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ABSTRACT Source-throttling algorithms aim at adjusting network load appropriately so that high network
throughput can be maintained and latency can be decreased efficiently. One challenge of designing
a source-throttling algorithm is how to precisely evaluate network congestion status. State-of-the-art
source-throttling algorithms for mesh-connected network-on-chip usually evaluate congestion status of
the whole network or only that of neighbor routers. They usually appear empirical or locally-greedy.
To avoid such problems, we propose a fine-grained source-throttling algorithm. Our main contributions
are: 1, we can quantify the impact of throttling action on network routers; 2, we can monitor network traffic
more intelligently compared with previous work, only the routers that are most affected by the source’s
throttling action are used to evaluate congestion status of the RSD network. Based on such measures, most
throttling parameters shall not be empirically set but be precisely figured out by a smarter searching algorithm
of finding anchor routers as the throttling baseline. Thus, it can solve over-throttling and under-throttling
problems more precisely. Time complexity of proposed method is only O(M ∗ N ) (M*N is the scale of 2D
mesh network). Simulation results show that it has higher throughput, lower fluctuation and lower latency
than source-throttling algorithms with empirical parameters such as INC and self-tuned technologies under
different network scenarios.

INDEX TERMS Source-throttling algorithm, fine-grained, accurate throttling parameters, over-throttling,
under-throttling.

I. INTRODUCTION
2D mesh NoC(Network-on-Chip) has been the most suitable
interconnect infrastructure for MPSoCs which provides high
computing performance for most scientific and commercial
applications [1]. 2D mesh NoC is available for different
kinds of traffic patterns. When traffic load is not heavy, NoC
can work well. However, as traffic load increases, 2D mesh
NoC begins to suffer from network congestion problem. Net-
work congestion leads to quick reduction of NoC network
throughput, and the rapid increment of end-to-end commu-
nication delay due to contention (i.e. many packets compete
for the same routers, which leads to the congestion of router).
Severe network congestion even makes the whole NoC
unavailable [2], [3]. How to alleviate network congestion is
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a major challenge for designing NoC. There are two main
congestion control methods used to alleviate 2D mesh NoC
network congestion. One of them is congestion-awared adap-
tive routing algorithm [4]–[6]. This method transfers packets
from routers with heavy load to routers with light load in
order to distribute traffic load into network as evenly as
possible. When network load is not heavy, such methods
can decrease average end-to-end communication delay and
improve network throughput. When network load becomes
heavy, tree saturation comes into being and then spreads to
the whole network [7], [8]. The whole network congestion
will consequently come into being. At this time, routing
algorithms don’t help alleviate network congestion.

Another kind of congestion control method is source-
throttling algorithms [2], [3], [9]–[11]. When network load
becomes heavy and network congestion is detected, they can
decrease network load by throttling network nodes’ packets
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injection. Network congestion can be consequently alleviated
or prevented in advance by this approach. On the other hand,
network node’s packet injection rate will be increased by
them to maximize network throughput when no congestion
is detected. Thus, by using source-throttling algorithms, net-
work congestion can be avoided and network performance
can be maximized.

Compared with routing algorithms, source-throttling algo-
rithms can control network congestion better. However, it is
difficult for source-throttling algorithms to precisely control
the throttling rate. If it sometimes throttles node’s injection
rate too much, i.e., over-throttling, network throughput will
be low even if no congestion happens and latency is also low
in the same time. On the other hand, if it sometimes throttles
node’s injection rate too little, i.e., under-throttling, conges-
tion will happen and latency will be very high. Network
throughput will consequently be decreased dramatically.
To maintain high network throughput and low latency, a well-
designed source-throttling algorithm should control the throt-
tling rate as precisely as possible to avoid over-throttling and
under-throttling problems simultaneously [2], [3], [12].

To precisely control the throttling rate, some throttling
parameters such as congestion status should be analyzed
precisely [2], [13]. This paper presents a fine-grained source-
throttling method for mesh-connected NoC. It is comprised
of two key components: a method of analyzing the impact
of throttling action on network routers, and a technique of
quantifying the critical factors causing network congestion.
Compared with some state-of-the-art source-throttling algo-
rithms, it can achieve a more appropriate tradeoff between
preventing upcoming new congestion and maintaining high
network throughput.

The remainder of this paper is organized as follows.
Section 2 reviews related work of throttling algorithms.
Section 3 presents a concept of CCR (Congestion-
Contribution-Rate) to analyze the impact of source nodes’
injection action on on-chip routers in a fine-grained manner.
A concept ‘‘anchor router’’ is also presented to quantify the
critical factor causing network congestion. Section 4 pro-
poses a fine-grained source-throttling method based on the
concepts of ‘‘CCR’’ and ‘‘anchor router.’’ Section 5 simulates
and compares two other kinds of source-throttling algorithms
with proposed method, and then analyze their difference.
Section 6 concludes the paper.

II. RELATED WORK
To control the throttling rate as precisely as possible,
source-throttling algorithms usually consist of three parts [2],
[3], [12]: the first part is a congestion-awareness scheme
which detects congestion status of a part or all of the network;
the second part is a congestion-estimation mechanism which
evaluates the status of network congestion; the third one is a
load-adjusting mechanism which sets some parameters and
then throttles a source node’s injection rate.

The status of network congestion can be detected in differ-
ent ways such as the number of a local router’s busy buffers or

neighbor routers’ busy buffers [14], [15], time-out value [16],
applications’ cache miss rate or its variants [17], [18] and
so on. According to the range of being aware of net-
work congestion, there are local-knowledge based mech-
anisms and global-knowledge based mechanisms. Some
local-knowledge based source-throttling algorithms are only
aware of the congestion status of a single router [3]. For exam-
ple, the INC algorithm counts a subset (free and useful) of
virtual channel buffers in a router to decide whether to throttle
or not [2]. Their throttling decision is helpful to alleviate local
congestion, but is not efficient for alleviating congestion that
has appeared in other network parts [13]. The reason is that
some packets from the source node are forwarded through
not only the local area but also other network parts. These
packets exert their influence on both the congestion status
of local routers and that of other routers. That is to say,
local-knowledge based source-throttling algorithms usually
cause local optimum problem. Congestion status of the whole
network easily falls into under-throttling or over-throttling
dilemma [2]. The main drawback of such algorithms is their
locally-greedy awareness.

Considering the drawback of local-knowledge based
mechanism, many source-throttling algorithms are aware of
the congestion status of the whole network, i.e., global-
knowledge based mechanisms [2], [3], [17]. The simplest
available approach of achieving the global congestion sta-
tus is to evaluate the time-out value which originates
from computer networks [12], [16]. It is impossible to
quantify the global network status accurately under differ-
ent scenarios. These constraints prevent reaching efficient
solutions [12], [16]. Contrary to other networks, NoC can
quantify the whole network congestion status because of its
flexibility, fixed topology and other related parameters.

For the case of NoC, evaluating global information with
time-out value used in computer network is too complex.
Many source-throttling algorithms for NoC scenario can eval-
uate of the whole network congestion status more accurately
than time-out based methods do [2], [18]. For example,
Nychis, Fallin, etc. [17] proposed a source-throttling method
with application-level awareness for bufferless NoC. They
noticed that starvation rate grew super-linearly with net-
work utilization and was a more accurate indicator of the
level of congestion than network latency in a bufferless
NoC. They used Instructions-per-Flit (IPF) based on PE’s
L1 cache miss rate to throttle applications’ execution. But
empirical values were used for starvation rate, threshold
upper bounds and threshold lower bounds. Additionally, how
far a starvation rate was affected by the congested area
was not analyzed. Similarly, a source-throttling mechanism
called HAT was proposed. It was application-aware and
network-load-aware [18]. It used the sum of all non-network-
intensive applications’ L1 Cache’s MPKI (misses per thou-
sand instructions) to evaluate global network-congestion
status. Then it used several global throttling parameters
such as applications’ cache miss rate, global throttling rate
and the congestion threshold ‘‘nonIntensiveCap’’ to throttle
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network-intensive application’s injection rate. There was no
quantitative standard to decide whether an application was
network-intensive or not. And its parameters were almost all
empirically set.

Another global-knowledge based source-throttling method
called ‘‘self-tuned congestion control technique’’ [13] used
the number of full buffers over the whole network as the
global congestion information. Its global congestion infor-
mation was not empirically evaluated. A self-tuned tech-
nique used constant additive increments and decrements
to update the throttling threshold value. Compared with
source-throttling methods such as HAT [18] whose param-
eters are all empirical, self-tuned method can evaluated net-
work congestion status more accurately. However, its other
parameters such as the tuning period and the bandwidth
dropping rate were still empirical. Congestion status of some
routers that could not receive packets from the source were
also studied as a part of global-knowledge. They did not
consider the distribution of full buffers over the network
and quantify the impact of a source node’s injection rate on
congested routers.

State-of-the-art global-knowledge based source-throttling
algorithms for NoC attempt to evaluate network congestion
status accurately. Many researchers believe that the more
accurately network congestion status is achieved and eval-
uated, the higher probability of efficient throttling effect
can be achieved. Based on evaluated results, congestion sta-
tus is used to compare with a static or dynamic thresh-
old [13]. If the value of congestion status is smaller than the
threshold, the packet injection may be increased to improve
network throughput using load-adjusting mechanism. Other-
wise, some source nodes’ injection rates will be decreased.

However, how far and when the injection rate shall be
increased or decreased are often empirically set [2], [18].
For example, self-tuned technology used an increment of 1
percent of all buffers for constant additive increments and
a decrement of 4 percent of all buffers for constant additive
decrements [13]. The reason why 1 percent and 4 percent are
better than other percentages was not explained. If network
scenario changes, it is difficult for such empirical values to be
appropriately updated. In our opinion, such empirical values
can be replaced by fine-grained evaluation of the impact of
a source node’s injection rate on congested routers and of
network congestion status.

III. SOME COMMON MISTAKES
As mentioned in above section, evaluating network conges-
tion is the first part of source-throttling method. In our opin-
ion, the more precisely network status is evaluated, the better
under-throttling and over-throttling problem can be avoided.
To implement fine-grained evaluation of network congestion,
we propose a concept of CCR (Congestion-Contribution-
Rate) to quantify the impact of a source’s throttling on all
routers located in the communication range from the source
to the destination. CCR depends on an assumption that
Manhattan routing algorithms are used for mesh-connected

NoC and a concept ‘‘RSD’’ presented in our previous
work [19].

A. DEFINITIONS
Definition 1 (RSD): ‘‘RSD (Rectangle defined by Source

node and Destination node)’’ is introduced in [19] to cover
all the possible Manhattan paths from a source node to a
destination node (’RSD Manhattan path’ for abbreviation).
Every pair of source/destination has its own RSD in a mesh
network. All the routers included in a RSD are called ‘‘RSD
routers.’’ Every RSD Manhattan path is made up of multiple
RSD routers. A RSD example can be seen in Fig. 1.

FIGURE 1. An example of useless routers and unreachable routers in a
source-throttling scenario.

Definition 2 (Congested Router and Non-Congested
Router): If each buffer in an input-port of a router is busy,
the router is congested for its upstream router which is
directly connected to this input-port. Otherwise, it is a
non-congested router.
Definition 3 (Congestion-Around Manhattan Paths and

Congested Manhattan Paths): For a source-destination pair
in a RSD, there are many Manhattan paths from the source
PE to the destination PE. These Manhattan paths on which
there aren’t any congested routers are called ‘‘congestion-
around Manhattan paths.’’ Manhattan paths that consist of
some congested routers are defined as ‘‘congestedManhattan
paths.’’

B. ANALYZING EFFECTIVENESS OF THROTTLING
To quantify the impact of a source’s throttling on all routers
located in a RSD, it is necessary to analyze the effec-
tiveness of throttling action. It is assumed that adaptive
Manhattan routing algorithms are used and packets can be
routed around congested routers as far as possible. Given
that an adaptive Manhattan routing scheme is used in every
RSD, there are two sub-cases: (1) there does not exist any
congestion-around Manhattan path in a RSD, and (2) there
exist both some congestion-aroundManhattan paths and con-
gested Manhattan paths in a RSD. In the first sub-case, all
new packets injected by the source PE are received by many
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congested routers on some congested Manhattan paths. Such
congested routers will then affect their upstream routers,
i.e., back-pressure [20]. Because of tree saturation, there is
a spatial spread procedure in congestion [7], [8]. At this
time, any packets injected will drastically deteriorate network
congestion in a RSD. 100% throttling rate has to be used by
this source PE to avoid such tree saturation.

In the second sub-case, it is assumed that a few of new
packets injected can route around congested routers as far
as possible by adaptive routing algorithms. When new pack-
ets injected are routed along congestion-around Manhattan
paths, all intermediate routers on such paths are not easily
congested. Whether throttling action is taken or not does not
exert a crucial impact on these paths’ congestion. In other
words, throttling action exerts little impact on such interme-
diate routers’ congestion status. However, when new pack-
ets injected are routed along congested Manhattan paths,
back-pressure may come into being. At this time, throttling
action can help intermediate routers at these paths decrease
their load and avoid incoming back-pressure. That is to say,
throttling action exerts impact on such intermediate routers’
congestion status. Thus, it can be seen that throttling action
from the source has various impacts on different routers’
congestion status in the same RSD. To quantify such impact,
a concept ‘‘Congestion-Contribution-Rate’’ is presented as
follows.
Definition 4 [CCR(Congestion-Contribution-Rate and

Anchor Router)]: ‘‘Congestion-Contribution-Rate (CCR for
abbreviation)’’ is such a probability of a source’s injection
rate occupied by a RSD router under ideal conditions. It is
used to help analyze the impact probability of a source’s
injection rate on all of its RSD routers under ideal conditions.
For example, if a RSD router is not expected to receive
packets from the source, its CCR value will be set to zero
even if the router has received some packets from the source.
CCRij(0 ≤ CCRij ≤ 1) represents the probability occupied
by routerij in a RSD under ideal conditions. Obviously,
the more CCRij is, the more packets routerij is expected to
receive from the source. Consequently, a source’s throttling
rate will exerts more influence on the congestion status of
routerij.

In this paper, CCRij is used to quantify the impact of a
source’s throttling rate on routerij. How to figure out every
RSD router’s CCR value is introduced in Section 3.3. If a
router locates in multiple RSDs, it has different CCR values
from different sources.

For a given source, every router whose CCR value is
more than zero is affected by the source’s packet injection.
That is to say, the source node’s injecting action does exert
its impact on congestion status of such routers. To achieve
better throttling effect, the source’s throttling behavior had
better aim to routers with high CCR values. If such routers
are going to be congested, the source’s throttling behavior
can quickly alleviate their congestion degree. On the other
hand, the source’s throttling behavior doesn’t work well for
those routers with low CCR values even if they are also to

be congested. Under extreme cases, the congestion status for
routers with low CCR values may still be congested when no
packets are injected by the source. The reason is that such
routers are congested by packets from other sources.

Different RSD routers may have different CCR values
and various congestion status. There are three kinds of RSD
routers:

(I) The first kind of routers are those routers that are not
congested. Because they are not congested, no throttling has
to be taken for them no matter how their CCR values are
higher or lower.

(II) The second kind of routers are those that are congested
and have higher CCR values. Such routers have receivedmost
of packets from the source. If the source throttles its injection
rate much, these routers will receive few packets from the
source. These routers’ congestion degree will be alleviated
higher. The larger such a router’s CCR value is, the higher
efficiency the source’s throttling for this router is. A router
with the maximum CCR value is called an ‘‘anchor router.’’
The basic idea of our proposed source-throttling method in
Section 4 is that a source’s throttling is taken according to the
congestion status of anchor routers. Once they are congested,
throttling should be taken.

(III) The third kind of routers are those routers that are
congested and have lower CCR values. Such routers have
received fewer packets from the current source compared
with the second kind of routers. Such routers are still con-
gested because they have received many packets from other
sources. It is obvious that the current source’s throttling
cannot efficiently alleviate such routers’ congestion status.
Such routers’ congestion status will not be the standard of
whether the current source’s throttling should be taken or
not.

Note that an anchor router for a RSD may not be an anchor
router for other RSDs. Every source throttles its injection rate
only according to congestion status of its own anchor routers.
So, to achieve high efficiency of throttling for a source it is
necessary to identify where anchor routers of the source are.
The following subsection introduces how to identify anchor
routers for a source.

C. METHOD OF FIGURING OUT CCR VALUE
It is assumed that fully-adaptive Manhattan routing algo-
rithms based on global-congestion knowledge are used. It is
also assumed that if all buffers in an input-port of a router are
busy, i.e., congested, the router’s upstream router which is
directly connected with this input-port cannot forward pack-
ets to the router any more. For a congested router, to alleviate
its congestion status, it is not expected to receive packets from
the source any more. On the other hand, when fully-adaptive
routing algorithms are used, it is of high probability for a
congested router to be routed around. The congested router
will receive few packets from the source. Thus, CCR value of
a congested router is set to zero even if it may receive some
packets from the source in practice. Setting CCR value of a
congested router as zero is only used to analyze the impact of
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a source’s injection action on congestion status of every RSD
router.

Furthermore, if a router is not congested but all of its down-
stream routers are congested, such a router is not expected to
receive new packets from the source, too. The reason is that
any new packets received by this router has to be forwarded
one or more of its downstream congested routers. As men-
tioned in above section, any congested routers including its
downstream routers are not expected to receive packets. Thus,
such a router’s CCR value is also set to zero although it is not
congested. On the other hand, if all of a router’s upstream
routers are congested and cannot receive packets from the
source, the router correspondingly cannot receive packets
from the source no matter how the router is congested or
not. CCR value of such a router will also be set to zero.
To figure out each RSD router’s CCR value, it is necessary
to label these two kinds of routers whose CCR values are
zero even if they are not congested. Definition and method
of labeling these two kinds of routers are introduced in the
following subsubsection.

1) DEFINITIONS
Definition 5 (Useless Router & Unreachable Router):

These two concepts were first presented by Wang for
fault-tolerant routing with Manhattan routing schemes [21]
and then used by others such as Jiang et al. [22] and
Zhao and Xue [19], [23]. For useless routers in fault-tolerant
scenario, they could not forward packets received to a
destination node along any fault-tolerant Manhattan paths
because of the existence of faulty nodes located at some
specific positions. For unreachable routers in fault-tolerant
scenario, they could not receive any packets from a source
node along any fault-tolerant Manhattan paths because of
the existence of faulty nodes located at some specific posi-
tions. Neither an unreachable router nor a useless router can
be an intermediate router on any fault-tolerant Manhattan
paths.

Obviously, useless or unreachable routers under faulty-
tolerant scenario are similar to two kinds of routers as men-
tioned in the second paragraph of Section 3.3. The reason is
that all of them cannot (or not expected to) receive packets
from the source even if there are not faulty (or congested)
under fault-tolerant (or congestion-avoidant) Manhattan path
constraint. So if congested routers are looked as faulty
routers, every un-congested RSD router whose CCR value
is set to zero can also be regarded as a useless router or
an unreachable router. Fig. 1 shows an example of useless
routers and unreachable routers used for source-throttling
scenario.

For source-throttling scenario using fully-adaptive Man-
hattan routing scheme, useless routers are not expected to
receive packets from the source PE. Unreachable routers are
not expected to receive packets from the source. Under ideal
conditions, packets injection of a source will not affect con-
gestion status of every useless RSD router, congested RSD
router and unreachable RSD router.

Definition 6 (Normal Router): A ‘‘normal router’’ is a
router in a RSD that is not congested, useless or unreachable.
CCR value of a normal router is more than zero because it
can receive packets from the source and then forward them.

There are two typical methods of labeling all useless
routers and unreachable routers in a RSD. The first one is
proposed in [21] whose time-complexity is much more than
the second one called ‘‘path-counter method’’ in [23], [24].
In this paper, we use the second one because of its
low time-complexity. For readers’ convenience, description
about ‘‘path-counter method’’ in [23], [24] are referred in
Section 3.3.2.

2) LABELING USELESS ROUTERS AND UNREACHABLE
ROUTERS BY PATH-COUNTER METHOD
Definition 7 (Path-Counter): As mentioned in our previ-

ous work [23], [24], a concept ‘‘path-counter’’ represents the
number of all Manhattan paths which route round all faulty
nodes in a RSD. If congested nodes act as faulty nodes,
i.e., congested nodes don’t store/foward new packets any
more, the concept ‘‘path-counter’’ can also represent the num-
ber of all Manhattan paths which route round all congested
nodes in a RSD, i.e., congestion-around Manhattan paths.
For a source in a RSD, when the path-counter value is zero,
it means that there are no any congestion-around Manhattan
paths.
Definition 8 (Positive Path-Counter and Negative Path-

Counter): Based on the concept ‘‘path-counter’’, ‘‘Positive
Path-Counter’’ and ‘‘Negative Path-Counter’’ are proposed
to label useless router and unreachable router in our previ-
ous work [24]. ‘‘Positive Path Counter (P-PC for abbrevi-
ation)’’ is defined as the total number of fault-tolerant (or
congestion-around in source-throttling scenario) Manhattan
paths from (Xs,Ys) to the current router (i,j) in a RSD.
If (Xs,Ys) is not a faulty (or congested in source-throttling
scenario) router, its P-PC is initially set to 1. It indicates
that the total number of fault-tolerant (or congestion-around
in source-throttling scenario) Manhattan paths from (Xs,Ys)
to itself is 1. If (Xs,Ys) is a faulty (or congested) router, its
P-PC is set to 0. It means that there is no fault-tolerant (or
congestion-around in source-throttling scenario) Manhattan
path from (Xs,Ys) to itself.

‘‘Negative Path Counter (N-PC for abbreviation)’’ repre-
sents the total number of fault-tolerant (or congestion-around
in source-throttling scenario) Manhattan paths from the cur-
rent router (i, j) to (Xd ,Yd ) in a RSD. If (Xd ,Yd ) is not a faulty
(or congested in source-throttling scenario) router, its N-PC
is set to 1. It means that the total number of fault-tolerant (or
congestion-around in source-throttling scenario) Manhattan
paths from (Xd ,Yd ) to itself is 1. If (Xd ,Yd ) is a faulty (or con-
gested in source-throttling scenario) one, its N-PC is set to 0.
It means that there are no fault-tolerant (or congestion-around
in source-throttling scenario) Manhattan paths from (Xd ,Yd )
to itself.

Path-counter proposed in our previous work [24] can label
useless routers and unreachable routers well by figuring out
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every RSD router’s P-PC and N-PC value. It is assumed that
(Xd ,Yd ) is in the X+ and Y+ direction of (Xs,Ys). P-PC of
router (i, j) is represented by ‘‘C(i, j)’’ in Eq. (1) [24]. N-PC
of router (i, j) is represented by ‘‘C ′(i, j)’’ in Eq. (2) [24].
If (Xd ,Yd ) is in other directions of (Xs,Ys) and router (i, j)
is not a faulty (or congested) node, its P-PC or N-PC can be
formulated in a similar way.

C(i, j) =



0, if (i, j) is congested;
1, if (i, j) is the uncongested src.;
C(i− 1, j), if (i− 1, j) exists;
C(i, j− 1), if (i, j− 1) exists;
C(i−1, j)+C(i, j−1), if (i−1, j)&(i, j−1)

exist;
(1)

C ′(i, j) =



0, if (i, j) is congested;
1, if (i, j) is theuncongested dst.;
C ′(i+ 1, j), if (i+ 1, j) exists;
C ′(i, j+ 1), if (i, j+ 1) exists;
C ′(i+1, j)+C ′(i, j+1), if (i+ 1, j)&(i, j+1)

exist;
(2)

Based on Eq. (1-2), a path-counter method figuring out
every RSD router’s P-PC and N-PC can be easily deduced.
The details of labeling useless routers and unreachable
routers can be seen in our previous work [24]. Time complex-
ity of path-counter method is O(M ∗ N ) (M*N is the scale
of 2D mesh network). According to path-counter method,
N-PC value of every useless router is always equal to 0. If a
router’s N-PC ismore than 0, it will not be a useless one. P-PC
value of every unreachable router is always equal to 0. If a
node’s P-PC is more than 0, it will not be a unreachable one.
Thus, all useless routers and unreachable routers in a RSD
can be labeled.

3) FIGURING OUT EVERY RSD ROUTER’S CCR VALUE
It is assumed that every normal router forwards packets
received to all of its normal downstream neighbor routers
along Manhattan paths with the same probability. If a down-
stream neighbor router is not normal, i.e., it is congested,
useless or unreachable, its’ probability of receiving packets
is zero. When an adaptive minimal routing algorithm is used,
all normal RSD downstream neighbor routers will receive
packets from its upstream routers with the same probability.
After labeling all useless routers and unreachable routers
in a RSD using path-counter method, every RSD router’s
CCR value can be represented by Eq. (3). As mentioned in
Section 3.3.2, if a router is congested, useless or unreachable,
its CCR value is zero. If a router is normal, its CCR value
depends on its upstream neighbor routers’ CCR values and
the numbers of these upstream neighbors’ other downstream
neighbors. The bigger its upstream neighbor routers’ CCR
values are, the bigger its CCR value is. Additionally, the

bigger the numbers of its upstream neighbors’ other down-
stream neighbors are, the smaller its CCR value is. For a
2-D RSD, every router has at most two downstream neighbor
routers, and every router has at most two upstream neigh-
bor routers. CCR(i, j) represents CCR value of the source
on router(i, j). The source PE sends 1 unit packets to the
destination PE. The detail of figuring out a router’s CCR
value can be seen in Eq. (3).

CCR(i, j)=



0, if (i, j) is congested/
useless/unreachable;

1, if (i, j) is a normal router directly
connected with the source;

CCR(i, j− 1), if (i, j) is (i, j− 1)′s
unique normal downstream neighbor,
and it has no other upstream neighbor
routers;

CCR(i, j− 1)/2, if (i, j) is one of
(i, j− 1)′s two normal downstream
neighbor routers, it has no other
upstream neighbor routers;

CCR(i− 1, j), if (i, j) is (i− 1, j)′s unique
normal downstream neighbor, and it
has no other upstream neighbor
routers;

CCR(i− 1, j)/2, if (i, j) is one of
(i− 1, j)′s two normal downstream
neighbor routers, and it has no other
upstream neighbor routers;

CCR(i, j− 1)+ CCR(i− 1, j), if (i, j) is
the unique normal downstream
neighbor of (i, j− 1) and that of
(i− 1, j);

CCR(i, j− 1)+ CCR(i− 1, j)/2, if (i, j) is
the unique normal downstream
neighbor of (i, j− 1), and it is one of
(i− 1, j)′s two normal downstream
neighbor routers;

CCR(i, j− 1)/2+ CCR(i− 1, j), if (i, j) is
the unique normal downstream
neighbor of (i− 1, j), and it is one of
(i, j− 1)′s two normal downstream
neighbor routers;

CCR(i, j− 1)/2+ CCR(i− 1, j)/2, if (i, j)
is one of (i, j− 1)′s two normal
downstream neighbor routers, and is
also one of (i− 1, j)′s two normal
downstream neighbor routers

(3)
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FIGURE 2. An example of figuring out every RSD router’s CCR value.

Fig. 2 shows an example of figuring out every RSD router’s
CCR value in a 8*8 RSD. The coordinate of the source PE and
its directly-connected router is (1,1). The coordinate of the
destination PE and its directly-connected router is (8,8). It is
assumed that the source ‘‘S’’ has injected 1 unit packets into
the RSD. No packets are dropped and the destination receives
all the 1 unit packets. Under ideal conditions, every router
that is congested, useless or unreachable doesn’t receive any
packets from the source. Their CCR values are all set to zeros.
The probability of packets received by every normal router is
more than zero.

The source router (1,1) has two normal downstream neigh-
bor routers, i.e, router (1,2) and (2,1). They share equally the
1 unit packets from the source. Each of them receives 0.5 unit
packets so that their CCR values are both 0.5. Then router
(1,2) distributes equally its packets to its two normal down-
stream neighbor router (1,3) and (2,2). Router (1,3) has no
other upstream router, so its CCR value is 0.25. Router (2,1)
forwards equally its packets to its two normal downstream
neighbor router (2,2) and (3,1). Router (2,2) receives 0.25 unit
packets from router (1,2) and 0.25 unit packets from router
(2,1) individually. So its CCR value is 0.5. Other routers’
CCR values can be deduced in the same way. It can be seen
that routers with the highest CCR values is router (3,4) and
(3,5) except the source and the destination. Their CCR values
are both 0.875. Both of them are looked as anchor routers.
When the source PE begins to throttle its injection rate,
packets received by these two anchor routers will decrease
much more drastically than that by other normal routers.

Based on Fig. 2, it can be deduced that CCR value of a nor-
mal router depends on both its own position and all congested
routers’ positions. Basically, congested routers’ quantity and
positions can both affect the congestion status of a network.
At the same time, anchor routers change with the number and
location of all congested RSD routers. Only quantity of all
congested routers which is proposed in some related work

such as [17] is not sufficient to evaluate congestion status of
a network accurately.

By figuring out every RSD router’s CCR value and iden-
tifying anchor routers, it is possible to evaluate network con-
gestion more accurately. Then, when and how far a source’s
throttling is taken can be accurately figured out. All of these
steps make up of our proposed fine-grained source-throttling
method. Obviously, time complexity of figuring out routers’
CCR values is also O(M ∗ N ) (M*N is the scale of 2D mesh
network).

IV. A FINE-GRAINED SOURCE-THROTTLING METHOD
Basic idea of our fine-grained source-throttling method is
that the source’s throttling coefficient dynamically changes
with anchor routers’ congestion status. If the number of busy
input-buffers in an anchor router is more than a given thresh-
old, the throttling coefficient should be adjusted.

A. A FINE-GRAINED SOURCE-THROTTLING METHOD
For a RSD communication range, steps of proposed
fine-grained source-throttling method are as follows:
Step 1. Initialize a threshold TH , and set the source’s initial
injection rate IIR;
Step 2. Collect the position of every congested RSD router;
Step 3. Label every useless or unreachable RSD router using
path-counter method;
Step 4. Figure out every normal router’s CCR value;
Step 5. Find out anchor routers by comparing all normal RSD
routers’ CCR values;
Step 6. Monitor the congestion status information of every
anchor router;
Step 7.Use Eq. (4) to figure out the source’s throttling ratio α;
Step 8. Figure out the source’s current injection rate CIR
using Eq. (5) and begin to throttle the source’s injection rate;
Step 9.Go to Step 2 in order to start a new round of throttling.
TH in Step 1 is used to decide whether throttling action

shall be taken or not. It is represented by the busy buffer num-
ber of a router’s single input-port. It is less than the total buffer
number of a router’s single input-port. Step 2 and Step 3 can
identify every congested, useless or unreachable RSD router.
Time complexity of these two steps areO(M ∗N ) (M*N is the
scale of 2D mesh network) which can be seen in our previous
work [24]. Such routers’ CCR values are all zeros. The detail
of Step 4 whose time complexity is also O(M ∗ N ) can be
seen in Section 3.3.3. The reason that Step 5 is presented
can be seen in Section 3.2. Time complexity of step 5 is
also O(M ∗ N ). Step 6 an 7 aims at checking whether there
exists an anchor router whose anch is more than TH or not
and then figuring out a throttling ratio. Eq. (4) are introduced
in Section 4.2. These two steps show that congestion status
of anchor routers are used to evaluate congestion status of
the whole RSD network. It is different from several previous
work in which congestion status of all routers are used to do
it. Because the number of anchor routers is less than the scale
of 2D mesh, time complexity of Step 6 is equal to or less
than O(M ∗ N ). Step 8 and Eq. (5) are also introduced in
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Section 4.2. Time complexity of Step 7 and Step 8 is constant.
In Step 9, the next round of throttling will immediately start
after Step 8 is finished. The method can be implemented by
software on the source PE node. Every source PE node runs
such fine-grained source-throttling method to figure out its
own injection rate. Several parameters of this method such
as TH are interpreted in Section 4.2. Time complexity of
proposed method is only O(M ∗ N ) (M*N is the scale of 2D
mesh network). The period of proposed method is the sum
of latency from Step 2 to Step 9. Note that Step 2 and 6 can
collect RSD routers’s congestion status by using state-of-the-
art side-band network shown in related work [3], [20]. Thus,
it will not consume current NoC network bandwidth.

B. FIGURING OUT A THROTTLING RATIO AND
CURRENT INJECTION RATE
It is assumed that each input-port of a router has the
same number of buffers. As mentioned in Section 3.2.3,
the source’s injection rate exerts more impact on those RSD
routers with higher CCR values. Anchor routers have the
highest CCR values over a RSD. Eq. (4) represents the rela-
tionship between a source’s throttling ratio, i.e., α, and the
congestion status of an anchor router, i.e., anch. anch is the
maximum number of busy buffers among all anchor routers’
input-ports that can receive packets from the source. anch’s
upper bound is the total buffer number of a router’s single
input-port.When anch is more than TH , the source’s injection
rate should be decreased or throttled.

As shown in Eq. (4), when anch is more than TH , it means
that an anchor router is going to be congested. Throttling
has to be taken to avoid incoming congestion for the anchor
router. Otherwise, no throttling has to be taken. TH is a
precaution mechanism of preventing anchor routers being
congested. It is empirically set as a value close to the total
buffer number of a router’s single input-port.

α =

{
1− TH/anch, if anch > TH ;
0, if anch ≤ TH ;

(4)

After achieving α, the source’s current injection rate can
be figure out by Eq. (5).

CIR =

{
0, if the source router is congested;
IIR ∗ (1− α), Otherwise;

(5)

A source’s current injection rate is marked ‘‘CIR.’’
A source’s initial injection rate is marked ‘‘IIR.’’ As men-
tioned in Section 3.3, when a router’s downstream neighbor
router are congested or busy, it should not forward pack-
ets to its congested neighbor again in order to prevent the
spread of tree saturation. Correspondingly, when a source’s
directly-connected router is congested, the source PE should
not inject any new packets into this router although its injec-
tion rate has already been set to a value. Thus, the source’s
real injection rate is 0 as shown in the first branch of Eq. (5).
When a source’s directly-connected router is not congested,

the source’s real injection rate depends on IIR and α as shown
in the second branch of Eq. (5). Once a source’s IIR is set,
it will not changes at all. The source’s current injection rate
will correspondingly change with α.

According to Eq. (4-5), RSD congestion can be adjusted as
a critical status that anch is equal to TH . Any further incre-
ment of current injection rate will increase the probability of
making anchor routers congested. On the other hand, α can
also prevent further decrement of source’s current injection
rate. Throughput in this RSD can be maintained as much as
possible. Thus, throttling based on α can avoid over-throttling
and under-throttling simultaneously.

Note that if the initial injection rate is very low, current
injection rate will be very low, too. Consequently, RSD net-
work throughput is hard to be improved. On the other hand,
if IIR is set as a high value, the source’s directly-connected
router is easily congested. At this time, no new packets will
be injected into this router and the CIR is really 0 according
to Eq. (5). That is to say, high IIR will not lead to high CIR.
Thus, IIR should be set as a high value in order to maintain
high RSD network throughput.

In a word, Eq. (4-5) are used to prevent anchor routers
becoming congested in advance. They can be figured out by
software running on PE nodes as presented in our proposed
method.

C. EXPERIMENT
We simulate three kinds of global-knowledge based
throttling algorithms, including proposed method, INC algo-
rithm [2] and self-tuned algorithm [3] in a 8*8 mesh net-
work. INC algorithm is a typical local-knowledge based
source-throttling method [2]. It counts a subset (free and
useful) of virtual channel buffers to decide whether a source’s
injection rate should be throttled or not. Self-tuned algo-
rithm is a typical global-knowledge based source-throttling
method [13]. It used the number of full buffers over the whole
network as the global congestion information. It has better
network performance than the INC algorithm [2] does. These
two source-throttling algorithms don’t evaluate how much a
throttling action affects congested routers. Their throttling
parameters are almost all empirically set. So we compare
these two source-throttling algorithms with ours. To highlight
the throttling result, we also simulate the scenario that no
throttling action is taken.

In the simulation, Wormhole routing scheme and
fully-adaptive routing algorithm are used. Every packet is
made up of 5 flits. Every router has 5 input queues. Every
input queue uses 2 virtual channels to avoid deadlock. Every
virtual channel can store 10 flits. Every input queue can
store 20 flits at most. The threshold TH is set to 16 flits
for an input queue. When the number of received flits by a
router’s input-port queue is more than TH , this input-port
queue will not receive flits any more. Random, transpose
and hotspot traffic patterns are set. Note that the latency
and throughput of un-throttled condition are convergent here.
The reason is that every router will not receive flits any

33108 VOLUME 8, 2020



H. Zhao et al.: Fine-Grained Source-Throttling Method for Mesh Architectures

FIGURE 3. Latency under hotspot,random and reversal traffic patterns in
an 8*8 2D Mesh.

more when its input-ports queues are all full as mentioned
in Section 3.3.

Fig. 3 shows the latency under hotspot, random and rever-
sal traffic patterns in an 8*8 2D mesh network. Under the
hotspot traffic pattern, the stable latency of our proposed algo-
rithm is about 21.2% less than that of self-tuned algorithm,
30.8% less than that of INC algorithm, and 43.9% less than
that of un-throttled condition, respectively. Under the random
traffic pattern, the stable latency of our proposed algorithm
is about 23.3% less than that of self-tuned algorithm, 34.6%
less than that of INC algorithm, and 46.6% less than that
of un-throttled condition, respectively. Under the reversal
traffic pattern, the stable latency of our proposed algorithm
is about 20.3% less than that of self-tuned algorithm, 33.8%
less than that of INC algorithm, and 48.4% less than that of
un-throttled condition, respectively. Our proposed algorithm
achieves higher performance than other three algorithms do.

Fig. 4 shows the throughput under hotspot, random and
reversal traffic patterns in an 8*8 2D mesh network. It can

be seen that four throughput-load curves have almost the
same top throughput points under the same traffic pattern,
i.e.,hotspot, random or reversal. If the load continues to
increase, their throughput will drop at different levels and
then become slowly stable with different source-throttling
methods. Under the hotspot traffic pattern, the stable network
throughput of our proposed algorithm is about 15.5% higher
than that of self-tuned algorithm, 28.7% higher than that of
INC algorithm, and 91.5% higher than that of un-throttled
condition, respectively. Under the random traffic pattern,
the stable throughput of our proposed algorithm is about
17.6% higher than that of self-tuned algorithm, 25.4% higher
than that of INC algorithm, and 102.4% higher than that of
un-throttled condition, respectively. Under the reversal traffic
pattern, the stable throughput of our proposed algorithm is
about 14.1% higher than that of self-tuned algorithm, 25.2%
higher than that of INC algorithm, and 92.8% higher than that
of un-throttled result, respectively. In a word, throughput with
our proposed method owns the lowest drop level compared
with other three throttlingmethods. Our proposedmethod can
usually keep network throughput very close to the top point
under different traffic patterns.

Fig. 5 shows the throughput varies with the simulation time
under random traffic pattern in an 8*8 2D mesh network.
Compared with other three throttling results, our proposed
algorithm has the lowest fluctuation of throughput. It means
that it can avoid over-throttling and under-throttling better.

Fig. 6 shows the latency varies with the simulation time
under random traffic pattern in an 8*8 2D mesh network.
Compared with other three throttling results, our proposed
algorithm has the lowest fluctuation of latency. It also means
that it can avoid over-throttling and under-throttling more
accurately.

Our proposed algorithm can achieve better throttling effect
than typical INC and self-tuned source-throttling algorithms.

D. ANALYSIS
1) LESS FLUCTUATION OF THROUGHPUT AND LATENCY
There are two key features in our proposed method. The
first one is that it can quantify the effectiveness of throttling
action on RSD routers. As mentioned in Section 3.2, some
RSD routers are affected more by a source’s throttling action
while others are not. CCR is used to accurately quantify
such effectiveness difference. The second one is that it does
not use the congestion status of the whole network but uses
a concept ‘‘anchor router’’ to evaluate network congestion.
Consequent throttling aims not at the whole network but at
anchor routers in a RSD. In some previous work such as [2],
congestion status of some routers which are affected little by
the source’s injection rate are also counted into congestion
status of the whole network. Consequently, part of throttling
which is for congestion status of such routers will not work
well to avoid over-throttling and under-throttling. Compared
with these work, throttling aiming at anchor routers will work
better. That is the reasonwhy our proposedmethod shows less
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FIGURE 4. Throughput under hotspot,random and reversal traffic patterns
in an 8*8 2D Mesh.

FIGURE 5. Throughput vary with simulation time under random traffic
pattern.

fluctuation of throughput and latency than previous work as
shown in Fig. 5 and Fig. 6.

2) HIGHER THROUGHPUT
As shown in Fig. 7 that is presented by Jain etc. in 1988,
a well-worked network should keep appropriate load in order
to provide high throughput [12].When the load is less than the

FIGURE 6. Latency vary with simulation time under random traffic
pattern.

FIGURE 7. The relationship between network load and throughput [12].

knee point, network throughput is very small. When the load
is more than the cliff point, network throughput decreases
quickly. Thus, higher throughput can be achieved only when
the load is near to or among the range from the knee point to
the cliff point.

Our proposed method prefers to figure out the current
injection rate accurately. And it throttles the injection rate not
according to the overall network congestion status but accord-
ing to anchor routers’ congestion status. An anchor router is
the vane of the impact of source’s injection action on RSD
network’s congestion status. Eq. (4) adjusts throttling rate and
makes congestion status of an anchor router be exactly close
to the threshold. Thus, over-throttling and under-throttling
problems are simultaneously avoided. Its procedure can be
intuitively expressed by Fig. 7, i.e., the load range from the
knee point to cliff point can be approached by Eq. (4). That
is the reason why our proposed method can achieve higher
throughput than other two algorithms as shown in Fig. 4.

3) LESS LATENCY
Eq. (4) can avoid under-throttling, so less congestion will
appear. Consequently, less latency, as shown in Fig. 3 and
Fig. 6, can be achieved by our proposed method. On the other
hand, throughput can be defined as the total number of pack-
ets received by all destination nodes per unit time. In other
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words, the more throughput is, the less average end-to-end
latency for a packet is. Because our proposed method has
higher throughput than other two algorithms, lower latency
can be achieved by it, too.

4) TIME COMPLEXITY AND SCALABILITY
Our proposed method consists of 9 steps. Time complexities
of Step 3, 4 and 5 are all linearly related to the scale of
a RSD. Time complexities of step 1, 6, 7, 8 and 9 are all
constants. It can be deduced that time complexity of our
proposed method is linearly related to the scale of a RSD.
It is easily implemented by software on the source PE.

Our proposed method is a partially centralized algorithm.
A main argument against centralized routing mechanisms
is their potential scalability problems [25]. Such measures
as using clustered blocks of nodes(2*2, 3*3, 4*4 etc)
instead of individual nodes [25] can be used to solve
this problem. On the other hand, its scalability is better
than global-knowledge based throttling algorithms such as
self-tuned algorithm.

V. CONCLUSION
In this paper, we propose a fine-grained source-throttling
method. Compared with INC algorithm and self-tuned
source-throttling algorithm that use empirical values to throt-
tle a source’s injection rate, it can be of fine-grained cal-
culating the throttling ratio to adjust the source’s injection
rate. So over-throttling and under-throttling problems can
be avoided more efficiently and intelligently. Our two main
contributions: 1, it uses a concept ‘‘CCR’’ to quantify the
impact of throttling action on routers; 2, only anchor routers,
i.e., the RSD routers that are most affected by the source’s
throttling action, are used to evaluate congestion status of
the RSD network. Those RSD routers that are not as much
affected are not taken into account at all. Thus, throttling
parameters can be not empirically set but accurately figured
out. It can solve over-throttling and under-throttling problems
in a fine-grained manner. Simulation results also show that it
has higher throughput, lower fluctuation and lower latency
than INC and self-tuned source-throttling algorithms under
different network scenarios. Additionally, time complexity
of our proposed method is only O(M ∗ N ) (M*N is the
scale of 2D mesh network). In the future work, we will use
our proposed method in a manner of AI technology about
designing NoC architecture.
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