precision on OTB-100, OTB-50 and CVPR
2013 datasets. The test results have demonstrated the effectiveness and improvement of the proposed tracking
algorithm.

INDEX TERMS Channel attention, deep convolutional network, object tracking.

I. INTRODUCTION
Object tracking has long been a challenging and hot research
problem in computer vision, which has broad applications in
areas of visual navigation, traffic monitoring, military guid-
ance, astronomical observation and meteorological analysis.
Object tracking estimates the motion state of the object,
including the position, speed and acceleration in subsequent
video frames given the information of the initial frame. To
track the target in videos, the algorithm usually consists of
two models, the appearance model and motion model. The
appearance model can be further divided into two categories,
generative model and discriminative model. The generative
model maintains a target template by learning features online
and search for the optimal image region that best matches
the template. The corresponding region is the predicted posi-
tion of the target. The discriminative model considers the
tracking process as a binary classification problem which
extracts the features from the target and background to train a
classifier, which is used to separate the target from the image
background of video frames. Many tracking algorithms have
been developed to attack the problem, for example, classic
tracking methods such as Mean shift [1], [2], correlation
filtering [3], [4]. In recently years, deep learning technologies
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have achieved great success in computer vision tasks such
as image classification [5], segmentation [6], cross-modal
retrieval [7]. In object tracking, deep learning based methods
are also widely used, such as DeepSRDCF [8], CCOT [9],
ECO [10], and Siames network [11].

The typical object tracking algorithm consists of several
modules [12]: motion model, feature extraction, observation
model, and model updater, as shown in Fig. 1.

1) Motion model: It generates a set of candidate
regions or bounding boxes that locate the target based
on the estimation of the previous frame. The motion
model mainly establishes the relationship between
the object motion states in the previous and subse-
quent frames in the entire video sequence, and pre-
dicts the target directly or indirectly in the candidate
frames.

2) Feature extraction: It converts targets into easy-to-
handle representations that affect the final performance
of the tracker. Feature extraction methods include
manual feature extraction [13] and automated feature
extraction such as image processing and deep learning
based methods [14], [15].

3) Observation model: The observation model makes a
confidence judgment on the candidate area in the cur-
rent frame, and calculates the probability that the can-
didate region is the target.
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FIGURE 1. Component modules of a typical tracker.

4) Model updater: Themodel updater determines the strat-
egy and frequency of updating the observation model.

Object tracking can be difficult when the tracking target
is occluded by other unrelated objects, moving strenu-
ously or similar objects appear in the view. Tracking algo-
rithms should be robust to these situations. Although there
have been various methods trying to solve these problems
from different perspectives, a large room still remains to
improve. Attention mechanism has been widely used in com-
puter vision tasks such as image classification and segmen-
tation. Several such attempts have been made [16]–[18] to
incorporate attention processing to improve the performance
of CNNs in large scale image classification tasks [19]. In deep
learning based object tracking, considerably less attention
is paid to the attention mechanism across different feature
channels. In order to decrease the interference from the back-
ground and highlight the object, channel-wise attention can
be used to help distinguish the object from the background
as channel attention focuses on "what" is meaningful given
an image [19]. Tracker MDNet [20] is a six-layer model,
in which the first five layers are pre-trained using a large num-
ber of video sequences to capture the sequence independent
features and fine-tune the last a few layers during tracking
to capture the sequence dependent information. This design
and model update strategy achieves good balance between
computational efficiency and tracking accuracy. Therefore,
in this work, we propose to improveMDNet based on channel
attention mechanism. Our work is motivated by the observa-
tion that the channel information of the imagemainly conveys
object identity information, which can be used to differentiate

similar objects. In our work, we embed the channel attention
module at the higher layers of MDNet network. We also
use group normalization to alleviate the batch size problem
caused by batch normalization during training and testing as
the tracking network is trained offline using video sequences
with ground truth data and fine-tuned online with test videos.
We evaluate the proposed tracker on benchmark datasets of
OTB-100, OTB-50, and CVPR-13. Extensive experiments
with ablation studies demonstrate that the proposed method
has achieved better tracking accuracy. In summary,the major
contributions of our work are the followings.

1) We propose to use the channel attention mechanism
to highlight the foreground target and weaken the
background by paying different attentions to differ-
ent channels. This way, similar objects can be better
distinguished.

2) We apply the group normalization to reduce errors
caused by the batch size in batch normalization.

3) We implement the proposed method based on MDNet
and evaluate it extensively on three benchmark
datasets. We show that channel attention mechanism
performs well against the state-of-the-art methods in
terms of tracking accuracy, especially in scenarios
where similar objects appear in the view.

The rest of the paper is organized as follows. Section II
presents the related work of attention mechanism and group
normalization. In Section III, we describe the channel atten-
tionmechanism and group normalization. Section IV presents
the experimental results on three benchmark datasets.
Section V concludes the paper.

II. RELATED WORK
Visual tracking has been an active research area for a long
time. Deep learning technologies, especially deep convolu-
tional neural networks have greatly advanced the accuracy
and effectiveness of object tracking due to the strong capa-
bilities of rich feature representation [20]. Recent researches
have mainly advanced in three directions: increasing the
depth of the network, expanding the width of the network,
and the cardinality [19]. Various deep learning trackers have
been proposed to attack the core problem in tracking, which is
how to detect and locate the object accurately and efficiently
in challenging scenarios with occlusions, out-of-view, defor-
mation, background cluttering, existence of similar objects
and other variations. In DeepSRDCF [8], the authors propose
to use features from the convolutional layers of a CNN for
object tracking. In CCOT [9], Martin et al. goes beyond the
conventional DCF (Discriminative Correlation Filters) and
employs an implicit interpolation model to pose the learning
in the continuous spatial domain and proposes a continuous
convolutional operator.

Siamese networks, which learn similarity functions
to match candidate frame against template image [21],
[22], have drawn great attention in visual tracking
community because of the favorable performance and
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end-to-end trainability. Luca Bertinetto from Oxford Univer-
sity put forward a basic tracking framework: SiamFC [21],
[23], [24], which trains the model offline to learn the simi-
larity to the initial frame using available training dataset and
detects the target online by siamese convolution.

An important characteristic of the human visual system is
that it does not attempt to process the entire scene at once.
Instead, humans use a series of local glimpses and selectively
focus on salient parts to better identify the visual environ-
ment. Attention allows humans to sift out valuable part from
a large amount of information. Similarly, in computer vision,
attention mechanism has been widely used to make the algo-
rithm to focus on the informative and important part of the
image. Many work have been carried out on how to design
deep neural networks equipped with attention mechanism.
According to the attention domain, the attention methods
roughly fall into three categories, spatial domain, channel
domain, and mixed domain [25]. In the work of [26], a spatial
attention deep network combineed with partial PSO (Particle
Swarm Optimization) is proposed. In work of squeeze-and-
excitation network [17], the squeeze step uses global average
pooling to convert the feature map of size H × W × C
into a vector of 1 × 1 × C such that the network can see
the channels with different weights, where H ,W ,C are the
height, width and number of channels of the feature map,
respectively. Wang et al. utilize attention mechanism in a
residual attention network that consists of bottom-up top-
down feedforward structure to perform the image classifica-
tion task [16]. In Cbam [19], the method combines the spatial
and channel attention to take the both advantages.

III. METHOD
A. CHANNEL ATTENTION MODULE DESIGN
In this section, we present the design of the proposed channel
attention module. This is a simple and effective attention
module for feed forward convolutional neural networks. Our
module is based on channel attention, which is more suitable
for object tracking as spatial attention require much more
computation. Channel attention uses channel-to-channel rela-
tionships to generate channel attention maps. To efficiently
calculate the channel attention, we compress the spatial
dimensions of the input feature map. In order to learn spatial
information, average pooling has been widely used so far. In
addition to previous work, we think that max pooling collects
another important clues about object characteristics to infer
more elaborate channel attention. Therefore, we use both
average pooling and maximum pooling features. Because the
number of layers of this network is relatively small, channel
attention only applies to high-level semantics at higher layers
of the tracking model. The channel block attention module is
a lightweight universal module so that it can be seamlessly
integrated into any CNN architecture and the calculation and
parameter overhead is negligibly small as we only add one
channel attention layer to the orignal MDNet model. In addi-
tion, the final model can be trained end-to-end. Fig. 2 shows
the network structure of the channel attention module. The

FIGURE 2. Channel attention module. As illustrated, the input feature
map is passed through max-pooling and average-pooling in parallel.
A following shared network which is a multi-layer perceptron network is
used before the information being merged. Shared network is critical as it
can reduce the number of parameters and the computation.

TABLE 1. Structure of channel attention network.

input feature map on the left is input to the maximum pooling
and the average pooling in parallel. After passing through
the shared network, the data is extended to the dimension of
the feature map and finally merged. The shared block con-
tains two fully connected layers and corresponding activation
layers. Activation layer 1 is a ReLU function and activation
layer 2 is a sigmoid function. Table 1 shows the parameters
of the module layers. Given an intermediate feature map
F ∈ RC×H×W as an input, the channel attention module
calculates the sum of the one-dimensional channel attention
mapMc ∈ RC×1×1.

F∗ = Mc(F)
⊗

F (1)

where
⊗

represents element-wise multiplication to expand
the corresponding attention value, i.e. broadcasting channel
attention values along the channel dimension. F∗ is the final
output. We first use the average pooling and maximum pool-
ing operations to aggregate the spatial information of the fea-
ture map to generate two different spatial context descriptors;
then forward the two descriptors to the shared network to
generate channel attention map Mc ∈ RC×1×1. A shared
network consists of a multi-layer perceptron (MLP), whose
dimensions are determined by the channels of input features.
To reduce parameter overhead, the hidden activation layer
size is set to RC/r×1×1, where r is the reduction ratio, which
is set to 16 in our implementation. After applying the shared
network to each descriptor, we use element-wise summation
to merge the output feature vectors. In summary, channel
attention is calculated as:

Mc(F) = σ (MLP(AvgPool(F))+MLP(MaxPool(F)))

= σ (W1(W0(Fcavg))+W1(W0(Fcmax))) (2)
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where σ is the sigmoid function, W0 ∈ RC/r×C and W1 ∈

RC×C/r . Note that the two inputs share the weight of theMLP,
namely W0 ∈ RC/r×C and W1 ∈ RC×C/r and the activation
function followsW0 immediately.

B. GROUP NORMALIZATION
In the process of training and testing, we notice the signifi-
cant differences between training and testing during tracking.
Group-normalized network structure is applied to reduce the
bias caused by the inconsistent data volume during train-
ing and verification [27]. Unlike batch normalization [28]
which performs more global normalization along the batch
dimension, group normalization divides the channels into
groups and is easy to implement. A series of normaliza-
tion includes BN(batch normalization), LN (layer normal-
ization) [29], and IN (instance normalization) [30] and GN
(group normalization) [27]:

xi =
1
σi
(xi − ui) (3)

Here x represents the feature from a layer and i is the
index. For example, for the case of two-dimensional images,
i = (iN , iC , iH , iW ) is a 4D vector indexing the features in
(N ,C,H ,W ) order, where N is the axis of the batch, C is the
dimension of the channel, H and W are the height and width
dimensions of the space. The u and σ in the above formula is
the mean and standard deviation calculated by:

ui =
1
m

∑
k∈Si

xk (4)

σi =

√√√√ 1
m

∑
k∈Si

(xk − ui)2 + ε (5)

where ε is a small constant, Si is a set of pixels to compute
the mean and standard deviation, and m is the size of this set.
The difference between different normalization methods lies
in the definition of Si. The layer normalization set is defined
as Si = {k|kN = iN }, which means that LN computes u and
σ along the (C,H ,W ) axes for each sample. In IN, this set
is defined as Si = {k|kN = iN , kC = iC }, which means IN
calculates u and σ along (H ,W ) axes for each sample and
each channel.

In all methods, BN, LN, IN compensate for the lack of
representation by learning the linear transformation for each
channel: yi = γ x̂i + β where γ and β are learnable scale
transforms and offsets. The calculations of set GN can be
defined by:

Si = {k|kN = iN , b
kC
C/G
c = b

iC
C/G
c} (6)

Here G is the number of groups to be grouped, and is set
to 32 as a hyperparameter by default. C/G is the number
of channels in each group, GN is the operation between
LN and IN, and the mean and variance are calculated along
(C/G,W ,H ).

FIGURE 3. Model structure of the proposed tracker. CA is the channel
attention module in Fig. 2.

TABLE 2. Network architecture. GN is group normalization, CA is channel
attention. ReLU is the activation layer.

C. TRACKING PROCESS
1) MAIN MODEL
Wemodify the network ofMDNet [20] by integrating channel
attention process and group normalization. Fig. 3 shows the
main model structure. Table 2 shows the network architec-
ture. The first three layers are clipped from a pre-trained
VGG model [31]. Each layer starts with a convolution layer,
followed by the activation layer with the ReLU function.
The first and second layers are then followed by group nor-
malization and maximum pooling layer. Considering that the
network should be small and easier to train, channel attention
layer is appended to the end of the third layer. The fourth
and fifth layer are fully connected layer and activation layer.
Similar to MDNet, the main model is optimized through
multi-domain training and the last fully connected branches
(fc61 - fc6K ) are replaced by single one (fc6), which will be
fine-tuned during online training.

2) TRACKING ALGORITHM
The overall procedure of our tracking algorithm is presented
in Algorithm 1, which is similar to that of [20].

Weight Initialization: The tracker has only one model.
Let wj denote the weight of the jth layer filter in the track-
ing network. w1:5 loads the parameters from the pre-trained
model and w6 is randomly initialized. In the process of
online tracking, the parameters of the convolution kernel w1:3
and the parameters of the attention layer are fixed, while
the fully connected layers w4:6 are updated online. Such an
update strategy not only makes the tracking network more
efficient, but also avoids the over-fitting problems caused by
pre-training.
Motion Model: we generate candidate regions around

the target in the previous frame according to the Gaussian
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Algorithm 1 Online Tracking Algorithm
Input:
Pre-trained CNN filters w1, . . . ,w5,
Attention layer mlp1, mlp2
Initial target state x1
Output: Estimated target state xt
1) Randomly initialize the last layer w6
2) Train a bounding box regression model
3) Draw positive samples S+1 and negative samples S−1
4) Update w4,w5,w6 using S

+

1 and S−1
5) Ts← {1} and Tl ← {1}
6) Repeat:
7) Draw target candidate samples x it
8) Find the optimal target x∗t by

x∗ = arg maxxi f
+(x i)

9) if f +(x∗t ) > 0
10) Draw training samples S+t and S−t
11) Ts← {t}, Tt ← {t}
12) Adjust x∗t using bounding box regression
13) if f +(x∗t ) < 0
14) Update w4,w5,w6 using S

+

v∈Ts and S
−

v∈Ts
15) else if t mod(10) == 0
16) Update w4,w5,w6 using S

+

v∈Tl and S
−

v∈Ts
17) Until the end of sequence

distribution. The mean value of the Gaussian distribution is
x∗t−1, which is object state in previous frame and the covari-
ance is a diagonal matrix diag(0.09r2, 0.09r2, 0.25), where r
is the length of object in previous frame.
Model Updater: In order to increase the robustness and

adaptability of the tracker, we adopt long-term and short-
term update strategy during the tracking process. When the
model score f +(x∗t ) > 0 on the target, the data is updated,
but the model is not updated. This is the long-period update.
When a tracking failure is detected, i.e. f +(x∗t ) < 0, a short-
period update is performed, in which the model is updated
using the samples collected during successful tracking. In
both update schemes, the negative samples are collected from
short-period updates as the negative samples of the previous
frames are usually irrelevant to the current frame target. The
execution of long-period updates and short-period updates
depends on how fast the appearance of the target changes.

IV. EXPERIMENT
A. IMPLEMENTATION DETAILS
1) OFFLINE TRAINING
We choose ImageNet 2015-VID to train the offline model
as it contains large number of videos and are quite differ-
ent from the test videos. 3683 video sequences are selected
with high integrity and the target occupance ratio is less
than 0.5. We randomly select 8 frames from each of these
video sequences. In each frame, 50 positive and 200 negative
patches are generated. A patch is labeled positive if the IOU

FIGURE 4. Precision of the model during offline training. X axis is the
iteration, Y axis is the precision score.

to the ground truth bounding box is over 0.7, negative is
less than 0.5. The model is updated with a mini-batch which
contains only 96 negatives and 32 positives produced by the
hard negative example mining procedure. Fig. 4 shows the
precision curve during the offline training. We can see that
the model precision converges to around 0.96.

2) MODEL UPDATING AND ONLINE TRAINING
The same as MDNet, the time period for short term and long
term update is set to |Ts| = 20, |Tl | = 100 and the model
generates 256 candidate regions around the target in the
previous frame according to theGaussian distribution. During
online updating, the learning rates for ordinary convolution
layers, convolution layer in the attention module and the fully
connected layers are 0.0001, 0.004 and 0.001 respectively.
Similar to offline training, we collect 200 positive samples
and 50 negative samples according to the IOU value with the
calibration bounding box using thresholds 0.7 and 0.3. When
the first frame is initialized, there are 5000 negative samples
(S−1 ) and 500 positive samples (S+1 ). For the bounding box
regressionmodel, we train it using 1000 training samples with
the same parameter settings as in [32].

B. EXPERIMENTAL RESULTS
OTB50 or OTB2013 [33] contains 50 fully annotated
sequences that are collected from commonly used tracking
sequences. OTB100 or OTB2015 [34] is the extension of
OTB2013 and contains 100 video sequences. Some new
sequences are more difficult to track. CVPR-13 [33] has
51 fully annotated sequences. The evaluation is based pre-
cision plot and success plot. The precision plot shows the
percentage of frames with respect to the center distance in
pixels between the tracking result and ground truth. The
success plot shows the percentage of successful frames with
respect to the overlap ratio between the tracking result and
ground truth. The area under curve (AUC) of each success
plot is used to rank the tracking algorithm.

We compare our methods to the state-of-the-art track-
ers, in which MDNet [20] is built on ubuntu16.04’s
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FIGURE 5. Performance comparison of trackers on OTB-50. The left one is
success plot, right one is precision plot.

FIGURE 6. Performance comparison of trackers on CVPR-13. The left one
is success plot, right one is precision plot.

FIGURE 7. Performance comparison of trackers on OTB-100. The left one
is success plot, right one is precision plot.

pytorch1.1 deep learning framework, opencv3.3.0 and
python3.6. The trackers tested are TADT [35](2019CVPR),
Dsiamm [11] (2018ECCV), C-COT [9] (2016ECCV),
HDT [36] (2016CVPR), CF2 [37] (2015ICCV), SRD-
CFdecon [38] (2016CVPR), SRDCF [39] (2016CVPR),
SAMF [40] (2014ECCV), Staple [41](2016CVPR), DSST
[42](2014BMVC), KCF [43](2015TPAMI), LCT [44]
(2015CVPR), CNN-SVM [45] (2015ICML), DeepSRDCF
[8] (2015ICCV).

1) RESULTS ON FULL DATASET
Fig. 5, 6 and 7 show the test results of the proposed tracker
(CDCT) on datasets of OTB-50, CVPR-13, and OTB-100.
From the curves in the figure, we can see that our tracker is
the best among these trackers in terms of success rate and
precision. Table 3 shows the concrete numbers. From the
table, our tracker is slightly better than that of MDNet and
significantly better than that of TADT and DSiamm, which
were published in 2019 and 2018 respectively.

2) RESULTS ON DATASET WITH BACKGROUND CLUTTERS
We also run the comparison tests on the subset of 33, 20 and
23 video sequences with background clutters selected from
OTB-100, OTB-50, CVPR-13 respectively. Fig. 8, 9 and 10

FIGURE 8. Performance comparison of trackers on OTB-50 with BC
(Background Clutters). The left one is success plot, right one is precision
plot.

FIGURE 9. Performance comparison of trackers on CVPR-13 with BC
(Background Clutters). The left one is success plot, right one is precision
plot.

FIGURE 10. Performance comparison of trackers on OTB-100 with BC
(Background Clutters). The left one is success plot, right one is precision
plot.

show the test results of the proposed tracker (CDCT) on
datasets of OTB-50, CVPR-13, and OTB-100. Table 4 shows
the numbers for the performance of MDNet and CDCT. For
the performance of other trackers, please refer to the curves
in the figures. We can see that on this subset of test videos
with background clutters, our proposed tracker still performs
best. Specifically, on the 33 sequences fromOTB-100, CDCT
achieves success rate of 67.92 and precision score of 93.77,
which are both higher than those of MDNet, 66.16 and
93.14 for success rate and precision respectively.

3) TEST EXAMPLES
Fig. 11, 12 and 13 show an example in which the left figure is
the 660th frame and the right one is 663rd frame. Fig. 11 is the
ground truth with the target person annotated. Fig. 12 shows
the prediction given by MDNet and Fig. 13 is the prediction
of our proposed tracker. We can see that our tracker makes
a correct prediction even with similar objects around the
target.
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TABLE 3. Tracker performance comparison on three full datasets.

TABLE 4. Tracker performance comparison on subset with background clutters.

FIGURE 11. Test example: ground truth. The left is frame 660, the right is
frame 663. The target person is annotated in the boxes.

FIGURE 12. Test example: result of MDNet. The left is frame 660, the right
is frame 663. The bounding boxes are the prediction from MDNet tracker.

C. ABLATION EXPERIMENT
In this section, we perform an ablation experiment to see
performance of the tracker. Our tracker integrates channel

FIGURE 13. Test example: result of the proposed method. The left is
frame 660, the right is frame 663. The bounding boxes are the prediction
from the proposed tracker.

attention module and group normalization based on MDNet,
which enhances the foreground by weakening the back-
ground, making the tracker more robust against similar
backgrounds. The network parameters increase by 0.2MB,
which is relatively small, and will not significantly affect the
tracking performance. We compare our tracker with MDNet
with or without channel attention and group normalization.
The experiment is done using the video sequences from
ImageNet 2015-VID object detection. In Table 5, the first
row is the final result. We can conclude that the channel
attention deformationmodule contributes themost to the final
effect, and the group normalization has less contribution.
Group normalization is effective only when the number of
training batches and test batches reaches a certain order of
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TABLE 5. Ablation experiment results.

magnitude. In this experiment, during training, each batch
has 128 patches and in testing, the batch size is 256. The
difference between training and testing batch size is not very
big. In summary, the channel attention module has made
the major contribution to the improvement of the proposed
tracker over the original MDNet.

V. CONCLUSION
In this work, we propose a tracking method by improving
MDNet in two ways. The first one is the integration of
channel attention module, which is designed to make the
tracker more robust when there are similar objects in the
background. The second one is the group normalization tech-
nique, which can effectively solve the inconsistency between
offline, online training and testing if batch normalization
is used. We have tested the proposed tracker on OTB-100,
OTB-50 and CVPR 2013 datasets, compared its performance
with a number of existing state-of-the-art trackers in terms of
success rate and precision. The test results have demonstrated
the effectiveness and improvement of the proposed tracking
algorithm.

REFERENCES
[1] Y. Cheng, ‘‘Mean shift, mode seeking, and clustering,’’ IEEE Trans. Pat-

tern Anal. Mach. Intell., vol. 17, no. 8, pp. 790–799, Aug. 1995.
[2] F. Yang, H. Lu, W. Zhang, and G. Yang, ‘‘Visual tracking via bag of

features,’’ IET Image Process., vol. 6, no. 2, pp. 115–128, 2012.
[3] R. E. Kalman, ‘‘A new approach to linear filtering and prediction prob-

lems,’’ J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.
[4] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,

R. Karlsson, and P.-J. Nordlund, ‘‘Particle filters for positioning, nav-
igation, and tracking,’’ IEEE Trans. Signal Process., vol. 50, no. 2,
pp. 425–437, Aug. 2002.

[5] D. Meng, G. Cao, Y. Duan, M. Zhu, L. Tu, D. Xu, and J. Xu, ‘‘Tongue
images classification based on constrained high dispersal network,’’
Evidence-Based Complementary Alternative Med., vol. 2017, pp. 1–12,
Mar. 2017.

[6] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[7] W. Cao, Q. Lin, Z. He, and Z. He, ‘‘Hybrid representation learning for
cross-modal retrieval,’’ Neurocomputing, vol. 345, pp. 45–57, Jun. 2019.

[8] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg, ‘‘Convolutional
features for correlation filter based visual tracking,’’ in Proc. IEEE Int.
Conf. Comput. Vis. Workshop (ICCVW), Dec. 2015, pp. 58–66.

[9] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, ‘‘Beyond corre-
lation filters: Learning continuous convolution operators for visual track-
ing,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2016,
pp. 472–488.

[10] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, ‘‘ECO: Efficient
convolution operators for tracking,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 6638–6646.

[11] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu, ‘‘Distractor-aware
siamese networks for visual object tracking,’’ in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 101–117.

[12] N. Wang, J. Shi, D.-Y. Yeung, and J. Jia, ‘‘Understanding and diagnosing
visual tracking systems,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 3101–3109.

[13] D. G. Lowe, ‘‘Object recognition from local scale-invariant features,’’ in
Proc. ICCV, 1999, vol. 99, no. 2, pp. 1150–1157.

[14] W. Cao, Y. Li, Z. He, G. Cao, and Z. He, ‘‘Supplementary virtual keypoints
of weight-based correspondences for occluded object tracking,’’ IEEE
Access, vol. 6, pp. 9140–9146, 2018.

[15] R. Wang, Y. Shi, and W. Cao, ‘‘GA-SURF: A new speeded-up robust
feature extraction algorithm for multispectral images based on geometric
algebra,’’ Pattern Recognit. Lett., vol. 127, pp. 11–17, Nov. 2019.

[16] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang,
and X. Tang, ‘‘Residual attention network for image classification,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 3156–3164.

[17] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7132–7141.

[18] W. Cao, Y. Li, and Z. He, ‘‘Weighted optical flow prediction and attention
model for object tracking,’’ IEEEAccess, vol. 7, pp. 144885–144894, 2019.

[19] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, ‘‘CBAM: Convolutional
block attention module,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 3–19.

[20] H. Nam and B. Han, ‘‘Learning multi-domain convolutional neural net-
works for visual tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 4293–4302.

[21] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
‘‘Fully-convolutional siamese networks for object tracking,’’ in Proc. Eur.
Conf. Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 850–865.

[22] J. Yan, C. Li, Y. Li, and G. Cao, ‘‘Adaptive discrete hypergraph matching,’’
IEEE Trans. Cybern., vol. 48, no. 2, pp. 765–779, Feb. 2018.

[23] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, ‘‘Signature
verification using a 1‘siamese’ time delay neural network,’’ in Proc. Adv.
Neural Inf. Process. Syst., 1994, pp. 737–744.

[24] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. S. Torr,
‘‘End-to-end representation learning for correlation filter based tracking,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 2805–2813.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 5998–6008.

[26] Q. Ye, S. Yuan, and T.-K. Kim, ‘‘Spatial attention deep net with partial PSO
for hierarchical hybrid hand pose estimation,’’ in Proc. Eur. Conf. Comput.
Vis. Cham, Switzerland: Springer, 2016, pp. 346–361.

[27] Y.Wu and K. He, ‘‘Group normalization,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 3–19.

[28] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: https://arxiv.org/abs/1502.03167

[29] J. L. Ba, J. R. Kiros, and G. E. Hinton, ‘‘Layer normalization,’’ 2016,
arXiv:1607.06450. [Online]. Available: https://arxiv.org/abs/1607.06450

[30] D. Ulyanov, A. Vedaldi, and V. Lempitsky, ‘‘Instance normalization: The
missing ingredient for fast stylization,’’ 2016, arXiv:1607.08022. [Online].
Available: https://arxiv.org/abs/1607.08022

[31] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ Sep. 2014, arXiv:1409.1556. [Online].
Available: https://arxiv.org/abs/1409.1556

[32] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

VOLUME 8, 2020 17831



Z. He, X. Chen: Object Tracking Based on Channel Attention

[33] Y. Wu, J. Lim, and M.-H. Yang, ‘‘Online object tracking: A bench-
mark,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013,
pp. 2411–2418.

[34] Y.Wu, J. Lim, andM. H. Yang, ‘‘Object tracking benchmark,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1834–1848, Sep. 2015.

[35] X. Li, C. Ma, B. Wu, Z. He, and M.-H. Yang, ‘‘Target-aware deep track-
ing,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 1369–1378.

[36] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M.-H. Yang,
‘‘Hedged deep tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2016, pp. 4303–4311.

[37] C.Ma, J.-B. Huang, X. Yang, andM.-H. Yang, ‘‘Hierarchical convolutional
features for visual tracking,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 3074–3082.

[38] M. Danelljan, G. Hager, F. S. Khan, andM. Felsberg, ‘‘Adaptive decontam-
ination of the training set: A unified formulation for discriminative visual
tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 1430–1438.

[39] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg, ‘‘Learning spatially
regularized correlation filters for visual tracking,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 4310–4318.

[40] Y. Li and J. Zhu, ‘‘A scale adaptive kernel correlation filter tracker
with feature integration,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2014, pp. 254–265.

[41] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. S. Torr,
‘‘Staple: Complementary learners for real-time tracking,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1401–1409.

[42] M. Danelljan, G. Häger, F. Shahbaz Khan, and M. Felsberg, ‘‘Accurate
scale estimation for robust visual tracking,’’ in Proc. Brit. Mach. Vis. Conf.,
2014.

[43] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, ‘‘High-
speed tracking with kernelized correlation filters,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 583–596,
Mar. 2015.

[44] C. Ma, X. Yang, C. Zhang, and M.-H. Yang, ‘‘Long-term correlation
tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 5388–5396.

[45] S. Hong, T. You, S. Kwak, and B. Han, ‘‘Online tracking by learning
discriminative saliency map with convolutional neural network,’’ in Proc.
Int. Conf. Mach. Learn., 2015, pp. 597–606.

17832 VOLUME 8, 2020


