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ABSTRACT Link prediction is to estimate the possibility of future links among nodes by utilizing known
information such as network topology and node attributes. According to the characteristics of opportunistic
networks (topological time-variation, node mobility and intermittent connections), this paper proposes a
novel link prediction approach (IRWR-DBN) for opportunistic networks that is based on random walk
and a deep belief network. First, we reconstruct the Markov probability transition matrix and define a
similarity index– improved random walk with restart (IRWR). Second, we divide the opportunistic network
into network snapshots. Then, the similarity matrix of each snapshot is calculated by using the IRWR index
to construct a sample set. Finally, a predictive model is constructed based on a deep belief network which
extracts the time-domain characteristics in the process of dynamic evolution of the opportunistic network.
The experimental results on the ITC and MIT Reality datasets show that compared with methods, such as
the similarity-based index (CN, AA, Katz, RA, RWR), convolutional neural network, and recurrent neural
network, the proposed method is more accurate and stable.

INDEX TERMS Opportunistic network, link prediction, random walk with restart, deep belief network,
similarity index.

I. INTRODUCTION
Opportunistic networks [1] are mobile ad hoc networks that
do not require an end-to-end link between the source node
and the target node and establish communication through the
movement of network nodes. Data transmission of the oppor-
tunistic network is realized by the story-carry-forward routing
mechanism. The process of data transmission of opportunistic
networks is shown in figure 1.

Source node S wants to send a message to target node D.
At time t1, the message is generated by source node S, and
because source node S is not in the communication range of
target node D, the source node S sends the message to node 3.
At time t2(t2 >t1), node 3 transfers the message to node 8.
At time t3(t3 >t2), node 8 arrives in the communication range
of target nodeD, and themessage is successfully sent to target
node D.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiao-Sheng Si .

FIGURE 1. The process of data transmission of opportunistic networks
(the solid line indicates the connection between nodes, and the arrow
indicates the direction of data transmission).

These are the characteristics of an opportunistic net-
work: topology time-varying, node mobility and intermittent
connectivity. An opportunistic network better satisfies the
requirements of mobile ad hoc networks in the real world.
To analyse and understand the evolution of the network struc-
ture and propose a better message transmission mechanism
for opportunistic networks, researchers have recently focused
more attention on the problem of link prediction in oppor-
tunistic networks [2], [3]. Link prediction is to estimate the
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possibility of future links among nodes by utilizing known
information, such as network topology and node attributes.
Link prediction can help researchers further analyse and
understand the evolution of the network topology, build the
node mobile model, and provide theoretical support for rout-
ing algorithms [4].

In opportunistic networks, topology temporal information
is a key factor in calculating the similarity between nodes.
However, most existing link prediction methods are proposed
for static networks or social networks where the network
topology does not change or changes slowly over time.
These methods do not sufficiently apply temporal informa-
tion. Therefore, it is necessary to study effective methods
for predicting links in opportunistic networks. In this paper,
we present a similarity index–improved random walk with
restart (IRWR). Furthermore, we propose a link prediction
model based on IRWR and deep belief network (IRWR-
DBN), which can extract the time-domain characteristics in
the process of dynamic evolution of the opportunistic net-
works.

The main contributions of this paper are as follows.
(1) We reconstruct the Markov probability transition

matrix according to the information of the second-order
neighbours of the node and propose a similarity index IRWR.
Then, a sample set is constructed based on the IRWR similar-
ity index.

(2) We propose a link prediction model, IRWR-DBN,
which extracts the time-domain characteristics of sample set,
and achieves a significantly high prediction performance.

The rest of the paper is organized as follows. Related work
is discussed in Section 2. The construction of the similarity
index IRWR is described in Section 3. Sample construction
is described in Section 4. The prediction model IRWR-DBN
is addressed in Section 5. The experiment and analysis are
presented in Section 6. Section 7 provides the conclusion.

II. RELATED WORK
Link prediction methods of opportunistic networks fall into
the following categories: predictions based on similarity
indexes, matrix decomposition, and machine learning.

A. SIMILARITY INDEX-BASED PREDICTION METHODS
Similarity index-based prediction methods mean that the
more similar the structural information, attribute information
and behaviour of nodes in the network, the greater the pos-
sibility of a connection between them. For example, if two
people have the same friends or prefer to go to the same place,
they have a higher probability of meeting or communicating
with each other.

Liu et al. [5] defined an influence set of nodes and a
common influences set between nodes. The similarity value
between nodes is calculated according to the common influ-
ences set. Guo et al. [6] proposed a common neighbour tight-
ness index based on node degree and clustering coefficient,
they proposed that the closer the relationship between the
common neighbours of the nodes, the higher the possibility

of connections between nodes. Rahman et al. [7] consid-
ered user activities and common neighbours, and defined
the local and global link prediction algorithm to evaluate
the similarity between nodes. Yang et al. [8] introduced the
concept of gravitational field and proposed the LP-GFCN
algorithm based on indirect and direct gravitational.
Shang et al. [9] discussed the role of link direction in link
prediction problems. They proposed that the bi-directional
link contains more network information, and found that a pair
of nodes with bi-directional links has greater probability to
connect to the common neighbours with bi-directional links.
Hu et al. [10] considered the effectiveness of quad motifs
in calculating the similarity between nodes in the directed
network, and defined closed quad, relative open quad,
no-crossing closed quad and quad motifs. Li et al. [11]
defined a community relationship strength index (CRS) to
estimate the closeness between communities, and proposed
a link prediction framework based on node similarity and
community information. Then, in the framework, they com-
bined CRS with traditional similarity indexes to measure
the connection likelihood. Wang et al. [12] proposed an
adjustable parameter based on community information and
applied it to nine similarity indexes. Then, they verified that
the parameter can improve the accuracy of link prediction
in ten real datasets. Additionally, a parallelization algorithm
was proposed to apply the above nine indexes to the link
prediction of large-scale complex networks.

The abovementioned prediction methods mainly have bet-
ter performance in networkswith slow or no change in topolo-
gies, such as static networks or social networks. Because
these studies do not consider the relationship between topol-
ogy and time information, they have a poor predictive effect
in networks with frequent topology changes over time.

B. MATRIX FACTORIZATION-BASED PREDICTION
METHODS
Matrix factorization-based link prediction methods use the
low-rank matrix obtained by matrix factorization to solve the
problem of link prediction. Among them, the matrix consists
of an adjacency matrix or a matrix constructed by extracting
other network information. At present, matrix factorization
mainly falls into the following categories: singular value
decomposition, non-negative matrix factorization and prob-
ability matrix factorization.

Li et al. [13] proposed a link prediction method for
dynamic attribute networks. In the proposed method, the fea-
ture matrix was obtained from the first network snapshot,
and its low-rank matrix is calculated. Then, the low-rank
matrix was continuously updated according to the subse-
quent network snapshot. After the update, the residual error
was used to estimate the possibility of the existing links
between future nodes. Wang et al. [14] noted that there is a
lack of effective fusion of topological information and non-
topological information in social-information networks in the
existing link prediction algorithms. Therefore, they defined a
user topic similarity index based on user topic information,
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and a topic similarity matrix is constructed based on the user
topic similarity index. Then, the information of the follow-
ing/followed network and the topic similarity matrix were
fused into the framework of probabilisticmatrix factorization,
based on which the representation of the network nodes are
obtained. Finally, the linking probability between network
nodes was calculated based on the obtained latent-feature
representation. Ahmed et al. [15] fused the temporal and
structural properties of dynamic networks into non-negative
matrix factorization, and presented a novel iterative rules of
non-negative matrix factorization. Then, they obtained the
similarity value matrix of the network according to the result
of matrix factorization, and link prediction was performed.
Mutinda et al. [16] applied non-negative matrix factorization
to extract the latent features of the time-series graphs, and the
time-series prediction method Holt-Winters was used to learn
and extract the time-domain information of the above features
to solve the link prediction problem.

The abovementioned prediction methods mainly perform
low-rank factorization on the adjacency matrix and extract
time-domain information of the dynamic network by iterative
factorization. However, in large-scale dynamic networks, iter-
ative matrix factorization can lead to great time complexity.

C. MACHINE LEARNING-BASED PREDICTION METHODS
As is known, machine learning algorithms have a power-
ful ability to extract features. The machine learning-based
prediction method extracts the features of the data in the
network by using a machine learning algorithm from a certain
perspective and realizes link prediction.

Yang et al. [17] proposed that one kind of object can
be considered as the features of another kind of object in
bi-typed heterogeneous networks. According to this method,
the features representation of nodes were obtained, and they
were clustered. Then, they determined whether there was a
connection between nodes based on the clustering result and
the decision tree model. Li et al. [18] introduced utility anal-
ysis into the link prediction method by considering that indi-
vidual preference is the main reason for forming a link, and
they also focused on the meeting process that is a latent vari-
able during the process of forming links. Accordingly, the link
prediction problem was formulated as a machine learning
process with latent variables. Therefore, an expectation-
maximization (EM) algorithm was adopted to address the
estimation problem. Lei et al. [19] applied graph convolu-
tional network (GCN), long short-term memory (LSTM) and
generative adversarial network (GAN) to extract the non-
linear characteristics of link changes in weighted dynamic
networks. They utilized GCN to extract local features of each
snapshot, then employed LSTM to characterize the evolv-
ing features of the dynamic networks, and utilized GAN to
improve the accuracy of the model. Shao et al. [20] proposed
an adaptive link prediction method based on density peak
clustering in order to solve the problem that single link
prediction index cannot be applied to all networks. They
utilized different prediction indexes (CN, JC, RA and AA) as

attributes of the link, and used clustering analysis to transform
the link prediction into classification. Li et al. [21] introduced
the structural subgraph and proposed the structure subgraph
feature. Then they applied it to the linear regression model
and neural machine to predict the link. Cai et al. [22] divided
the network into a series of time-series snapshots based on the
time-varying characteristics of the opportunistic network and
defined a set of vectors based on the attributes of the edge,
such as the endpoint ID and the start time of the edge. They
also constructed a predictive model (RNN-LP) based on a
recurrent neural network to extract the features of the edge
attribute vector over time to predict the link. Shu et al. [23]
transformed the multi-node link prediction problem into pat-
tern classification. They divided the network to obtain a series
of network snapshots, and calculated the state map of each
snapshot. Then, they constructed a prediction model based on
a convolutional neural network (CNN) to extract the pattern
variation features and realize the multi-node link prediction.
Chen et al. [24] divided the dynamic network into a series
of time-series snapshots and used an encoder to encode and
characterize each network snapshot, and the long short-term
memory (LSTM) model was constructed to extract the fea-
tures in the encoded snapshots. Then, the features extracted
by LSTM were amplified to the original dimensions of the
network by a decoder to predict the topology of the network
in the future. Sett et al. [25] analysed the characteristics of
dynamic heterogeneous networks and proposed a feature set
called time-aware multi-relational link prediction (TMLP).
The TMLP includes CN, JC, AA, resource allocation (RA),
and PA. Then, a predictive model based on random deep for-
est was constructed and trained to predict the link of a specific
type. Winter et al. [26] analysed the impact of time attributes
on link prediction in a dynamic network and proposed two
methods to extend the node2vec model from a static network
to a dynamic network.

In the abovementioned studies of the machine learning-
based link prediction methods, the researchers considered
the time characteristics of the network information in the
dynamic network or the opportunistic network. However,
they only used the information in a single network snap-
shot to construct data and then used machine learning algo-
rithms to extract time characteristics of the data. They did
not consider the correlation between network information
in two or more adjacent snapshots. Therefore, according to
the time-varying characteristics of the opportunistic network,
this paper combines the impact of historical state of the link
on its connection state at the next moment. We reconstruct
a Markov probability transition matrix considers based on
the information of the second-order neighbours of the node
and define the IRWR index. Then, a similarity matrix for
each network snapshot is constructed. We also construct a
sample set based on the similarity matrix and the length of
input data. We utilize the advantages of the DBN model in
automatically extracting features to extract the time-domain
characteristics in the process of dynamic evolution of the
opportunistic network to realize future link prediction better.
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III. THE CONSTRUCTION OF SIMILARITY INDEX
In real-world networks, nodes are primarily carried or manip-
ulated by humans, and the intimacy between people is differ-
ent according to factors such as common friends or distance.
Therefore, considering the information of the second-order
neighbours of the node, this paper reconstructs a Markov
probability transition matrix, improves the random walk with
the restart index in [27], and proposes a novel similarity index
IRWR.

The RWR algorithm is a direct application of the PageRank
algorithm. It can well grasp the global structural information
of the network and has a better performance in large-scale and
sparse networks [27]. The main idea of the RWR algorithm is
as follows: it considers a random walker starting from node
x, who will iteratively move to a random neighbour with
probability c and return to node x with probability 1 − c.
P is the transition probability matrix of the network, and the
element Pxy of the matrix P is defined in (1)

Pxy =
axy
kx

(1)

where Pxy indicates the probability that the random walker
will move from node x to node y in the next step, with axy = 1
if node x and node y are connected, and axy = 0 otherwise.
kx denotes the degree of node x.

It can be known from equation (1) that the probability
of a random walker moving to its neighbour nodes is equal
in the RWR algorithm. However, this is not the case in the
real world where the connections between nodes with the
same hobbies or common neighbours are stronger, and we
prefer to connect with people or things we are familiar with.
Therefore, the probability of a random walker moving to its
neighbour nodes is different, depending on the factors such
as the structure and attributes of the node. We combine the
influence of the second-order neighbours on the intimacy
between nodes, reconstruct the Markov transition probability
matrix of the network and mark it as Precon, and the element
Preconxy of Precon is redefined in (2).

Preconxy =


ky

τx + kx
, if node x and y are connected

0, otherwise
(2)

where τx is the number of nodes that node x can arrive at
through two hops, and kx denotes the degree of node x.
Let a random walker start from node x, and the recon-

structed Precon is the Markov transition probability matrix of
the network. Denote by qxy(t) the probability of this random
walker locating at node y after t steps, and we have

qx(t) = c(Precon)T qx(t − 1)+ (1− c)ex (3)

where (Precon)T is the transposed matrix of the transition
probability matrix Precon, and ex is the initial vector in which
the x-th bit is 1 and the other bits are 0. The solution is
straightforward, as shown in (4):

qx = (1− c)(I − c(Precon)T )−1ex (4)

FIGURE 2. The evolution of the network topology of the opportunistic
network.

The IRWR similarity index is thus defined in (5)

S irwrxy = qxy + qyx (5)

where qxy is the probability that the random walker starting
from node x is located at node y in the steady state, and qyx is
the probability that the random walker starting from node y is
located at node x in the steady state.

IV. SAMPLE CONSTRUCTION
This paper selects iMote Traces Cambridge (ITC) and MIT
as the dataset in the experiment. However, the data in the
ITC and MIT dataset is a continuous communication record
between nodes, and it is not suitable as a direct input to the
model. Therefore, we first need to process the initial data and
construct the sample as input to the model. The sample con-
struction has two steps. In the first step, we divide the oppor-
tunistic network into several continuous network snapshots
according to the length of time slice and use the IRWR index
to construct the similarity matrix of each network snapshot.
In the second step, the sample set is constructed based on the
similarity matrix and the length of the input data, and then
used as training data for the prediction model.

A. CONSTRUCTION OF SIMILARITY MATRIX
This paper divides the opportunistic network G = (V ,E)
according to the length of time slice 1t , where V and E
denote the set of nodes and the set of edges in the network.
Then, a network snapshot set G = {G1,G2, . . . ,Gn−1,Gn}
is obtained, where Gt = (Vt ,Et ) is the network topology
map of the i-th network snapshot, Vt and Et denote the set of
nodes and the set of edges in the i-th network snapshot, and
n denotes the number of network snapshots. The evolution of
the network topology of the opportunistic network is shown
in figure 2.

The process of constructing the similarity matrix is shown
in figure 3. First, the opportunistic network is divided into
several continuous network snapshots. Then, we use the
IRWR index to calculate the similarity value between nodes
in each network snapshot and construct the similarity matrix
of each network snapshot. Q = {Q1,Q2, . . . ,Qn−1,Qn}
denotes an ordered set of similarity matrices, whereQi repre-
sents the similarity matrix of the i-th network snapshot, and
the element Qixy of the matrix Qi is defined in (6).

Qixy = (S irwrxy )i (6)
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FIGURE 3. The process of constructing the similarity matrix.

FIGURE 4. Sample set construction.

where (S irwrxy )i represents the IRWR similarity value between
nodes x and y in the i-th network snapshot.

B. CONSTRUCTION OF THE SAMPLE SET
Based on the above set Q and G, as shown in figure 4, the
construction of the sample set can be performed into the
following steps:

(1) We need to select the target node pair (Vi,Vj) used for
prediction and determine the number of continuous snapshots
used to predict the connection state of the node pair (Vi,Vj)
in the next network snapshot (assumed to be N );
(2) We sequentially extract the IRWR similarity values of

the node pair (Vi,Vj) in each similarity matrix and obtain a
sequence of IRWR similarity values of the node pair (Vi,Vj);
(3) We set N as the length of the sliding window, and

sequentially take the consecutive N similarity values in the
sequence of IRWR similarity values as the data of the sample,
and the connection state of the node pair (Vi,Vj) in the
(N + 1)-th network snapshot is taken as the label of the
sample.

According to the above steps, a sample set is constructed
based on the N and node pair (Vi,Vj), and a total of
n−N−1 samples can be constructed. The sample set is repre-
sented as Sample = {Sample1, Sample2, · · · , Samplek , · · · ,
Samplen−N−1}, where Samplek = {Qkij,Q

k+1
ij , . . . ,

FIGURE 5. The structure of the IRWR-DBN model.

Qk+(N−2)ij ,Qk+(N−1)ij ,Gk+Nij } denotes the k-th sample. The
pre-N dimension of the samples corresponds to the IRWR
similarity values Qij of the node pairs (Vi,Vj) in the previous
N snapshots. The (N + 1)-th dimension of the samples is the
label of the sample Gk+Nij , and Gk+Nij denotes the connection
state (0 or 1) of the node pair (Vi,Vj) in the (k+N )-th network
snapshot.

V. THE CONSTRUCTION OF DEEP BELIEF NETWORKS
PREDICTION MODEL
On the basis of the sample set, this paper considers the result
of link prediction to be yes or no (1 or 0); thus, we convert
the link prediction problem into a classification problem, and
we propose a link prediction model IRWR-DBN to solve this
classification problem. The sample set Sample is used as the
input of the IRWR-DBN model, and the connection state of
node pairs is the output of the IRWR-DBNmodel. Benefiting
from the DBN in automatically features extracting to extract
the time-domain characteristics of data in the sample set,
hence it predicts the connection state of node pairs in the next
snapshot.

The main purpose of constructing the IRWR-DBN model
is to capture the correlation between the information in multi-
ple snapshots and the current connection state and then extract
the characteristics of the link changes in the opportunistic
network.

The IRWR-DBNmodel is constructed as follows: network
structure, hyper-parameter setting and model training.

A. MODEL STRUCTURE
The IRWR-DBN aims to extract the relationship between the
node pairs’ historical information and its connection state in
the time dimension. DBN effectively avoids the problem of
local optimal solution and gradient explosion caused by ini-
tialization through pre-training. Therefore, this paper selects
DBN to extract the time-domain characteristics of the data
in the sample set. The structure of the IRWR-DBN model
is shown in figure 5. The first layer is the input layer for
receiving the sample set Sample, and the middle layers are
the hidden layers, which are composed of multiple restricted
Boltzmann machines (RBM) for extracting the high-order
features of the sample set Sample. The last layer is a classifier
(logistic regression). The output of the hidden layer is used as
the input of the classifier to obtain the prediction results.
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B. HYPER-PARAMETER SETTING
The accuracy of the model is closely related to the hyper-
parameters of the model. To improve the ability to extract
features of the IRWR-DBN model, it is necessary to set a
good set of hyper-parameters for the model. The construction
of the IRWR-DBNmodel in this paper involves the following
hyper-parameters: the length of the input data, the number of
nodes in the hidden layer and the number of hidden layers.

1) THE LENGTH OF THE INPUT DATA
The length of the input data, that is, the number N of network
snapshots to be determined above, is a key part of extracting
time-domain information. It defines the number of consecu-
tive snapshots used to predict the connection state of a node
pair in the next snapshot. Different lengths of the input data
have different temporal characteristics. If the length is too
long, it will lead to valid information in the network being
covered, and the number of samples will be reduced. If the
length of the input data is too short, it will lose the continuity
of the data and affect the intrinsic association of the data.
An appropriate length of the input data not only enables
the model to make full use of the historical information of
the network but also enables the model to have a better
performance. However, there is no good theory for deter-
mining the length of the input data in existing research. The
length of the input data is determined based on comparison
experiments with multiple empirical values in most studies.
In this paper, we determine the length of the input data of
the IRWR-DBN model using the comparison experiment in
experiment 2.

2) THE NUMBER OF NODES IN THE HIDDEN LAYER
The number of nodes in the hidden layer is a key parameter
of the model. It is related to the connection between the
hidden layer and the visible layer and whether the hidden
layer can efficiently and accurately extract features in the
sample. Hidden layers with different numbers of nodes have
different abilities to extract features. If the number of nodes
is very small, the error of reconstructing the input data will
increase. If the number is very large, the complexity of
the model will increase, and the model will easily over-fit.
At present, the number of nodes in the DBN hidden layer is
usually determined by an empirical formula, and the common
empirical formulas are shown in (7), (8) and (9).

S =
√
mn+ n (7)

S =
√
mn+

a
2

(8)

S ≤
√
n(m− 1)+ 1 (9)

where S is the number of nodes in the hidden layer, m is
the input length of the model, n is the output length of the
model, and a is an integer within [1], [10]. Considering the
size of the sample set and reducing the time complexity of
model training, this paper selects equation (8) to determine
the number of nodes in the hidden layer.

3) THE NUMBER OF HIDDEN LAYERS
The hidden layer in the proposed model is composed of
multiple RBMs, and the output of the lower layer RBM is
used as the input of the upper layer RBM. The bottom RBM
extracts the low-order features of the input data, and the
upper RBMextracts themore abstract and high-order features
in the data. The number of hidden layers is defined as the
number of RBMs stacked in the hidden layer. The effect of
the model training is closely related to the number of hidden
layers. If the number is too large, the complexity of model
training will increase, and the model will easily over-fit. If the
number is too small, the model will under-fit, which results in
lower accuracy of the model. According to the characteristics
of layer-by-layer training of the DBN, this paper uses the
reconstruction error Rerror between the original data and the
data obtained by reconstructing the original data to determine
the number of hidden layers [28]. The Rerror is defined as
shown in (10).

Rerror =
n∑
i=1

m∑
j=1

(pij − dij)/nmpx (10)

where n is the number of samples, m is the dimension, pij
is the reconstructed value, dij is the real value, and px is the
number or range of values. The number of hidden layers is
calculated, as shown in (11) [28].

L =

{
NRBM + 1, RError > ε

NRBM , RError < ε
(11)

where L is the number of hidden layers, and ε is the expected
threshold of reconstruction error. We take ε = 0.05 [28].
The algorithm for determining the number of hidden layers
is shown in algorithm 1.

C. MODEL TRAINING
Model training has the following two steps: bottom-up pre-
training and top-down fine-tuning.

1) PRE-TRAINING
The purpose of pre-training is to obtain the initial parameters
of the model that fit the sample data through an unsuper-
vised greedy layer-by-layermethod. Comparedwith theDBN
network, other neural networks need to set initial weights
for parameters and offsets in training. The initial weights
directly affect the effect of model training. However, the DBN
network determines the parameters of the model in a better
range through pre-training and finally obtains the optimal
parameters through fine-tuning; thus, it effectively avoids the
problems of local optimal solution and gradient explosion
caused by initialization.

In the pre-training, we first fully train the bottomRBM, and
fix theweight and offset of the bottomRBM. Then, we use the
output of the bottom RBM as the input of the upper RBM for
training and repeat this step until all RBMs are fully trained.
The structure of the RBM is shown in figure 6.
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Algorithm 1Algorithm for Determining the Number of Hid-
den Layers in a DBN

Inputs: Training dataset trainData (trainData ∈ Sample),
threshold of reconstruction error ε, the number of nodes in
the hidden layer dimHid.
Outputs: Pre-trained DBN.
1: Initialize n = 1
2: If n == 1 // the first RBM
3: Rerror = TrainerRBM(trainData, len

(trainData[0]), dimHid)
4: // len(trainData[0]) is the

data length
5: If Rerror < ε // determine if the conditions

are met
6: Return DBN.append(RBM)
7: // add the trained RBM to the

DBN and return
8: Else
9: inpX = RBM.rbm_output(trainData)
10: // obtain the input data of the

next layer of RBM
11: End If
12: End If
13: While (Rerror > ε) // other layer
14: Rerror = TrainerRBM(inpX, dimHid, dimHid)
15: // Train an RBM and return

the reconstruction error
16: inpX = RBM.rbm_output(inpX)
17: DBN.append(RBM)
18: End While
19: Return DBN

FIGURE 6. The structure of RBM.

As shown in figure 6, the visible layer and the hidden layer
are composed of multiple neurons, and the neurons in the
layer are not connected; the neurons between the layers are
fully connected. The visible layer is used as an input layer of
data, and the hidden layer extracts the features of the input
data in the visible layer by calculation. Taking the first layer
RBM in figure 5 as an example, based on the given input
sample Samplek , the state of the hidden layer is calculated,
as shown in (12).

p(hj = 1|v) = sigmoid(
∑
i

WijSampleki + bj) (12)

FIGURE 7. The main idea of the CD algorithm.

According to the state of the hidden layer, the state of the
visible layer is calculated as shown in (12).

p(vi = 1|h) = sigmoid(
∑
j

Wijhj + ai) (13)

where Wij denotes the weight between the i-th neuron of the
input layer and the j-th neuron of the hidden layer, Sampleki is
the value of the i-th dimension in Samplek , ai is the bias of the
neurons in the hidden layer, and bj is the bias of the neurons
in the visible layer.

This paper uses the classic contrast divergence (CD) [29]
algorithm to pre-train the model. Taking the first layer RBM
in figure 5 as an example, the main idea of the CD algorithm
is shown in figure 7.

First, we set the activation state of neurons in the visible
layer according to the Sample and calculate the state of
all neurons in the hidden layers according to formula (12).
Second, after the state of each neuron in the hidden layer is
determined, the states of all neurons in the visible layer are
calculated according to formula (13), and the reconstructed
state of the visible layer is obtained. Finally, we adjust the
parameters of the RBM by using the Rerror between the state
of the visible layer and the reconstructed state of the visible
layer.

2) FINE-TUNING
The above pre-training is an unsupervised learning process.
Pre-training only ensures that the mapping within each RBM
layer is optimal, and the mapping of the entire DBN network
is not guaranteed to be optimal. Therefore, as shown in fig-
ure 5, this paper adds a logistic regression classifier layer at
the end of the model and uses the labelled data to train the
entire network after pre-training. We select the backpropaga-
tion algorithm [29] to fine-tune the entire network.

VI. EXPERIMENT AND ANALYSIS
For the sake of providing results under actual conditions,
we select iMote Traces Cambridge (ITC) and MIT as the
experimental dataset. The area under the receiver operating
characteristic curve (AUC) and precision are adopted as eval-
uation indexes. Moreover, we set up three sets of experi-
ments on the ITC and MIT dataset to verify the existence of
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TABLE 1. The information of ITC and MIT dataset.

information of second-order neighbours of nodes, determine
the optimal parameters of the model and verify the validity
and stability of the proposed IRWR-DBN model.

A. THE EXPERIMENTAL DESIGN
1) EXPERIMENTAL DATASETS
In this paper, we select the opportunistic network datasets
ITC and MIT as experimental datasets, which have different
numbers of nodes and sparsity of network connections. ITC
[30] is derived from a visual experiment of the student trace of
the Cambridge University campus. The MIT [31] dataset is a
record of mobile phone communication between students on
theMIT campus. They are all wireless ad hoc communication
datasets archived by Dartmouth College. The information of
the ITC and MIT dataset is shown in table 1.

2) EXPERIMENTAL CONFIGURATION
The experiment is mainly divided into three parts. The first
part is experiment 1, which determines if there exist second-
order neighbours of nodes in the ITC and MIT datasets;
the second part is experiment 2, which determines the optimal
IRWR-DBN by comparing its performance under different
realistic parameters on the ITC and MIT dataset; The third
part is experiment 3, and the effectiveness and rationality of
the proposed model are verified by comparing the optimal
IRWR-DBN with the traditional similarity indexes and other
neural networkmodels. In the experiments, we select the node
pairs (21, 34) with the most connections in the ITC dataset
and node pairs (27, 62) with the most connections in the MIT
dataset as target node pair; 70% of training and 30% of testing
are used in the sample set.

We also need to explain that in experiment 2, according
to the research on the slice time on the ITC dataset in [22]
and [32] (180s, 240s, 300s and 320s), we extended the length
of the slice time on the ITC dataset to [100s, 360s], with a
step size of 20s. According to the research on the slice time
in [23] and [32] (300s and 600s) and the duration of the MIT
dataset, we extend the length of the slice time on the MIT
dataset to [100s, 1000s], with a step size of 100s. On this
basis, in experiment 2, we set the length of the input data to
[50,250] in both datasets, with a step size of 20.

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) EXPERIMENT 1: THE ANALYSIS OF THE CONNECTION IN
ITC AND MIT DATASET
The above proposed IRWR index utilizes the information
of the second-order neighbour of the nodes in the network.

FIGURE 8. The connection of each network snapshot with 1t = 140s in
the ITC dataset.

To verify the existence of information of the second-order
neighbour of nodes in the ITC and MIT dataset, the exper-
iments in this section calculate the number of second-order
neighbours of the nodes in the ITC and MIT dataset. In the
ITC dataset, taking the length of slice time 1t = 140s as
an example, the ITC dataset is divided into 7,022 network
snapshots, and the number of existing edges in each snapshot
and the number of the two-hop nodes for each node in each
snapshot are calculated, the results are shown in figure 8. In
the MIT dataset, taking the length of slice time1t = 100s as
an example, the MIT dataset is divided into 25,536 network
snapshots, and the number of existing edges in each snapshot
and the number of the two-hop nodes for each node in each
snapshot are calculated, the results are shown in figure 9.

As shown in figure 8 and 9, whether in ITC orMIT dataset,
in most snapshots, the number of the two-hop nodes for each
node is more than the number of existing edges, where the
dotted line denotes the sum of the number of the two-hop
nodes for each node in each snapshot and the star line denotes
the number of existing edges in each snapshot. The results
show that there are information of second-order neighbours
of nodes in the ITC and MIT datasets and it is feasible
to combine the information of second-order neighbours of
nodes in the ITC and MIT dataset for link prediction. Addi-
tionally, it can be seen in figure 8 that both the number of
existing edges and the sum of the number of two-hop nodes
for each node present a certain periodic law, because the node
in the ITC dataset can be considered as a person carrying
a Bluetooth communication device, and most humans have
the characteristics of working during the day and sleeping at
night. This characteristic results in more connections formed
during the day than at night. The 12 peaks (or troughs) in fig-
ure 8 correspond exactly to the duration of the ITC dataset
(12 days), and it can be seen in figure 9 that the number of
two-hop nodes and existing edges of each node in the MIT
dataset is less than that in the ITC dataset. This is because the
number of nodes in the MIT dataset is larger than that of ITC,
and the connections in the MIT are sparse than that of ITC.
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FIGURE 9. The connection of each network snapshot with 1t = 100s in
the MIT dataset.

2) EXPERIMENT 2: DETERMINATION OF OPTIMAL
PARAMETERS OF THE MODEL
The experiments in this section are mainly to determine the
optimal parameters of the model on the ITC andMIT dataset.
Following are the parameters we need to determine: the num-
ber of hidden layers, the length of a time slice and the length
of the input data. Then, the final precision and AUC of the
model on the ITC and MIT dataset can be obtained under the
optimal parameters.

a: THE NUMBER OF HIDDEN LAYERS
The number of hidden layers has a great influence on the
effect of model training. If the number is too large, the com-
plexity of model training will increase, and the model easily
over-fits. In contrast, the model will under-fit, which results
in a lower accuracy of the model. Based on the above 14 (10)
different lengths of time slices and 11 different lengths of
input data on the ITC (MIT) dataset, we obtain the number of
hidden layers of the model under different parameters accord-
ing to algorithm 1. Taking the model with 1t = 140s and
N = 210 on the ITC dataset as an example, the reconstruction
error of each layer of the RBM is shown in figure 10.

As figure 10 shows, the reconstruction error of the first
layer is smaller than that of the second layer because the
number of nodes in the visible layer of the first RBM is large
and the input data are sparse. The reconstruction error of
the third layer is smaller than the second layer because the
number of nodes in the hidden layers is the same. When the
RBM is added, the learning ability of the model is enhanced,
and the reconstruction error is reduced. Additionally, the
reconstruction error after convergence in the third layer is less
than the threshold. Therefore, the optimal number of hidden
layers of this model is 3. The process of determining the
number of hidden layers of the model under other parameters
(on the ITC and MIT) is the same.

b: THE LENGTH OF SLICE TIME AND THE LENGTH OF INPUT
DATA
The length of slice time also has a certain influence on the
performance of the model. If the length of slice time is too

FIGURE 10. The reconstruction error of RBM in each layer of the model
with 1t = 140s and N = 210 on the ITC dataset.

FIGURE 11. The AUC of models under different slice times and input data
length on the ITC dataset.

large, it will cause the valid information in the network to be
covered. In contrast, valid information will be truncated and
useless information will be produced. An appropriate length
for input data can better reflect the relationship between
historical data and the current state of the node pair. If the
length of the input data is too large, it will also cause the valid
information in the network to be covered, and the number of
samples will decrease. In contrast, the continuity of the data
will be lost, and the intrinsic association of the data will be
affected. According to the two sets of data that have been set
above on the ITC andMIT dataset (the length of slice1t time
and input data N ), AUC and precision of the model under
different parameters and dataset obtained by calculating the
mean of the results of 30 experiments are shown in figures 11,
12, 13 and 14, respectively.

As figure 11 and figure 12 show, on the ITC dataset,
the proposed model can well extract the intrinsic features
of link changes in different lengths of slice time and input
data. When the length of slice time is 140s, the AUC and
precision of the model are the best under different lengths of
input data, which are more stable than other lengths of slice
time. Additionally, the AUC and precision of the model are
the best when the input data length is 210. Therefore, on the
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FIGURE 12. The precision of models under different slice times and input
data length on the ITC dataset.

FIGURE 13. The AUC of models under different slice times and input data
length on the MIT dataset.

ITC dataset, the optimal length of slice time is 140s, and the
optimal length of input data is 210.

As figure 13 and figure 14 show, on the MIT dataset,
the proposed model can also well extract the intrinsic features
of link changes in different lengths of slice time and input
data. When the length of slice time is 100s, the AUC and
precision of the model are the best under different lengths of
input data, which are more stable than other lengths of slice
time. Additionally, the AUC and precision of the model are
the best when the input data length is 70. Therefore, on the
MIT dataset, the optimal length of slice time is 100s, and the
optimal length of input data is 70.

3) EXPERIMENT 3: COMPARISON OF DIFFERENT
PREDICTION METHODS
The optimal model (on the ITC and MIT dataset) is deter-
mined based on the optimal number of hidden layers, the opti-
mal slice time and the optimal input data length, which
are determined by the previous experiments. In this section,
the effectiveness and rationality of the IRWR-DBN model
(under the optimal parameters) are verified by comparison

FIGURE 14. The precision of models under different slice times and input
data length on the MIT dataset.

FIGURE 15. The AUC of different prediction methods on the ITC dataset.

experiments based on the methods of CN, AA, RA, RWR
[27], Katz, RNN-LP [22] and CNN [23]. We consider that
these methods are used in different scenarios. In order to
ensure the reasonability of the experiment, whether on the
ITC dataset or the MIT dataset, all methods are implemented
in the sample set under the optimal parameters determined
above. The results of the experiments are shown in figures 15,
16, 17 and 18.

According to the above comparison experiments, on the
ITC dataset, compared with other traditional similarity
indexes, the Katz model has a better performance than other
traditional similarity indexes on the AUC and precision,
among which the performance of RA is the worst. Then,
the performance of RNN-LP is better than Katz, but the
proposed model IRWR-DBN has a better performance than
RNN-LP and CNN in stability and accuracy. On the MIT
dataset, the RWR model have a better performance than
other traditional similarity indexes on the AUC and preci-
sion. Then, the performance of RNN-LP and CNN is better
than RWR, and the proposed model IRWR-DBN also has a
better performance than RNN-LP and CNN in stability and
97accuracy.
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FIGURE 16. The precision of different prediction methods on the ITC
dataset.

FIGURE 17. The AUC of different prediction methods on the MIT dataset.

FIGURE 18. The precision of different prediction methods on the MIT
dataset.

As figure 15, 16, 17 and 18 show, the proposed model has
better performance on both datasets (ITC and MIT), which
indicates that the proposed model has strong robustness.
Additionally, the performance of CN, RA and AA on theMIT
dataset is worse than on the ITC dataset because the number
of nodes in the MIT is more than the number of nodes in the
ITC dataset and the MIT dataset is sparse than ITC dataset.

TABLE 2. The mean values of AUC and precision for different prediction
methods on the ITC dataset.

TABLE 3. The mean valuesof AUC and precision for different prediction
methods on the MIT dataset.

The mean values of precision and AUC (on the ITC and
MIT dataset) of all methods are shown in table 2 and 3 (retain-
ing 4 decimal places). As seen in table 2 and3, the proposed
model is superior to other methods in AUC and precision on
the ITC and MIT dataset, and it shows that our proposed
model can better predict links in networks with different
numbers of nodes and different sparsity. These experimental
results show that IRWR-DBN has the best stability and accu-
racy, which indicates that our proposed method can effec-
tively predict the future link of the opportunistic network.

A comprehensive analysis of the above experimental
results shows that the proposed model has significantly high
prediction performance. Hence, our model is effective and
reasonable in the link prediction of opportunistic networks.

VII. CONCLUSION
This paper proposes a link prediction method IRWR-DBN
for opportunistic networks. Considering the information of
the second-order neighbours of the node, we reconstruct the
Markov probability transitionmatrix and define the similarity
index IRWR. We construct the similarity matrix based on
IRWR index, so that a sample set is constructed. Then, we uti-
lize the DBNmodel to extract the time-domain characteristics
in the process of evolution of the opportunistic network. The
experimental results on the ITC and MIT reality datasets
show that the IRWR-DBN model achieves better accuracy
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compared with other methods, such as the similarity-based
index (CN, AA, Katz, RA, RWR), RNN-LP, and CNN.
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