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ABSTRACT Cloud and cloud shadow detection is one of the most important tasks for optical remote sensing
image preprocessing. It is not an easy task due to the variety and complexity of underlying surfaces, such
as the low-albedo objects (water and mountain shadow) and the high-albedo objects (snow and ice). In this
study, an end-to-end multiscale 3D-CNN method is proposed for cloud and cloud shadow detection in high
resolution multispectral imagery. Specifically, a multiscale learning module is designed to extract cloud
and cloud shadow contextual information of different levels. In order to make full use of band information,
four band-combination images are inputted into the multiscale 3D-CNN. A joint spectral-spatial information
of 3D-convolution layer is developed to fully explore the joint spatial-spectral correlations feature in the input
data. Overall, in the experiments undertaken in this paper, the proposed method achieved a mean overall
accuracy of 97.27% for cloud detection, with a mean precision of 96.02% and a mean recall of 95.86%.
For cloud shadow detection, the proposed method achieved a mean precision of 95.92% and a mean recall
of 92.86%. Experimental results on two validation datasets (GF-1 WFV validation data and ZY-3 validation
data) show that the proposed multiscale-3D-CNN method achieved good performance with limited spectral
ranges.

INDEX TERMS Cloud detection, cloud shadow, convolution neural networks, multiscale 3D-CNN.

I. INTRODUCTION
Optical high-resolution remote sensing images (such as
SPOT/Gaofen-1) are widely used for environment monitor-
ing, geographical mapping, and change detection [1]. Clouds
and cloud shadows obscure the spectral information of optical
remote sensing sensors [2], and thus the presence of clouds
and cloud shadows significantly influences the availability
of optical high-resolution images, such as image fusion and
change detection [3]. Therefore, the accurate identification
of clouds and cloud shadows is one of the most important
techniques for optical remote sensing applications.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Kashif Bashir .

Recently, a variety of cloud\shadow detection meth-
ods for remote sensing imagery have been proposed [4].
These methods can broadly be categorized into threshold
based methods and image classification methods [5]. Pre-
vious threshold-based methods often utilize either prede-
fined thresholds or adaptive thresholds to mask clouds in
designed images [6]. Huang et al. [7] proposed an automated
masking algorithm for cloud and cloud shadow detection
using adaptive thresholds defined in Landsat images. Zhu
andWoodcock [8] exploited Function of Mask (Fmask) algo-
rithm to predict possible cloud locations through the scene
based threshold, and then detect the cloud shadows by object
geometry matching. Li et al. [9] proposed an automatic
multi-feature combined (MFC) method to acquire the cloud
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mask by threshold segmentation based on the multi-features
(geometric, spectral, and textural features) and guided fil-
tering, and calculate the cloud shadows utilizing the cloud
and shadow matching and follow-up correction process. The
above threshold-based method can successfully provide an
accurate cloud and cloud shadow mask, but they are highly
dependent on the sensors and sensitive to changes in atmo-
spheric conditions and scene properties.

Image classification based on feature extraction and
machine learning is also an effective method for cloud and
cloud shadow detection. Li et al. [10] trained a Support Vector
Machine (SVM) classifier to detect clouds from reflectance
and texture information. Hollstein et al. [11] developed an
overview of several ready-to-use machine learning to detect
cloud and cloud shadow in Sentinel-2 images. Hughes and
Hayes [12] uses a neural network approach to determine
cloud, cloud shadow, and clear sky classification member-
ships of each pixel in Landsat OLI images. Generally, image
classification methods yield more accurate cloud/shadow
detection results than the threshold methods.

In optical remote sensing images, previous cloud shadows
detection methods are often accomplished after cloud detec-
tion by geometrical matching [13]. It is difficult to detect
cloud shadows, because their spectral signatures overlap with
other low-albedo objects [14]. In the optical high-resolution
images, it is not easy to separate clouds from some bright
ground objects (such as snow, white buildings) when only
using the spectral features [15]. Therefore, the accurate detec-
tion of cloud and cloud shadow is quite challenging for optical
high-resolution images due to the limited spectral ranges
(including blue, green, red, and near infrared bands) and the
complexity of underlying surfaces.

In recently years, convolutional neural networks (CNN)
have achieved great success in image classification [16],
segmentation [17], and recognition tasks [18]. Deep learning-
based semantic segmentation models can extract features
automatically from input images in recent studies on cloud
detection [19], such as Deeplab [20] and pyramid scene pars-
ing network (PSPnet) [21]. The performance of segmentation
networks cannot perform good in different objects, especially
for small objects owing to the pooling effect. Shi et al. [22]
used a single-branch CNN to extract cloud regions from
superpixels. Xie et al. [23] developed a two-branch CNN
to extract cloud regions from superpixels. Chen et al. [24]
exploited the multiple-CNN model to detect cloud regions.
Wang et al. [25] presented a new CNN to detect cloud and
snow on an object level. Goff et al. [26] developed a fully
connected CNN to extract cloud regions. Wieland et al.
[27] exploited the modified U-Net 2D-CNN for cloud and
cloud shadow segmentation. Chai et al. [28] uses an adaption
of SegNet to detect cloud and cloud shadow in Landsat
imagery.

However, the performance of some CNN methods are too
dependent on superpixels segmentation accuracy. In addi-
tion, the spatial features and spectral features are extracted
separately due to 2D-CNN is used in some cloud detection

methods. The 2D-CNN based methods cannot fully extract
the joint spatial-spectral correlations feature [29], which can
be critical for cloud and cloud shadow detection. How-
ever, some scholars developed 3D-CNN model to extract
deep spectral-spatial features directly from input data [30],
[31]. But, these models cannot perform well in multi-scale
spectral–spatial features. In order to produce good detec-
tion results, more information such as multi-scale contextual
information should be taken into consideration.

In this paper, an end-to-end multiscale-3D-CNN architec-
ture is proposed for cloud and cloud shadow detection in
high resolution multispectral imagery. The proposed method
enjoys the benefit from end-to-end deep learning and the
performance of the proposed method is not dependent on
superpixels segmentation accuracy. Specifically, the multi-
scale learning module is designed to extract cloud and cloud
shadow contextual information of different levels. In order
to fully explore the joint spatial-spectral correlations fea-
ture, a spectral-spatial information of 3D-convolution layer is
developed for high resolution multispectral imagery. Exper-
imental results on two validation datasets (GF-1 WFV vali-
dation data and ZY-3 validation data) show that the proposed
multiscale 3D-CNN model achieves good performance and
it does not require additional superpixels segmentation pro-
cessing.

This paper introduces the cloud and cloud shadow detec-
tion method based on multiscale 3D-CNN. The major work
of this paper is as follows:

(1) An end-to-end 3D-CNN method is proposed for cloud
and cloud shadow detection in high resolution multispectral
imagery.

(2) In order to fully explore the joint spatial-spectral
correlations feature, a spectral-spatial information of 3D-
convolution layer is developed.

(3) A multiscale learning module is designed to extract
cloud and cloud shadow contextual information of different
levels.

The rest of this paper is organized as follow. Section II
describes the proposed cloud and cloud shadow detection
method in detail. Section III presents the cloud and cloud
shadow experimental results. Some discussions are offered
in Section IV. Conclusion is summarized in Section V.

II. METHODOLOGY
In this section, the proposed framework of cloud and cloud
shadow detection based on multi-scale 3D-CNN is intro-
duced, and their main contributions are highlighted. First, a
spectral-spatial information of 3D-convolution layer is devel-
oped to fully extract the joint spatial-spectral correlations fea-
ture. Second, the multi-scale 3D-CNN structure is discussed,
which is used to extract cloud and cloud shadow contex-
tual information of different levels. The overall structure of
the proposed framework for cloud and cloud shadow detec-
tion from high resolution multispectral imagery is shown
in Fig.1.
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FIGURE 1. Framework of the proposed method for cloud and cloud shadow detection.

A. 3D-CONVOLUTION LAYER
The convolution layer produces new feature maps from pre-
vious feature maps and acts as multiple learnable filters in the
input image [17]. In traditional CNN, 1-D convolution is used
at the convolutional layers to extract spectral features from the
input data [32]. 2-D convolution is used at the convolutional
layers to extract spatial features from the input data [33].
Fig.2 (a) illustrates the main process of a 2-D convolution
operation.

Recently, 3D-convolution layer is achieved to extracts fea-
tures from both spatial and temporal dimensions by convolv-
ing a 3D kernel in the video processing task [34], [35]. The
highly nonlinear semantic relationship between multispectral
(MS) image bands indicates that higher level expression is
essential for cloud and cloud shadow detection. However,
it is difficult to directly extract spatial-spectral information
from MS images in both the spatial and the spectral dimen-
sions, when the 2D-CNN is used. The 3D-CNN structure
seeks to fully extract the joint spatial-spectral correlations
feature from the MS images. In 3D-CNN structure, in order
to fully explore the joint spatial-spectral correlations fea-
ture, a joint spectral-spatial information of 3D-convolution
layer is developed. Fig.2 (b) illustrates the main process of
a joint spectral-spatial information 3D convolution opera-
tion. Formally, the joint spectral-spatial information of 3D-
convolutional process is defined as follows.

Gxyzij = f (
∑
k

Mi−1∑
m=0

Ni−1∑
n=0

4∑
n=0

wijmnbG
(x+m)(y+n)(z+b)
(i−1)k + bij)

(1)

where, b is the depth of the 3D kernel along spectral dimen-
sion,G(x+m)(y+n)(z+b)

(i−1)k indicates the (i-1)th layer of kth feature
map, Mi is the length of the 3D kernel, Ni is the width of
the 3D kernel, bij is the bias for this feature map, f (•) is the
activation function.

In order to keep the spatial extent of the activations after
convolutions, in this paper, a zero-padding method is used
as it does not change activations and compensate for the
number of lost pixels at the borders of the feature maps.
In the CNN networks, the activation function is one of the
significant factors, which brings nonlinearity into the CNN
networks. Generally, between the convolutional layer and the
other convolutional layer by activation function [36]. In the
CNN networks, the Rectified Linear Unit (ReLU) function
is conventionally used as an activation function because the
neurons with rectified functions performing well to overcome
saturation [37]. The ReLU is defined as follows [38]:

ReLU(x) = max(0, x) (2)

B. STRUCTURE OF MULTISCALE 3D-CNN
Generally speaking, the cloud shadow is around the cloud,
and the snow goes along the extending direction of a moun-
tain [39]. This contextual information is very important for
cloud and cloud shadow detection. It is key factors that how to
effectively mine multiscale contextual relation between cloud
and cloud shadow [28]. Inspired by Fully CNN (FCNN) [40]
as backbone to extract semantic features of input images of
different sizes, a multiscale 3D-CNN structure is designed
to extract cloud and cloud shadow contextual information of
different levels.
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FIGURE 2. illustrates of the main differences between the 2D and the 3D convolutions.
(a) 2D convolution operation. (b) 3D convolution operation.

As shown in Fig. 3, the proposed CNN structure is divided
into three parts. The proposed CNN structural contains multi-
scale sampling module, multi-scale learning module, and fea-
ture fusion module. In this study, each feature map is defined
as a 3-D array with the size of height×width× depth, where
width and height indicates the spatial size, and depth denotes
the spectral size. Conv# indicates a 3D-convolutional layer
with the size height × width × 4.

In the multi-scale sampling module (Input images prepro-
cessing module), in order to get the multiscale input images,
we first upsample the original images by a factor of 2 via
bilinear interpolation to get the input images of size 512 ×
512 × 4. Then, we downsample the original images as the
input images of size 128× 128× 4. Finally, the different size
patches (512× 512× 4, 256× 256× 4, and 128× 128× 4)
are inputted into the multiscale learning module.

The multi-scale learning module consists of different
mode: Global contextual mode, Local spatial mode, and
Local contextual mode. The global contextual mode is
designed to perceive global contextual information. The local
spatial mode is designed to extract low-level spatial informa-
tion. The local contextual mode is designed to perceive local
contextual information.

Generally speaking, the smaller size convolutional kernels
are used to exploit local features, the larger size convolutional
kernels are used to exploit global features [41]. Therefore,
in the multi-scale learning module, in order to extract both
low-level spatial information and multi-scale semantic infor-
mation, we set different sizes of the 3D-convolution kernel.
As we know, global contextual information has strong con-
texts but weak local spatial information, whereas local spatial
information has strong locations but weak context. Adding

multiscale learningmodule to the CNN can improve the accu-
racy of cloud and cloud shadow detection. Global average
pooling (GAP) has proven to be a good model as the global
contextual features [42]. The GAP can reduce the plenty
of parameters, sequentially GAP is used to heavily reduce
the number of learning parameters in the very deep CNN
structural [43], [47]. Therefore, in the multi-scale learning
module, the final convolutional layer is followed by global
average pooling.

In the feature fusion module, features of different levels are
concatenated as the final output feature vector. The output is a
768-dimensional feature vector. The 768-dimensional feature
vector is reshaped into a single 3-channel feature map, which
belongs to cloud shadow, cloud, and background.

Based on FCNN, we design a multiscale-3D-CNN struc-
ture for cloud and cloud shadow detection.

The main modifications of multiscale-3D-CNN structure
are highlighted as follows: (1) By replacing the fully con-
nected layer with global average pooling, the number of
learning parameters is heavily reduced, and the multilevel
semantic informations is fused. (2) We remove the 2D-
convolutional layer, in order to fully explore the joint spatial-
spectral correlations feature, we add the joint spectral-spatial
information of 3D-convolution layer. (3) We add the multi-
scale learning module.

C. CLASSIFICATION AND LOSS MODULE
In this paper, we use the ReLU not only as an activation
function [44], but also as the classification function at the
last layer of our CNN. The predicted class for ReLU (PC-
ReLU) classifier is used to classify features extracted in the

16508 VOLUME 8, 2020



Y. Chen et al.: Cloud and Cloud Shadow Detection Based on Multiscale 3D-CNN

FIGURE 3. The proposed CNN structural for cloud and cloud shadow detection.

multiscale 3D-CNN. Suppose that x is the activation at the
penultimate layer of CNN architecture, and y is the weight
parameters. Therefore, in this paper, the PC- ReLU classifier
can be expressed as:

ψ = argmaxmax(0,
M−1∑
j

xjyj)

j∈1,2,3···M

(3)

To avoid overfitting problem, in this paper, the mean
squared error as the loss function is calculated as follows [45]:

L(X1,Y i) =
1
2M

M∑
i=1

‖X1 − Yi‖22 (4)

where X1 is an input image. Yi is the training images.M is the
number of samples.

D. ACCURACY EVALUATION
To evaluate the performance of the multi-scale 3D-CNN for
cloud and cloud shadow, the overall accuracy (OA), the com-
pleteness (recall), and the correctness (precision) are used.
The truth cloud and cloud shadows were manually drawn at

the ENVI software platform. The completeness represents the
ratio of correctly classified cloud and cloud shadow pixels
among all true target pixels. The correctness represents the
ratio of the correctly classified cloud and cloud shadow pixels
and all predicted cloud pixels.

completeness =
TP

TP+ FN
(5)

correctness =
TP

TP+ FP
(6)

where TP represents the number of cloud and cloud shadow
pixels that have been correctly classified, TN represents the
number of background pixels that were correctly rejected
FN represents the number of cloud and cloud shadow pixels
classified as background pixels, FP represents the number
of background pixels classified as cloud and cloud shadow
pixels.

We used the overall accuracy, which is the percentage of
correctly classified cloud pixels. The OA is defined as [46]:

OA =
TN + TP

T
× 100% (7)

where T is the total number of pixels in the test image.
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III. EXPERIMENT AND ANALYSIS
A. DATA SET AND TRAINING
In order to evaluate the proposed multiscale-3D-CNN
model and examine at its performance under the condi-
tion of limited spectral range, we use the two validation
datasets (GF-1 WFV validation data and ZY-3 validation
data). In order to make full use of information, the four
band-combination images are inputted into the proposed
multiscale-3D-CNN. The truth cloud and cloud shadows
(reference images) are obtained by manually marking on
the ENVI software platform. The FLAASH (Fast Line-of-
Sight Atmospheric Analysis of Spectral Hypercubes) method
is used for GF-1 WFV and ZY-3 images. The radiomet-
ric calibration coefficient of GF-1 WFV and ZY-3 images
FLAASH atmospheric correction can be downloaded from
http://www.cresda.com/CN/Downloads /dbcs/index.shtml.
Since the input size of the proposed multiscale-3D-CNN is
256 × 256, the GF-1 WFV and ZY-3 images of training
samples were clipped into the size of 256× 256.

1) GF-1 WFV VALIDATION DATA
In this paper, we use the public accessible GF-1 WFV
validation data set released by Li et al [9]. The data
set consists of 108 full scenes with the spatial resolution
about 16 m. There are four bands (blue, green, red, and
near infrared bands) in GF-1multispectral images. The data
set is divided into three parts: training, validation, and
test, the 48 images are used for training, 40 for valida-
tion, and 20 for test. The data set contain typical under-
lying surface, including mountain areas, urban areas, and
ice/snow, etc.

2) ZY-3 WFV VALIDATION DATA
There are three visible bands and one near-infrared band in
ZY-3 multispectral images. The data set contains 158 scenes
from the satellite ZY-3 (http://clouds.sasmac.cn/query) with
the spatial resolution about 5.8m. The 68 images are
used for training, 60 for validation, and 30 for test.
The data set contains different land-cover types, includ-
ing mountain areas, water, forest, grassland, ice, snow,
and so on.

3) NETWORK TRAINING
The designed multiscale-3D-CNN is implemented by using
Python 3.5 on a personal computer with an E3-1505M
v6 @3GHz, 32 GB DDR4 memory, and Nvidia Quadro
M2200. The experiments were implemented using the soft-
ware library Tensorflow. We trained the multiscale-3D-CNN
for 100 epochs using stochastic gradient descent (SGD)
with a minibatch size of 128 patches. The weights in each
layer were initialized from a zero-mean Gaussian distribution
with a standard deviation of 0.01. The learning rate started
from 0.001 and was divided by 10 when the error plateaus,
respectively. The weight decay and momentum were set to
0.001 and 0.1.

B. PERFORMANCE COMPARISON OF DEFFERENT CNN
In this section, the multiscale-3D-CNN is designed to detect
cloud and cloud shadow, which can mine the semantic fea-
tures of cloud and cloud shadow at three scales. We eval-
uate the proposed multiscale-3D-CNN with four different
CNN, including 516+3D-CNN (Fig.3 black box), 256+3D-
CNN (Fig.3 red box), 128+3D-CNN (Fig.3 blue box),
and FCN-8 (https://github.com/shelhamer/fcn. berkeleyvi-
sion.org). FCN-8 is a well-known FCN, where the output
scoremap is 1/8 × 1/8 size of the input image [40].

To visually compare the cloud and cloud shadow detection
results, Fig. 4 shows some cloud and cloud shadow detection
results of example images generated by different CNN struc-
ture on ZY-3 WFV validation data. Fig. 4 (g) shows ground
truth (red region are cloud and gray region represents cloud
shadow).

As shown in Fig. 4, we can see that our method can achieve
good detection results. As shown in Fig. 4(b-g), the cloud and
cloud shadow detection results of our proposed multiscale-
3D-CNN framework are the most similar to the ground truth,
while the single branch CNN framework have discernible
detection errors in cloud shadow regions. In addition, all of
the above CNNmethods are much more accurate in detecting
clouds than cloud shadows because the spectral features of
cloud shadow are more similar to the background (water and
mountain shadow).

In order to assess the detection performance of different
CNN structure, we calculated the overall accuracy, the com-
pleteness (recall), and the correctness (precision) at twenty
ZY-3 WFV images. Table 1 summarizes the average scores
of cloud and cloud shadow mapping with the 516+3D-
CNN, the 256+3D-CNN, the 128+3D-CNN, the FCN-8
[38], the proposed multiscale-3D-CNN respectively. From
Table 1, it indicates that the proposed multiscale 3D-CNN
structure has good metric values for both cloud and cloud
shadow. The proposed multiscale 3D-CNN algorithm per-
forms well accurately in cloud detection. The average overall
accuracy of cloud detection is as high as 98.34%, and the
average precision accuracy and the average recall accuracy
are 97.03% and 96.01%, respectively. For cloud shadow
detection, the average overall accuracy of cloud detection is
up to 98.61%, and the average precision and the average recall
are 96.83% and 95.17%, respectively.

C. COMPARISON WITH OTHER METHODS
In this paper, in order to verify the performance of the pro-
posedmethod, we compared the proposedmethod to theMFC
method [9] (http://sendimage.whu.edu.cn/en/mfc/), Deeplab
method [20] (https://github.com/ rishizek/ /tensorflow-
deeplab-v3), and PSPnet method [21] (https://hszhao.github.
io/projects/pspnet/).

We propose multiscale 3D-CNN to learn the multilevel
semantic information of various clouds and cloud shad-
ows. The MFC method is a good performance traditional
threshold cloud detection method. The MFC method is
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FIGURE 4. Visual comparison of different CNN. (a) Original image. (b) 516+3D-CNN. (c) 256+3D-CNN.
(d) 128+3D-CNN. (e) FCN-8. (f) Our multiscale-3D-CNN. (g) Ground truth.
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TABLE 1. Detection performance of different CNNs for cloud and cloud shadow.

TABLE 2. Detection performance of different methods for cloud and cloud shadow.

based on spectral information similarity to detect each
pixel. Both the Deeplab and the PSPNet are good per-
formed deep semantic segmentation networks for natural
images.

Fig. 5 shows some of cloud and cloud shadow detection
results of example images generated by different methods on
GF-1WFV validation data. In Fig.5, three GF-1multispectral
images are selected, including an image with a large piece
of thick clouds and cloud shadow (see Fig.5 (a)), an image
with snow/ice only (see Fig.5 (b)), and an image with small
piece of thin cloud and cloud shadow (see Fig.5 (c)). Fig.5
(a) is the simplest situation that thin cloud and cloud shadow
are large. Both the MFC method and the deep networks can
achieve good detection results. In deep networks, the pro-
posed multiscale 3D-CNN achieves a better performance
for cloud shadow detection. As for the snow/ice case only,
the MFC method cannot distinguish the cloud from the snow.
The proposed multiscale-3D-CNN can accurately separate
the cloud and snow in GF-1 multispectral images. In addi-
tion, we can find that MFC method only detects the thick
clouds. As shown in Fig.5 (c), the MFC, the Deeplab, and
the PSPNet also missed lots of thin clouds. The proposed
multiscale-3D-CNN is more capable of detecting cloud and
cloud shadow regions of different types, which is because
the proposed method can extract cloud and cloud shadow
contextual information of different levels.

To evaluate the effectiveness of the proposed multiscale
3D-CNNmodel in detecting cloud and cloud shadow regions,

we calculated the overall accuracy, the completeness (recall),
and the correctness (precision) at twenty GF-1 WFV images.
A better cloud and cloud shadow detection algorithm has high
values of overall accuracy, precision, and recall. Table 2 sum-
marizes the average scores of cloud and cloud shadow map-
ping with the MFC method, the Deeplab method, the PSPNet
method, and the proposed multiscale-3D-CNN, respectively.
From Table 2, it can be seen that our multiscale-3D-CNN
algorithm has the highest score in the overall accuracy, pre-
cision, and recall. The MFC method has high accuracy in
cloud detection, while the accuracy of cloud shadow is poor.
The above results show that our multiscale-3D-CNN model
delivers more accurate detection results in cloud and cloud
shadow detection.

IV. DISCUSSIONS
In the cloud and cloud shadow detection, the ice, snow, water,
and mountain shadow are the main sources of noise that
decrease the accuracy. In order to further assess the reliability
of the proposed method, the performance of the proposed
method is discussed when suppressing noise.

A. THE INTERFERENCE OF ICE AND SNOW
The spectrum for ice and snow is similar to that for
cloud detection. The shortwave infrared band (SWIR, e.g.,
Sentinel-2A 1.55–1.75 µm band) is widely applied to distin-
guish the snow/ice from the clouds. However, it is a chal-
lenge to remove these noises from clouds in optical high
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FIGURE 5. Visual comparison of different methods in GF-1 WFV validation data. (a)-(c) are three GF-1 images. (a) Large
piece of thick cloud and shadow. (b) snow/ice only cases. (c) Small piece of thin cloud and cloud shadow.

resolutionMS images because the high resolutionMS images
lack SWIR. To testify the reliability of the proposed method
when suppressing ice\snow noise, we have compared the
proposed method with the ANN method [12], the SVM

method [10], and the MFC method [9] on noise ice\snow
GF-1 WFV image. Both of the ANN method and the SVM
method are good performance traditional based-classification
method.
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FIGURE 6. The performance comparison when suppressing ice\snow noises. (a)Original
image. (b) Ground truth. (c)The ANN method. (d) The SVM method. (e) The MFC method.
(f) The proposed method.

FIGURE 7. The performance comparison when suppressing water and mountain
shadow noises. (a)Original image. (b) Ground truth. (c)The ANN method. (d) The SVM
method. (e) The MFC method. (f) The proposed method.

Fig. 6 shows the cloud detection results of the different
methods. It can be clearly seen that, in cloud-ice\snow co-
existing cases, the proposedmethod can reliably extract cloud
regions (see Fig.6(f)). Nevertheless, the ice and snow are mis-
classified as cloud with high probability in the ANN method,
the SVM method, and the MFC method (see Fig. 6(c-e)).
The results demonstrate that the traditional cloud detection
methods have some limitations in ice\snow covered areas.

B. THE INTERFERENCE OF WATER AND MOUNTAIN
SHADOW
The water and mountain shadow strongly influence cloud
shadow detection because the spectral characteristics of water
and mountain shadow are to be similar to the cloud shadow

(see Fig.7(a)). To assess the performance of the proposed
method when suppressing water and mountain shadow noise,
the ZY-3 image with the noise water and mountain shadow is
selected. In addition, we have compared the proposed method
with the ANN method [12], the SVM method [10], and the
MFC method [9].

A performance comparison of the water and mountain
shadow noise scene is shown in Fig.7. For cloud shadow,
traditional based-classification methods are impossible to
distinguish between water bodies and mountain shadows
when only using limited spectra information (see Fig.7(c-d)).
However, the proposed method is able to capture discrimi-
native semantic information of cloud shadows and solve the
overestimation phenomenon (water andmountain shadow are
misclassified as cloud shadow).
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V. CONCLUSION
In this paper, the multi-scale 3D-CNN is proposed for cloud
and cloud shadow detection using high resolution multispec-
tral images. The proposed multiscale 3D-CNN has greatly
improved the accuracy of cloud shadow detection while
achieving good accuracy of cloud detection. In addition, even
for the low-albedo objects which are easily confused with
cloud shadows, such as water, and mountain shadow, the pro-
posed multiscale 3D-CNN can distinguish them from cloud
and cloud shadow.

On the one hand, in order to fully explore the joint spatial-
spectral correlations feature, a spectral-spatial information
of 3D-convolution layer is developed for high resolution
multispectral imagery. On the other hand, in order to extract
cloud and cloud shadow contextual information of different
levels, a multi-scale learning module is designed. In order to
make full use of band information, the four band-combination
images are inputted into the multiscale 3D-CNN. In addition,
the feature fusion module helps to handle features of different
levels. Experimental results on two validation datasets (GF-
1 WFV validation data and ZY-3 validation data) show that
the proposed multiscale 3D-CNN model achieves a high
accuracy with limited spectral information and it does not
require additional superpixels segmentation processing.

In the future work, we will explore the possibility of
using our multiscale-3D-CNN model to detect cloud and
cloud shadow from different types of sensor images (such as
Sentinel-2, Landsat, and Quickbird).
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