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ABSTRACT Design of modern nanostructured semiconductor devices often calls for simulation tools
capable of modeling arbitrarily-shaped multiscale geometries. In this work, to this end, a discontinuous
Galerkin (DG) method-based framework is developed to simulate steady-state response of semiconductor
devices. The proposed framework solves a system of Poisson equation (in electric potential) and stationary
drift-diffusion equations (in charge densities), which are nonlinearly coupled via the drift current and
the charge distribution. This system is ‘‘decoupled’’ and ‘‘linearized’’ using the Gummel method and the
resulting equations are discretized using a local DG scheme. The proposed framework is used to simulate
geometrically intricate semiconductor devices with realistic models of mobility and recombination rate. Its
accuracy is demonstrated by comparing the results to those obtained by the finite volume and finite element
methods implemented in a commercial software package.

INDEX TERMS Discontinuous Galerkin method, drift-diffusion equations, multiphysics modeling, Poisson
equation, semiconductor device modeling.

I. INTRODUCTION
Simulation tools capable of numerically characterizing semi-
conductor devices play a vital role in device/system design
frameworks used by the electronics industry as well as vari-
ous related research fields [1]–[8]. Indeed, in the last several
decades, numerous commercial and open source technol-
ogy computer aided design (TCAD) tools, which imple-
ment various transport models ranging from semi-classical
to quantum mechanical models, have been developed for
this purpose [9]. Despite the recent trend of device minia-
turization that requires simulators to account for quantum
transport effects, many devices with larger dimensions (at the
scale of 1µm) and with more complex geometries are being
designed and implemented for various applications. Exam-
ples of these nanostructured devices range from photodiodes
and phototransistors to solar cells, light emitting diodes, and
photoconductive antennas [10]. Electric field-charge carrier
interactions on these devices can still be accurately accounted
for using semi-classical models, however, their numerical
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simulation in TCAD raises challenges due to the presence of
multi-scale and intricate geometric features.

Among the semi-classical approaches developed for mod-
eling charge carrier transport, the drift-diffusion (DD) model
is among the most popular ones because of its simplicity
while being capable of explaining many essential charac-
teristics of semiconductor devices [1]–[3]. One well-known
challenge in using the DD model is the exponential varia-
tion of carrier densities, which renders standard numerical
schemes used for discretizing the model unstable unless an
extremely fine mesh is used. This challenge traces back
to the convection-dominated convection-diffusion equations,
whose solutions show sharp boundary layers. Various stabi-
lization techniques have been proposed and incorporated with
different discretization schemes [11]–[21]. The Scharfetter-
Gummel (SG) method [11] has been one of the workhorses in
semiconductor devicemodeling; it uses exponential functions
to approximate the carrier densities so that the fine mesh
requirement can be alleviated. The SG method has been
first proposed for finite difference discretization, and then
generalized to finite volume method (FVM) [12]–[17] and
finite element method (FEM) [18]–[21].
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As mentioned above, many modern devices involve geo-
metrically intricate structures. Therefore, FVM and FEM,
which allow for unstructured meshes, have drawn more
attention in recent years. However, the SG generalizations
making use of FVM and FEM pose requirements on the
regularity of the mesh [14], [16], [20]–[22]. For example,
FVM requires boundary conforming Delaunay triangulations
for two dimensional (2D) simulations and admissible parti-
tions for three dimensional (3D) ones [14], [16], [22]. These
requirements cannot be easily satisfied in mesh generation
for devices with complex geometries [21], [22]. In addition,
FEM stabilization techniques, such as the streamline upwind
Petrov-Galerkin (SUPG) method [23], [24] and the Galerkin
least-square (GLS) method [25], [26], have been used in sim-
ulation of semiconductor devices. However, SUPG suffers
from ‘‘artificial’’ numerical diffusion [27]–[29]; and GLS
leads to unphysical smearing of the boundary layers and does
not preserve current conservation [27], [30].

Although significant effort has been put into the numerical
solution of the convection-dominated convection-diffusion
problem in the last three decades, especially in the
applied mathematics community, a fully-satisfactory numeri-
cal scheme for general industrial problems is yet to be formu-
lated and implemented, for example see [27], [28], [31]–[33]
for surveys.

The discontinuous Galerkin (DG) method has attracted
significant attention in several fields of computational sci-
ence [34]–[38]. DG can be thought of as a hybrid method
that combines the advantages of FVM and FEM. It uses
local high-order expansions to represent/approximate the
unknowns to be solved for. Each one of these expansions
is defined on a single mesh element and is ‘‘connected’’
to other expansions defined on the neighboring elements
via numerical flux. This approach equips DG with several
advantages: The order of the local expansions can be changed
individually, the mesh can be non-conformal (in addition to
being unstructured), and the numerical flux can be designed
to control the stability and accuracy characteristics of the
DG scheme. More specifically, for semiconductor device
simulations, the instability caused by the boundary layers can
be alleviated without introducing much numerical diffusion.
We should note here that for a given order of expansion
p, DG requires a larger number of unknowns than FEM.
However, the difference decreases as p gets larger, and for
many problems, DG benefits from h- and/or p-refinement
schemes [36], [38] and easily compensates for the small
increase in the computational cost.

These properties render DG an attractive option for multi-
scale simulations [29], [34]–[39], and indeed, its time-domain
version has been used to solve different types of time-
dependent transport equations (e.g., the hydrodynamic and
energy-transport model [40], [41], the DD model [42]–[44],
and the Boltzmann transport equation [45]) and applied to the
transient simulations of semiconductors. However, in device
TCAD, the non-equilibrium steady-state responses, such as
the dc I-V characteristics, are usually the most concerned

properties [1], [2], [46]. One can obtain the steady-state
response by running the transient simulation for a long
duration of time while waiting for the device to reach the
steady state. However, this approach becomes computation-
ally expensive especially for explicit time-domain solvers,
whose time-step size is restricted to be small by stability
requirements, since they have to be executed for large num-
ber of time steps [1], [42], [44], [46]. Therefore, numerical
schemes, which operate on steady-state version of the time-
dependent equations and directly produce the steady-state
response, are often preferred for analysis of semiconductor
devices [22], [30], [46]–[50].

The steady-state DD model calls for solution of a nonlin-
ear system consisting of three coupled second-order partial
differential equations (PDEs). The first of these equations is
the Poisson equation in scalar potential and the other two
are the convection-diffusion type DD equations in electron
and hole densities. These three equations are nonlinearly
coupled via the drift current and the charge distribution.
The charge-density dependent recombination rate, together
with the field-dependent mobility and diffusion coefficients,
makes the nonlinearity even stronger. In this context, numer-
ical methods developed for the steady-state DD system oper-
ate differently from those developed for the time-dependent
DD system. Steady-state solvers account for the nonlinearity
using a fixed-point iteration method [2], [22], while existing
time-domain solvers use ‘‘explicit’’ updates between nonlin-
early coupled system during time marching [42]–[44].

In this work, for the first time, a DG-based numerical
framework is formulated and implemented to solve the cou-
pled nonlinear system of the steady-state DD and Poisson
equations. More specifically, we use the local DG (LDG)
scheme [51] in cooperation with the Gummel method [47] to
simulate the non-equilibrium steady-state response of semi-
conductor devices. To construct the (discretized) DG opera-
tor for the convection-diffusion typeDD equations (linearized
within the Gummel method), the LDG alternate numerical
flux is used for the diffusion term [52] and the local Lax-
Friedrichs flux is used for the convection term. Similarly,
the discretized DG operator for the nonlinear Poisson equa-
tion (linearized within the Gummel method) is constructed
using the alternate numerical flux. The resulting DG-based
framework is used to simulate geometrically intricate semi-
conductor devices with realistic models of the mobility and
the recombination rate [2]. Its accuracy is demonstrated by
comparing the results to those obtained by the FVM and
FEM solvers implemented within the commercial software
package COMSOL [30]. We should note here that other
DG schemes, such as discontinuous Petrov Galerkin [53],
hybridizable DG [54], exponential fitted DG [55], and DG
with Lagrange multipliers [56] could be adopted for the
DG-based framework proposed in this work.

The rest of the paper is organized as follows. Section II
starts with the mathematical model where the coupled non-
linear system of Poisson and DD equations is introduced,
then it describes the Gummel method and provides the details
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of the DG-based discretization. Section III demonstrates the
accuracy and the applicability of the proposed framework
via simulations of two realistic device examples. Finally,
Section IV provides a summary and discusses possible future
research directions.

II. FORMULATION
A. MATHEMATICAL MODEL
The DD model describes the (semi-classical) transport of
electrons and holes in an electric field under the drift-
diffusion approximation [1], [2]. It couples the Poisson
equation that describes the behavior of the (static) electric
potential and the two continuity equations that describe the
behavior of electrons and holes. This (coupled) system of
equations reads

−∇ · (ε(r)∇ϕ(r)) = q(C + nh(r)− ne(r)) (1)

∇ · Js(r) = ±qR(ne, nh), s ∈ {e, h} (2)

where r represents the location vector, ne(r) and nh(r) are the
electron and hole densities, ϕ(r) is the electric potential, Je(r)
and Jh(r) are the electron and hole current densities, ε(r) is the
dielectric permittivity, q is the electron charge, and R(ne, nh)
is the net recombination rate. In (15) and other equations in
the rest of the text, s ∈ {e, h}, and the upper and lower signs
should be selected for s = e and s = h, respectively. The
current densities Js(r) are given by

Js(r) = qµs(E)E(r)ns(r)± qVTµs(E)∇ns(r) (3)

whereµe(E) andµh(E) are the (field-dependent) electron and
hole mobilities, VT = kBT/q is the thermal voltage, kB is the
Boltzmann constant, T is the absolute temperature, and

E(r) = −∇ϕ(r) (4)

is the (static) electric field intensity. Inserting (3) into (2)
yields

±∇ · (µs(E)E(r)ns(r))+∇ · (VTµs(E)∇ns(r))

= R(ne, nh). (5)

Here, R(ne, nh) describes the recombination/generation of
carriers. In this work, we only consider the two most
common recombination processes, namely the trap assisted
recombination described by the Shockley-Read-Hall (SRH)
model [2] as

RSRH(ne, nh) =
ne(r)nh(r)− ni2

τe(nh1 + nh(r))+ τh(ne1 + ne(r))

and the three-particle band-to-band transition described by
the Auger model [2] as

RAuger(ne,nh)= (ne(r)nh(r)− ni2)(CA
e ne(r)+ C

A
h nh(r)).

Here, ni is the intrinsic carrier concentration, τe and τh are
the carrier lifetimes, ne1 and nh1 are SRH model parameters
related to the trap energy level, and CA

e and CA
h are the Auger

coefficients. The net recombination rate R(ne, nh) is given
by [2]

R(ne, nh) = RSRH(ne, nh)+ RAuger(ne, nh). (6)

We should note here that, without loss of generality in the
formulation of the method we propose in this work, R(ne, nh)
can include other physical models describing different recom-
bination and generation mechanisms (see [1], chapter 4.2).
A positive value means recombination is dominant while a
negative value means generation is dominant.

The mobility models have a significant impact on the accu-
racy of semiconductor device simulations. Various field- and
temperature-dependent models have been developed for dif-
ferent semiconductor materials and different device operating
conditions [1], [2], [30], [49], [50]. Often, high-field mobility
models, which account for the carrier velocity saturation
effect, are more accurate [2], [30], [49], [50]. In this work,
we use the Caughey-Thomas model [2], which expresses
µe(E) and µh(E) as

µs(E) = µ0
s

1+ (µ0
sE‖(r)
V sat
s

)βsβ−1s (7)

where E‖(r) is amplitude of the electric field intensity parallel
to the current flow, µ0

e and µ
0
h are the low-field electron and

hole mobilities, respectively, and V sat
s , βe and βh are fitting

parameters obtained from experimental data.

B. GUMMEL METHOD
The DD model described by (1)-(2) and (3)-(4) represents a
nonlinear and coupled system of equations. The electric field
moves the carriers through the drift term in the expressions
of Je(r) and Jh(r) [first term in (3)]. The carrier movements
change ne(r) and nh(r), which in turn affect E(r) through the
Poisson equation [see (1)]. Furthermore,R(ne, nh) [in (6)] and
µe(E) and µh(E) [in (7)] are nonlinear functions of ne(r) and
nh(r), and E(r), respectively. This system can be solved using
either a decoupled approach such as the Gummel method or
a fully-coupled scheme such as the direct application of the
Newton method [2], [22]. The Gummel method’s memory
requirement and computational cost per iteration are less
than those of the Newton method. In addition, accuracy and
stability of the solution obtained by the Gummel method
are less sensitive to the initial guess [2], [22]. On the other
hand, the Gummel method converges slower, i.e., takes a
higher number of iterations to converge to the solution [2],
[22]. Since the simulations of the nanostructured devices
considered in this work are memory-bounded, we prefer to
use the Gummel method.

The Gummel iterations operate as described next and
shown in Fig. 1. To facilitate the algorithm, we first introduce
the quasi-Fermi potentials [1], [2], [22]

ϕs(r) = ϕ(r)∓ VT ln(ns(r)/ni), s ∈ {e, h} . (8)

VOLUME 8, 2020 16205



L. Chen, H. Bagci: Steady-State Simulation of Semiconductor Devices Using DG Methods

FIGURE 1. Gummel method.

Solving (8) for ne(r) and nh(r), respectively, and inserting the
resulting expressions into (1) yield

−∇ · (ε(r)∇ϕ(r)) = q(C + nie(ϕh(r)−ϕ(r))/VT

−nie(ϕ(r)−ϕe(r))/VT ). (9)

Equation (9) is termed as the nonlinear Poisson (NLP) equa-
tion simply because it is nonlinear in ϕ(r). Using ϕe(r) and
ϕh(r), one can easily write the Fréchet derivative of the
NLP equation and solve the nonlinear problem with a fixed-
point iteration technique such as the Newton method [1],
[2], [22] (see below). The Gummel method decouples the
NLP equation and the DD equations (2); the nonlinearity
is ‘‘maintained’’ solely in the NLP equation and the DD
equations are treated as linear systems [1], [2], [22] as shown
by the description of the Gummel method below. To solve the
NLP equation in (9), we write it as a root-finding problem

F(ϕ(r), ϕe(r), ϕh(r))

= ∇ · (ε(r)∇ϕ(r))

+ q(C + nie(ϕh(r)−ϕ(r))/VT −nie(ϕ(r)−ϕe(r))/VT ) = 0. (10)

The Fréchet derivative of F(ϕ(r), ϕe(r), ϕh(r)) with respect
to ϕ(r) is

F ′(ϕ(r), ϕe(r), ϕh(r); δϕ(r))

= ∇ · (ε(r)∇δϕ(r))

−
qni
VT

(e(ϕh(r)−ϕ(r))/VT + e(ϕ(r)−ϕe(r))/VT )δϕ(r). (11)

The root-finding problem (10) is solved iteratively as

ϕt+1(r) = ϕt (r)+ δt+1ϕ (r) (12)

where subscript ‘‘t’’ refers to the variables at iteration t .
In (12), δt+1ϕ (r) is obtained by solving

F ′(ϕt , ϕte, ϕ
t
h; δ

t+1
ϕ ) = −F(ϕt , ϕte, ϕ

t
h) (13)

where ϕt (r) is the solution at iteration t (previous iteration),
ϕte(r) and ϕ

t
h(r) are computed using using nte(r) and nth(r)

in (8). At iteration t = 0, initial guesses ϕ0(r), n0e(r) and
n0h(r) are used to start the iterations. In this work, the initial
guesses are solved from the equilibrium-state (without bias
voltage) [2]. Note that, in practice, one can directly compute
ϕt+1(r) without using the variable δt+1ϕ (r). This is done by
adding F ′(ϕt , ϕte, ϕ

t
h;ϕ

t ) to both sides of (13), and using (4)
and the fact that

F ′(ϕt , ϕte, ϕ
t
h;ϕ

t
+ δt+1ϕ ) = F ′(ϕt , ϕte, ϕ

t
h;ϕ

t+1)

which result in the coupled system of equations in unknowns
ϕt+1(r) and Et+1(r)

∇ · (ε(r)Et+1(r))+ g(r)ϕt+1(r) = f (r) (14a)

Et+1(r) = −∇ϕt+1(r). (14b)

Here,

g(r) = qni
VT

(e(ϕ
t
h(r)−ϕ

t (r))/VT + e(ϕ
t (r)−ϕte(r))/VT )

and

f (r) = qni
VT

(e(ϕ
t
h(r)−ϕ

t (r))/VT + e(ϕ
t (r)−ϕte(r))/VT )ϕk (r)

+ qni(C/ni + e(ϕ
t
h(r)−ϕ

t (r))/VT − e(ϕ
t (r)−ϕte(r))/VT )

are known coefficients obtained from the previous iteration.
Unknowns ϕt+1(r) and E t+1(r) are obtained by solving

(14). Then, µe(Et+1) and µh(Et+1) are computed using
E t+1(r) in (7). Finally, nt+1e (r) and nt+1h (r) can be obtained
by solving

±∇ · (µs(Et+1)Et+1(r)nt+1s (r))

+∇ · (VTµs(Et+1)∇nt+1s (r)) = R(nte, n
t
h) (15)

where R(nte, n
t
h) on the right hand side is computed using

nte(r) and nth(r) (from previous iteration) in (6). Note that
a ‘‘lagging’’ technique may also be applied to R(nte, n

t
h) to

take advantage of the solutions at the current iteration. This
technique expresses R(ne, nh) as a summation of functions
of nte(r) and n

t
h(r) and n

t+1
e (r) and nt+1h (r), and moves the

functions of nt+1e (r) and nt+1h (r) to the left hand side of (15).
More details about this technique can be found in [57].

At this stage of the iteration, ϕt+1(r), nt+1e (r) and nt+1h (r)
are known; one can use these to compute ϕt+1e (r) and ϕt+1h (r)
and move to the next iteration. Convergence of the iterations
can be checked by either the residuals of (10) and (15) or
by the difference between the solutions of two successive
iterations.

C. DG DISCRETIZATION
As explained in the previous section, at every iteration of the
Gummel method, one needs to solve three linear systems of
equations, namely (14) and (15) (s = e, h). This can only be
done numerically for arbitrarily shaped devices. To this end,
we use the LDG method [51], [52] to discretize and numer-
ically solve these equations. We start with the description of
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the discretization of (14). First, we re-write (14) in the form
of the following boundary value problem

∇ · [ε(r)E(r)]+ g(r)ϕ(r) = f (r), r ∈ � (16)

E(r) = −∇ϕ(r), r ∈ � (17)

ϕ(r) = fD(r), r ∈ ∂�D (18)

n̂(r) · ε(r)E(r) = fN (r), r ∈ ∂�N . (19)

In (16)-(19), ϕ(r) and E(r) are the unknowns to be solved
for and � is the solution domain. Note that in LDG, E(r) is
introduced as an auxiliary variable to reduce the order of the
spatial derivative in (16). Here it is also a ‘‘natural’’ unknown
to be solved for within the Gummel method. Dirichlet and
Neumann boundary conditions are enforced on surfaces ∂�D
and ∂�N , and fD(r) and fN (r) are the coefficients associated
with these boundary conditions, respectively. In (19), n̂(r)
denotes the outward normal vector ∂�N . For the problems
considered in this work, ∂�D represents the metal contact
surfaces with fD(r) = Vcontact(r), where Vcontact(r) is the
potential impressed on the contacts. The homogeneous Neu-
mann boundary condition, i.e., fN (r) = 0, is used to truncate
the simulation domain [58].

To facilitate the numerical solution of the boundary value
problem described by (16)-(19) (within theGummelmethod),
� is discretized into k non-overlapping tetrahedrons. The
(volumetric) support of each of these elements is represented
by �k , k = 1, . . . ,K . Furthermore, let ∂�k denote the
surface of�k and n̂(r) denote the outward unit vector normal
to ∂�k . Testing equations (16) and (17) with the Lagrange
polynomials `i(r), i = 1, . . . ,Np on element k [36] and
applying the divergence theorem to the resulting equation
yield the following weak form∫
�k

g(r)ϕk (r)`i(r)dV −
∫
�k

ε(r)Ek (r) · ∇`i(r)dV

+

∮
∂�k

n̂(r) · [ε(r)Ek (r)]∗`i(r)dS =
∫
�k

f (r)`i(r)dV (20)∫
�k

Eνk (r)`i(r)dV −
∫
�k

ϕk (r)
∂

∂ν
`i(r)dV

+

∮
∂�k

n̂ν(r)ϕk (r)∗`i(r)dS = 0. (21)

Here, Np = (p+ 1)(p+ 2)(p+ 3)/6 is the number of interpo-
lating nodes, p is the order of the Lagrange polynomials and
subscript ν ∈ {x, y, z} is used for identifying the components
of the vectors in the Cartesian coordinate system. We note
here ϕk (r) and Ek (r) denote the local solutions on element
k and the global solutions on � are the sum of these local
solutions.
ϕ∗ and (εE)∗ are numerical fluxes ‘‘connecting’’ element

k to its neighboring elements. Here, the variables are defined
on the interface between elements and the dependency on r
is dropped for simplicity of notation/presentation. In LDG,
the alternate flux, which is defined as [51]

ϕ∗ = {ϕ} + 0.5β̂ · n̂ [[ϕ]]

(εE)∗ = {εE} − 0.5β̂(n̂ · [[εE]])

is used in the interior of �. Here, averaging operators are
defined as {a} = 0.5(a+ + a−) and {a} = 0.5(a+ + a−) and
‘‘jumps’’ are defined as [[a]] = a−− a+ and [[a]] = a−− a+,
where superscripts ‘‘−’’ and ‘‘+’’ refer to variables defined
in element k and in its neighboring element, respectively. The
vector β̂ determines the upwinding direction of ϕ and (εE).
In LDG, it is essential to choose opposite directions for ϕ
and (εE), while the precise direction of each variable is not
important [36], [38], [51]. In this work, we choose β̂ = n̂
on each element surface. On boundaries of �, the numerical
fluxes are choosen as ϕ∗ = fD and (εE)∗ = (εE)− on ∂�D
and ϕ∗ = ϕ− and (εE)∗ = fN on ∂�N , respectively [52].
We expand ϕk (r) and Eνk (r) with the same set of Lagrange

polynomials `i(r)

ϕk (r) '
Np∑
i=1

ϕ(ri)`i(r) =
Np∑
i=1

ϕik`i(r) (22)

Eνk (r) '
Np∑
i=1

Eν(ri)`i(r) =
Np∑
i=1

Eν,ik `i(r) (23)

where ri, i = 1, . . . ,Np, denote the location of interpolating
nodes, and ϕik and E

ν,i
k , ν ∈ {x, y, z}, k = 1, . . . ,K , are the

unknown coefficients to be solved for.
Substituting (23) and (23) into (20) and (21) for k =

1, . . . ,K , we obtain a global matrix system[
M̄g D̄ε̄
Ḡ M̄

] [
8̄

Ē

]
=

[
B̄ϕ

B̄E

]
. (24)

Here, the global unknown vectors 8̄ = [8̄1, . . . , 8̄K ]T

and Ē = [Ēx1 , Ē
y
1, Ē

z
1, . . . , Ē

x
K , Ē

y
K , Ē

z
K ]

T are assembled
from elemental vectors 8̄k = [ϕ1k , . . . , ϕ

Np
k ] and Ēνk =

[Eν,1k , . . . ,E
ν,Np
k ], ν ∈ {x, y, z}. The dimension of (24) can be

further reduced by substituting Ē = M̄−1(B̄E − Ḡ8̄) (from
the second row) into the first row, which results in

(M̄g
− D̄ε̄M̄−1Ḡ)8̄ = B̄ϕ − D̄ε̄M̄−1B̄E (25)

where (M̄g
− D̄ε̄M̄−1Ḡ) is the Schur complement of the

matrix in (24). In (24) and (25), M̄g and M̄ are mass matrices.
M̄g is a K × K block diagonal matrix, where each Np × Np
block is defined as

M̄g
kk (i, j) =

∫
�k

g(r)`i(r)`j(r)dV .

M̄ is also a K×K block diagonal matrix, where each block is
a 3× 3 block diagonal matrix with Np × Np identical blocks
defined as

M̄ (m)
kk (i, j) =

∫
�k

`i(r)`j(r)dV , m = 1, 2, 3.

ε̄ is a diagonal matrix with entries (ε̄1, . . . , ε̄K ), where ε̄k =
(ε̄xk , ε̄

y
k , ε̄

z
k ), ε̄

ν
k (i) = εk (ri), k = 1, . . . ,K , ν ∈ {x, y, z}.

We note that ε(r) is assumed isotropic and constant in each
element.
Matrices Ḡ and D̄ represent the gradient and diver-

gence operators, respectively. For LDG, one can show that
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D̄ = −ḠT [52]. The gradient matrix Ḡ is aK×K block sparse
matrix, where each block is of size 3Np × Np and has contri-
bution from the volume integral term and the surface integral
term in (21). The volume integral term only contributes to
diagonal blocks as Ḡvol

kk =
[
S̄xk S̄

y
k S̄

z
k

]T , where
S̄νk (i, j) = −

∫
�k

d`i(r)
dν

`j(r)dV , ν ∈ {x, y, z} .

The surface integral term contributes to both the diagonal
blocks Ḡkk and off-diagonal blocks Ḡkk ′ , where k ′ corre-
sponds to the index of the elements connected to element k .
Let ∂�kk ′ be the interface connecting elements k and k ′, and
let θk (j) select the interface nodes from element k ,

θk (j) =

{
1, rj ∈ �k , rj ∈ ∂�kk ′

0, otherwise.

Then, the contributions from the surface integral term to
the diagonal block and the off-diagonal blocks are Ḡsurf

kk =[
L̄xk L̄

y
k L̄

z
k

]T and Ḡsurf
kk ′ =

[
L̄xk ′ L̄

y
k ′ L̄

z
k ′
]T , where

L̄νk (i, j) =
1+sign(β̂ ·n̂)

2
θk (j)

∮
∂�kk′

n̂ν(r)`i(r)`j(r)dS

and

L̄νk ′ (i, j) =
1−sign(β̂ ·n̂)

2
θk ′ (j)

∮
∂�kk′

n̂ν(r)`i(r)`j(r)dS

respectively, ν ∈ {x, y, z}. The right hand side terms in (24)
and (25) are contributed from the force term and boundary
conditions and are expressed as

B̄ϕk (i) =
∫
�k

f (r)`i(r)dV +
∮
∂�k∩∂�N

fN (r)`i(r)dS

B̄E,νk (i) =
∮
∂�k∩∂�D

n̂ν(r)fD(r)`i(r)dS, ν ∈ {x, y, z} .

The DD equations in (15) (within the Gummel method)
are also discretized using the LDG scheme as described next.
Note that, here, we only discuss the discretization of the
electron DD equation (s = e) and that of the hole DD
equation (s = h) only differs by the sign in front of the
drift term and the values of physical parameters. To simplify
the notation/presentation, we drop the subscript denoting the
species (electron and hole). The electron DD equation in (15)
is expressed as the following boundary value problem

∇ · [d(r)q(r)]+∇ · [v(r)n(r)] = R(r), r ∈ � (26)

q(r) = ∇n(r), r ∈ � (27)

n(r) = fD(r), r ∈ ∂�D (28)

n̂(r) · [d(r)q(r)+ v(r)n(r)] = fR(r), r ∈ ∂�R. (29)

Here n(r) and q(r) are the unknowns to be solved for and� is
the solution domain. The auxiliary variable q(r) is introduced
to reduce the order of the spatial derivative. d(r) = VTµ(E)
and v(r) = µ(E)E(r) become known coefficients during the
solution of (15) within the Gummel method. Dirichlet and
Robin boundary conditions are enforced on surfaces ∂�D and

∂�R, and fD(r) and fR(r) are the coefficients associated with
these boundary conditions, respectively. n̂(r) denotes the out-
ward normal vector of the surface. For the problems consid-
ered in this work, ∂�D represents electrode/semiconductor
interfaces and, based on local charge neutrality [58], fD(r) =
(C +

√
C2 + 4ni2)/2 and fD(r) = n2i /n

s
e for electron and

hole DD equations, respectively. The homogeneous Robin
boundary condition, i.e., fR(r) = 0, is used on semiconduc-
tor/insulator interfaces, indicating no carrier spills out those
interfaces [58].

Following the same procedure used in the discretization
of (14), we discretize the domain into non-overlapping tetra-
hedrons and test equations (26) and (27) using Lagrange
polynomials on element k . Applying the divergence theorem
yield the following weak form:

−

∫
�k

d(r)qk (r)·∇`i(r)dV+
∮
∂�k

n̂(r) · [d(r)qk (r)]∗`i(r)dS

−

∫
�k

v(r)nk (r) · ∇`i(r)dV+
∮
∂�k

n̂(r) · [v(r)nk (r)]∗`i(r)dS

=

∫
�k

R(r)`i(r)dV (30)∫
�k

qνk (r)`i(r)dV +
∫
�k

nk (r)
∂

∂ν
`i(r)dV

−

∮
∂�k

n̂ν(r)n∗k (r)`i(r)dS = 0 (31)

where n∗, (dq)∗, and (vn)∗ are numerical fluxes ‘‘connect-
ing’’ element k to its neighboring elements. Here, for the sim-
plicity of notation, we have dropped the explicit dependency
on r on element surfaces. For the diffusion term, the LDG
alternate flux is used for the primary variable n∗ and the
auxiliary variable (dq)∗ [51]

n∗ = {n} + 0.5β̂ · n̂ [[n]]

(dq)∗ = {dq} − 0.5β̂(n̂ · [[dq]]).

Here, averages and ‘‘jumps’’, and the vector coefficient β̂ are
same as those defined before. For the drift term, the local
Lax-Friedrichs flux is used to mimic the path of information
propagation [36]

(vn)∗ = {vn} + αn̂(n− − n+), α =
max(|n̂ · v−|, |n̂ · v+|)

2
.

On boundaries, the numerical fluxes are choosen as n∗ = fD,
(dq)∗ = (dq)− and (vn)∗ = v−fD on ∂�D and n∗ = n− and
(dq)∗+ (vn)∗ = fR on ∂�R, respectively. We note (dq)∗ and
(vn)∗ are not assigned independently on ∂�R.
Expanding nk (r) and qνk (r) with Lagrange polynomials

`i(r)

nk (r) '
Np∑
i=1

n(ri)`i(r) =
Np∑
i=1

nik`i(r) (32)

qνk (r) '
Np∑
i=1

qv(ri)`i(r) =
Np∑
i=1

qν,ik `i(r) (33)
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where ri, i = 1, . . . ,Np, denote the location of interpolating
nodes, nik and qν,ik , ν ∈ {x, y, z}, k = 1, . . . ,K are the
unknown coefficients to be solved for. Substituting (32) and
(33) into (30) and (31), we obtain a global matrix system[

C̄ D̄d̄
−Ḡ M̄

] [
N̄
Q̄

]
=

[
B̄n

B̄q

]
. (34)

Here, the global unknown vectors N̄ = [N̄1, . . . , N̄K ]T

and Q̄ = [Q̄x1, Q̄
y
1, Q̄

z
1, . . . , Q̄

x
K , Q̄

y
K , Q̄

z
K ]

T are assembled
from elemental vectors N̄k = [n1k , . . . , n

Np
k ] and Q̄νk =

[qν,1k , . . . , q
ν,Np
k ], ν ∈ {x, y, z}. Substituting Q̄ = M̄−1(B̄q +

ḠN̄ ) into (34) yields

(C̄ + D̄d̄M̄−1Ḡ)N̄ = B̄n − D̄d̄M̄−1B̄q (35)

where (C̄+D̄d̄M̄−1Ḡ) is the Schur complement of the matrix
in (34).

In (34) and (35), the mass matrix M̄ , the gradient matrix Ḡ
and the divergence matrix D̄ are same as those defined before.
d̄ is a diagonal matrix with entries (d̄1, . . . , d̄K ), where d̄k =
(d̄xk , d̄

y
k , d̄

z
k ), d̄

ν
k (i) = dk (ri), k = 1, . . . ,K , ν ∈ {x, y, z}.

The block sparse matrix C̄ has contribution from the third
term (the volume integral) and the fourth term (the surface
integral) in (30). Each block is of size Np × Np. The vol-
ume integral term only contributes to diagonal blocks as
C̄vol
kk =

∑
ν C̄

ν
k , where

C̄νk (i, j) = −
∫
�k

vν(r)
d`i(r)
dν

`j(r)dV , ν ∈ {x, y, z}.

The surface integral term contributes to both the diagonal and
off-diagonal blocks as

C̄surf
kk (i, j)=θk (j)

∮
∂�kk′

(
1
2

∑
ν
n̂ν(r)vν(r)+α(r))`i(r)`j(r)dS

and

C̄surf
kk ′ (i, j)=θk ′ (j)

∮
∂�kk′

(
1
2

∑
ν
n̂ν(r)vν(r)−α(r))`i(r)`j(r)dS

respectively, where ν ∈ {x, y, z}, and k ′, ∂�kk ′ , and θk (j) are
defined the same as before.

The right hand side terms in (34) are contributed from the
force term and boundary conditions and are expressed as

B̄nk (i) =
∫
�k

R(r)`i(r)dV +
∮
∂�k∩∂�R

fR(r)`i(r)dS

+

∮
∂�k∩∂�D

n̂(r) · v(r)fD(r)`i(r)dS

B̄q,νk (i) =
∮
∂�k∩∂�D

n̂ν(r)fD(r)`i(r)dS, ν ∈ {x, y, z}.

D. COMMENTS
Several comments regarding the implementation and compu-
tational cost of the steady-state DG scheme and its compari-
son to the existing time-domain DG schemes are in order.
1) The mass matrix M̄ is a block diagonal matrix with 3K

blocks that are denoted by M̄kk and of dimensions Np × Np.

Therefore, during the construction of the matrix systems (25)
and (35), M̄−1 is directly assembled from M̄−1kk . We note that
the computation of M̄−1kk requires only one matrix inversion
since M̄kk is computed using a reference element [36]. The
sparse block matrices Ḡ and C̄ have approximately 15K
and 5K (non-zero) blocks of dimensions Np × Np, respec-
tively. Therefore, the memory required to store these matrices
and the computational cost of sparse matrix multiplications
required to construct the matrix systems (25) and (35) scale
withO(KN 2

p ). Nevertheless, the most computationally expen-
sive step of the steady-state DG scheme is solution of these
matrix systems.
2) The sparse linear systems (25) and (35) are solved in

MATLAB. For small systems, one can use a direct solver. For
large systems, when the number of unknowns is larger than
1 000 000 (when using double precision on a computer with
128GB RAM), it is preferable to use sparse iterative solvers
to reduce the memory requirement. During our numerical
experiments, we have found that the generalized minimum
residual (GMRES) (theMATLABbuilt-in function ‘‘gmres’’)
outperforms other iterative solvers in execution time. Incom-
plete lower-upper (ILU) factorization is used to obtain a
preconditioner for the iterative solver. The drop tolerance of
the ILU is critical to keep the balance between the memory
requirement and the convergence speed of the preconditioned
iterative solution. A smaller drop tolerance usually results in
a better preconditioner, however, it also increases the amount
of fill-in, which increases the memory requirement.

We note here that one can reuse the preconditioner through-
out the Gummel iterations. Because the matrix coefficients
change gradually between successive iterations, we can store
the preconditioner obtained in the first iteration (t = 0) and
reuse it as the preconditioner in the following few iterations.
In practice, the preconditioner only needs to be updated when
the convergence of the sparse iterative solver becomes slower
than it is in the previous Gummel iteration. For the devices
considered in this work, the number of Gummel iterations is
typically less than 50 and we find the preconditioners of the
initial matrices work well throughout these iterations.
3) Semiconductor devices might have multiple steady

states under certain biasing conditions [48]. A good approach
to overcome this issue, is to gradually increase the bias
voltage from the equilibrium-state and compute the steady-
state solution at every bias voltage value. The steady-state
solution at one voltage value is used as the initial guess
while computing the solution at the next voltage value. Using
this approach, we have simulated the same physical problem
with different voltage steps. For the simulations with smaller
voltage steps, the number of Gummel iterations at each volt-
age value has become smaller. This is expected since the
initial guess becomes closer to the actual solution. With this
approach, one can expect that the numerical solution is the
steady-state closest to the equilibrium-state. If one needs to
solve for other states (assuming multiple of them exist), other
techniques might be required [49].
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4) One can use a time-domain DG scheme for steady-
state analysis of semiconductor devices [40]–[44]. However,
this approach is rarely used for steady-state simulations of
practical devices (see Section 3.1.7 of [46]) simply because
the number of time steps, which depends on the time-step
size required to maintain the numerical stability and the time
duration required for the physical system to reach the steady
state, is often very large.

Existing time-domain DG schemes use ‘‘explicit’’ updates
between the (explicit and/or implicit) solutions of matrix
systems arising from the DG-based discretization at every
time step during the execution of the time-evolution (which
is done using a time integration scheme) [40]–[44]. This
approach does not call for a nonlinear solver, but the time-step
size is subject to stability conditions required by the spatial
discretization of the DD equations and the explicit updates
of the nonlinear coupling between solutions of the matrix
equations (Section 6.4 of [1]).

We should also note here that, in theory, a fully implicit
time-domain DG method that uses a nonlinear scheme (such
as Newton method) to solve the globally and (nonlinearly)
coupled system of equations could be used. Even though
the time-step size restriction would be relaxed for such a
method, its application to steady-state analysis would be com-
putationally very expensive, simply because it would call for
solution of a global nonlinear system at every time step [1],
[22]. To the best of our knowledge, such a time-domain DG
method has yet to be reported (even for transient analysis of
semiconductor devices).

In our tests we have done for a one dimensional (1D)
system with physical parameters same as those in the metal-
oxide semiconductor field-effect transistor (MOSFET) exam-
ple in Section III-A, and using the equilibrium-state solution
as the initial solution at the start of time marching, we have
observed that the physical time required to reach the steady
state (with a tolerance of 10−6) is around 0.5ps. For an
explicit solver, the above physical parameters require the
mesh size to be around 0.01µm, which in return requires
the time-step size to be around 5−6ps. This results in a total
number of time steps around 105. Similar numbers have been
reported in [42].

III. NUMERICAL EXAMPLES
In this section, we demonstrate the accuracy and the appli-
cability of the proposed DG-based framework by numerical
experiments as detailed in the next two sections. We have
simulated two practical devices and compared the results to
those obtained by the COMSOL semiconductor module [30].

A. METAL-OXIDE FIELD EFFECT TRANSISTOR
First, we simulate a MOSFET that is illustrated in Fig. 2.
The background is uniformly-doped p-type silicon and source
and drain regions are uniformly-doped n-type silicon. The
doping concentrations in p- and n-type regions are 1017cm−3

and 1018cm−3, respectively. The source and drain are ideal
Ohmic contacts attached to n-type regions. The gate contact is

FIGURE 2. Schematic diagram of the MOSFET device.

FIGURE 3. (a) The drain current Id versus gate voltage Vg for drain
voltage Vd = 0.1 V. (b) The drain current Id versus drain voltage Vd for
gate voltage Vg = 3 V.

separated from the semiconductor regions by a silicon-oxide
insulator layer. The dimensions of the device and the different
material regions are shown in Fig. 3. Material parameters at
300 K are taken from [59].

Special care needs to be taken to enforce the bound-
ary conditions [58]. The DD equations are only solved in
the semiconductor regions. Dirichlet boundary conditions
are imposed on semiconductor-contact interfaces, where
the electron and hole densities are determined from the
local charge neutrality as ne = (C +

√
C2 + 4ni2)/2 and

nh = ni2/ne, respectively. Homogeneous Robin boundary
condition, which enforces zero net current flow, is imposed
on semiconductor-insulator interfaces. Poisson equation is
solved in all regions. Dirichlet boundary conditions that
enforce impressed external potentials are imposed on metal
contacts (the contact barrier is ignored for simplicity).
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Homogeneous Neumann boundary condition is used on other
exterior boundaries.

The semiconductor regions are discretized using a total of
122 350 elements and the order of basis functions in (32) and
(33) is 2. This makes the dimension of the system in (35)
1 223 500. The regions where the Poisson equation is solved
are discretized using a total of 170 902 elements and the order
of basis functions in (23) and (23) is 2, making the dimension
of the system in (25) 1 709 020. The systems (25) and (35) are
solved iteratively with a residual tolerance of 10−11. The drop
tolerance of the ILU preconditioner is 10−5. The convergence
tolerance of the Gummel method is 10−7.
Fig. 3 compares I (V ) curves computed using the pro-

posed DG solver to those computed by the COMSOL
semiconductor module. Note that this module includes
two solvers: SG-FVM and GLS-FEM. For all three
solvers, we refine the mesh until the corresponding I (V )
curve converges with a relative deviation of 10−2 (from
the reference solution). This relative deviation is defined
as
∑

V |I (V )− Iref(V )|/
∑

V |Iref(V )|, where the reference
Iref(V ) curve is obtained from the solution computed by the
SG-FVM solver on a mesh with element size h = 0.5 nm.
Fig. 3 shows that all I (V ) curves obtained by the three meth-
ods converge to Iref(V ) curve as the mesh they use is made
finer. Fig. 3 (a) plots the drain current Id versus gate voltage
Vg under a constant drain voltage Vd = 0.1 V. It shows
that Id increases dramatically as Vg becomes larger than a
turn-on voltage Vth of approximately 1.5V. This indicates
that a tunneling channel is formed between the source and
the drain as expected. Fig. 3 (b) plots Id versus Vd for
Vg = 3 V. It shows that Id increases continuously with Vg and
gradually saturates with a smaller slope of the I (V ) curve.
Comparing the I (V ) curves obtained by the three solvers

using meshes with different element sizes, one can clearly see
that the GLS-FEM solver requires considerably finer meshes
than the SG-FVMand theDG solvers. The relative deviations
corresponding to different solvers and element sizes are listed
in Table I. To reach a relative deviation of 10−2, the SG-FVM
solver uses a mesh with h = 1 nm, the DG solver uses a mesh
with h = 3 nm, while the GLS-FEM solver requires h to be
as small as 0.3 nm. The computation time of the DG solver is
about 8 hours for each curve shown in Fig. 3 on a workstation
with Intel(R) Xeon(R) E5-2680 CPU. We should note here
that, since our solver is developed within MATLAB, and the
sparse linear solvers are not parallelized (as of 2018 version),
it is not straightforward (and also not very meaningful) to
compare this computation time to those of the commercial
software.

Figs. 4 (a) and (b) and Figs. 4 (c) and (d), respectively,
compare the electron density and electric field intensity dis-
tributions computed by the DG and GLS-FEM solvers on
the plane z = 0 for Vg = 3 V and Vd = 0.5 V.
Figs. 4 (a) and (b) illustrate the ‘‘field-effect’’ introduced
by the gate voltage, i.e., a sharp conducting channel forms
near the top interface facing the gate (y = 0.2µm). This
sharp boundary layer of carriers is the reason why a very

TABLE 1. Relative deviation in I(V ) curves.

fine mesh is required to obtain accurate results from this
simulation. In Fig. 4 (b), the carrier density decays more
slowly [compared to the result in Fig. 4 (a)] away from the
gate interface and suddenly drops to the Dirichlet boundary
condition values at the bottom interface (y = 0). This demon-
strates the unphysical smearing of the boundary (carrier) lay-
ers observed in GLS-FEM solutions. Figs. 4 (c) and (d) show
the x-component of the electric field intensity computed
by the DG and the GLS-FEM solvers, respectively. One
can clearly see that the solution computed by the GLS-
FEM solver is smoother (compared to the DG solution)
at the sharp corners of the gate. The unphysical effects,
as demonstrated in Figs. 4 (b) and (d), result from the
GLS testing, which lacks of control on local conservation
law [30].

The SG-FVM solver requires the mesh to be admissible,
which is often difficult to satisfy for 3D devices [21], [22],
[27]. Implementation of SG-FVM in COMSOL uses a prism
mesh generated by sweeping triangles defined on surfaces
(for 3D devices) [30]. However, this leads to a considerable
increase in the number of elements compared to the number
of tetrahedral elements used by the DG and the SG-FEM
solvers. In this example, the number of elements used by the
SG-FVM is 545 342 (h = 1 nm), which results in 1 499 646
unknowns. The DG solver refines the tetrahedral mesh near
the boundaries where the solution changes fast, which is not
possible to do using the prism mesh generated by sweeping
triangles (Fig. 5). This mesh flexibility compensates for the
larger number of unknowns required by the DG solver, which
results from defining local expansions only connected by
numerical flux.

B. PLASMONIC-ENHANCED PHOTOCONDUCTIVE
ANTENNA
For the second example, we consider a plasmonic-enhanced
photoconductive antenna (PCA). The operation of a PCA
relies on photoelectric effect: it ‘‘absorbs’’ optical wave
energy and generate terahertz (THz) short-pulse currents.
Plasmonic nanostructures dramatically enhances the optical-
THz frequency conversion efficiency of the PCAs. The
steady-state response of the PCAs, especially the static elec-
tric field and the mobility distribution in the device region,
strongly influences their performance. Here, we use the
proposed DG solver to simulate the device region of a
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FIGURE 4. Electron density distribution computed on the plane z = 0 by
(a) the DG solver (b) the GLS-FEM solver for gate voltage Vg = 3 V and
drain voltage Vd = 0.5 V. x-component of the electric field intensity
computed on the plane z = 0 by (c) the DG solver (d) the GLS-FEM solver
for gate voltage Vg = 3 V and drain voltage Vd = 0.5 V.

PCA shown in Fig. 6, and compare the results to those
obtained by the SG-FVM solver in COMSOL semiconductor
module.

FIGURE 5. (a): Tetrahedral mesh used by DG and GLS-FEM. (b): Prism
mesh used by SG-FVM in COMSOL [30].

FIGURE 6. Schematic diagram of the plasmonic PCA.

Fig. 6 illustrates the device structure that is optimized
to enhance the plasmonic fields near the operating optical
frequency [60]. The semiconductor layer is LT-GaAs that
is uniformly doped with a concentration of 1016cm−3. The
substrate layer is semi-insulating GaAs. We should note here
that it is crucial to employ the appropriate field-dependent
mobility models to accurately simulate this device [61].
The Caughey-Thomas model is used here. Other material
parameters same as those used in [61]. The bias voltage is
set to 10 V.

The DD equations are solved in the semiconduc-
tor layer with Dirichlet boundary conditions on the
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FIGURE 7. (a) Electron density distribution computed by the DG solver on
the plane z = 0 in the device region of the plasmonic PCA. (b) Electron
density computed by the DG and the SG-FVM solvers along lines
(x, y = 0.5µm, z = 0) and (x, y = 0, z = 0) versus x .

semiconductor-contact interfaces and homogeneous Robin
boundary condition on the semiconductor-insulator inter-
faces. Poisson equation is solved in the whole domain, which
includes an extended air background. Dirichlet boundary
conditions that enforce impressed external potentials are
imposed on metal contacts. Floating potential condition
is enforced on metals of the nanograting [62]. Homoge-
neous Neumann boundary condition is used on exterior
boundaries.

The semiconductor region is discretized using a total of
173 711 elements and the order of basis functions in (32) and
(33) is 2. This makes the dimension of the system in (35)
1 737 110. The regions where the Poisson equation is solved
are discretized using a total of 228 921 elements and the order
of basis functions in (23) and (23) is 2, making the dimension
of the system in (25) 2 289 210. The systems (25) and (35) are
solved iteratively with a residual tolerance of 10−11. The drop
tolerance of the ILU preconditioner is 10−5. The convergence
tolerance of the Gummel method is 10−7.
Fig. 7 (a) shows the electron density distribution computed

by the proposed DG solver. Fig. 7 (b) plots the electron den-
sity computed by the DG and the SG-FVM solvers along lines
(x, y = 0.5µm, z = 0) and (x, y = 0, z = 0) versus x. The
results agree well. The relative difference, which is defined as∥∥nDGe − nFVMe

∥∥
2

/∥∥nFVMe

∥∥
2, between the solutions obtained

by the DG and the SG-FVM solvers is 0.78%. Here, ‖.‖2
denotes L2 norm and nDGe and nFVMe are the electron densities
obtained by the two solvers. Note that nDGe is interpolated to
the nodes where nFVMe is computed. The computation time of
theDG solver is about 15 hours on aworkstationwith Intel(R)
Xeon(R) E5-2680 CPU.

IV. CONCLUSION
In this paper, we report on a DG-based numerical framework
for simulating steady-state response of geometrically intri-
cate semiconductor devices with realistic models of mobility
and recombination rate. The Gummel method is used to
‘‘decouple’’ and ‘‘linearize’’ the system of the Poisson equa-
tion (in electric potential) and the DD equations (in electron
and hole charge densities). The resulting linear equations
are discretized using the LDG scheme. The accuracy of this
framework is validated by comparing simulation results to
those obtained by the state-of-the-art FEM and FVM solvers
implemented within the COMSOL semiconductor module.
Just like FEM, the proposed DG solver is high-order accurate
but it does not require the stabilization techniques (such as
GLS and SUPG), which are used by FEM. The main draw-
back of the proposedmethod is that it requires a larger number
of unknowns than FEM for the same geometry mesh. But the
difference in the number of unknowns gets smaller with the
increasing order of basis function expansion. Additionally,
DG can account for non-conformal meshes and benefit from
local h-/p- refinement strategies. Indeed, we are currently
working on a more ‘‘flexible’’ version of the current DG
scheme, which can account for multi-scale geometric features
more efficiently by making use of these advantages.
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