
Received November 21, 2019, accepted December 16, 2019, date of publication January 17, 2020, date of current version May 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2967139

Autonomous Permission Recommendation
HONGCAN GAO 1, CHENKAI GUO 1, (Member, IEEE),
DENGRONG HUANG 1, (Member, IEEE), XIAOLEI HOU 1,
YANFENG WU 2, JING XU 2, (Member, IEEE), ZHEN HE 2,
AND GUANGDONG BAI 3, (Member, IEEE)
1College of Computer Science, Nankai University, Tianjin 300350, China
2College of Artificial Intelligence, Nankai University, Tianjin 300350, China
3School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia

Corresponding authors: Chenkai Guo (guochenkai@nankai.edu.cn) and Jing Xu (xujing@nankai.edu.cn)

This work was supported in part by the Science and Technology Planning Project of Tianjin, China, under Grant 17JCZDJC30700 and
Grant 18ZXZNGX00310, in part by the Tianjin Natural Science Foundation under Grant 19JCQNJC00300, and in part by the Fundamental
Research Funds for the Central Universities of Nankai University under Grant 63191402.

ABSTRACT Modern smartphone operating systems (e.g., Android 6.0 and later versions) employ an ask-
on-first-use policy to regulate app permissions. To assist users in policy decisions, relevant efforts have
been focusing on leveraging contexts to capture users’ privacy preferences. However, these techniques
have various limitations, such as heavily relying on users’ historical decisions on granting permissions,
ignoring the fact that users are not experts on privacy protection, and hard to determine whether a permission
shall be granted. To address this problem, we propose an autonomous permission recommendation system,
AutoPer+, to automatically recommend users the permission decisions at runtime. The main insight of our
proposed system is that the natural language description of an app reflects its functionality and its similarity
to other apps, and thus can be used to analyze whether a permission is needed indeed by it, and the apps
similar to it. First, we introduce a multi-topic model into app functionality mining, and design a topic-
permission mapper for the proposed recommendation system. Then we propose a deep semi-supervised
machine using Long Short-Term Memory (LSTM) neural networks to identify similar apps, by which we
can explore privacy permission usage in a cluster of apps. Finally, we capture a trade-off between privacy and
utility to present a systematic recommendation. In addition to the permission decision (‘‘Allow’’ or ‘‘Deny’’),
the permission explanations are also provided for users to make decisions (called ‘‘Ask’’). We evaluate the
proposed system via extensive comparison experiments on 31,023 Android apps. The results show that our
approach achieves an accuracy of 84.1%. Moreover, we conduct user studies via installing AutoPer+ in
the participants’ own Android devices. We receive positive responses from the participants, which implies
AutoPer+ is potentially for real-world deployment for enhancing current permission recommendation.

INDEX TERMS Android, permission recommendation, deep semi-supervisedmachine, privacy and security.

I. INTRODUCTION
Nowadays, smartphones play a key role in people’s daily
lives. Mobile users have increasing choices to install the apps
with various functionalities, due to their ready accessibility in
the popular app markets. For instance, the number of apps in
the Google Play store was placed at 2.7 million in June 2019,
which increases by more than 1.7 million, compared with
July 2013 [1]. However, with the explosive growth of mobile
apps, privacy and security on mobile devices has been a
common challenge, since personal data and resources can be

The associate editor coordinating the review of this manuscript and

approving it for publication was Gautam Srivastava .

accessed by apps. To control the apps’ access to sensitive
data, a permission-based mechanism is used in Android to
inform users of privacy, and thus to protect users’ privacy and
security.

Earlier versions of Android (5.1 and below) implement
an ask-on-install (AOI) policy that requires users to grant
permissions at installation time. Massive research [2]–[4]
has shown that the AOI policy is limited in reality, since
few users read the requested permissions when installing an
app, and even fewer correctly understand the consequences
of granting permissions. This lead to the update of the per-
mission mechanism since Android 6.0 – the ask-on-first-use
(AOFU) policy where users are prompted at the first time

76580 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6792-0571
https://orcid.org/0000-0003-1510-6548
https://orcid.org/0000-0003-0501-9037
https://orcid.org/0000-0003-0229-6039
https://orcid.org/0000-0002-1498-9177
https://orcid.org/0000-0001-8532-2241
https://orcid.org/0000-0002-6600-0500
https://orcid.org/0000-0002-6390-9890
https://orcid.org/0000-0001-9851-4103

H. Gao et al.: Autonomous Permission Recommendation

to ‘‘allow’’ or ‘‘deny’’ access to sensitive resources, such as
the location and contact list. Compared with AOI, AOFU
provides transparency on permission usage, but requires
much more user interaction since each authorization is
prompted at runtime for user decision. However, due to the
over-reliance on users, such permission mechanism has sev-
eral limitations. The critical one is the dilemma that users
face when making permission decisions for app requests.
Therefore, it is urgent to propose effective measures to help
users regulate the permissions.

Many studies have been investigated for Android per-
mission management. Among them, a large proportion
[5], [6], [7] focus on AOI permission mechanism, e.g.,
permission recommendation at installation time and poten-
tial privacy leaks detection. Based on AOFU policy, most
existing research [8]–[11] relies on dynamically regulating
permissions by user preferences and contextual information.
Wijesekera et al. [8], [9] conducted a field study to explore
and predict users’ privacy preferences by analyzing their
past decisions and behaviors. They also proposed Turtle
Guard [10], an advanced permission manager, to help users
make better decisions under various contexts. Similarly,
Olejnik et al. [11] also used contextual cues to predict users’
behaviors. These works have made attempts to address the
shortcoming of current permission systems from different
perspectives.

However, existing works are still limited, since they heav-
ily rely on a large number of users’ historical permission
decisions, and ignore the fact that most of the users lack the
consciousness and expertise on privacy protection. Actually,
due to the over-reliance on users, the permission mechanism
has a high risk of privacy leakage. One of the reasons lies
in the fact that there is an increasing number of apps that
have been known to request more permissions than they
need, along with the explosively growing apps. For example,
a photo-oriented app requires to access the SMS permission.
More importantly, very few users have the expertise in under-
standing the personalized apps, e.g., the relationship between
permissions and apps’ functionalities, and the privacy per-
mission usages in a set of similar apps, which are the most
important factors for users to make permission decisions.
Therefore, providing a systematic permission recommenda-
tion from different perspectives towards user understanding
and app requirements in software development is of great
importance.

In this paper, we focus on three challenges that users face
when making permission decisions for app requests: (i) what
is the relationship between a requested permission and an
app; (ii) what is the correlation between a permission and
a set of similar apps; and (iii) how to reconcile these two
aspects to make a better permission decision. To solve these
challenges, we make the first attempt to perform a systematic
runtime-permission recommendation from various perspec-
tives, and explore multi-dimensional explanations for the
recommendations to uncover the reasons for users. Specif-
ically, we first build a <multi-topic, permission> mapping

by leveraging the popular LDA (Latent Dirichlet Alloca-
tion) model and machine learning techniques to mine apps’
multiple functionalities. Then we proposed an LSTM-based
semi-supervised machine to identify similar apps. Finally,
we provide an autonomous permission recommendation to
help users make permission decisions by capturing a trade-
off between privacy and utility. The proposed approach has
been implemented in a tool AutoPer+. In addition to offering
multiple recommendations of ‘‘Allow’’, ‘‘Deny’’, and ‘‘Ask’’,
AutoPer+ also provides comprehensive explanations to help
users understand the rationale of the recommendation, as well
as a feedback loop for users to audit and modify the granted
permissions.

The main contributions of this paper can be summarized as
follows:
• We conduct the first effort to perform a systematic
runtime-permission recommender for an autonomous
permission decision, multi-dimensional permission
explanations, and a validated feedback mechanism.

• We propose a novel model, AutoPer+, that assists users
in granting permissions by reconciling apps’ functional-
ities and similar apps’ permission usages.

• We introduce techniques of semi-supervised deep learn-
ing andNLP intoAutoPer+, which are trained on 31,023
apps from the Google Play store.

• The experiments show the superiority of AutoPer+
compared to existing approaches in terms of effec-
tiveness. Meanwhile, AutoPer+ is evaluated by users
with varying expertise, which demonstrates our recom-
mender is potential for real-world use.

Following lists the rest structure of this paper. Section II
formalizes the research problems. Section III presents the
proposed approach in detail. Section IV and Section V
present the experimental setup and results. Section VI and
Section VII discuss our work and specific threats, respec-
tively. Section VIII introduces the related work. In the last
part, Section IX concludes our work.

II. PROBLEM FORMALIZATION
AOFU permission mechanism divides the permissions
into ‘‘Dangerous’’ permissions that guard sensitive data
(e.g., camera, location, and call logs), and ‘‘Normal’’ permis-
sions that do not directly threaten user privacy, such as vibra-
tion and Internet-related permissions. AOFU merely prompts
users to grant ‘‘Dangerous’’ permissions at the first timewhen
an app attempts to request sensitive data. More specially,
‘‘Dangerous’’ permissions contain 9 groups of 24 permis-
sions, as shown in Table 1. Note that we adopt the concept
of permission group in this work, similar to [12], [13], which
means when one permission in a certain group is authorized,
the other permissions in the group will be granted at the same
time.

Given a corpus of apps V , for each v ∈ V , there is a
set of requested permissions U , with µ ∈ U . Each µ has a
recommended decision η with a numerical value indicating
whether it is allowed to authorize by our recommender, where

VOLUME 8, 2020 76581

H. Gao et al.: Autonomous Permission Recommendation

TABLE 1. Dangerous permissions.

η = 0 represents denied, η = 1 represents allowed, and η = 2
represents no additional decision recommended. We denote
the mapping between permission and recommendation as
S(µ) = η. Additionally, since we also provide multi-
dimensional explanations for our recommender to users, for
each recommendation η, there is a set of permission explana-
tions, denoted as X = {x1, x2, . . . , xm}. We formally define
three typical problems related to our permission recommen-
dation as follows.

A. PROBLEM 1. DETERMINING S(µ) = η

To provide an autonomous permission recommendation,
the proposed work not only takes the app’s own functionali-
ties into consideration, it also explores the privacy permission
usage in similar apps. Therefore, the mapping S(µ) = η

is mainly influenced by two factors. One is the relation-
ship between a permission µ and an app v’s functionalities,
denoted as Q(µ, v) = γ ; the other is the correlation between
a permission µ and a set of similar apps kv, with kv ∈ KV ,
denoted as Q̂(µ, kv) = τ . Similar to η, both the results of
γ and τ are also in one of three decisions (i.e., ‘‘Allow’’,
‘‘Deny’’, and ‘‘Ask’’). Thus, each mapping S(µ) = η comes
from a combined result of Q(µ, v) = γ and Q̂(µ, kv) = τ

with better performance. We will present our approach that
captures the trade-off between γ and τ in Section III-E.
According to problem II-A, then the challenge falls on how

to identify the following two problems: Q(µ, v) = γ and
Q̂(µ, kv) = τ .

B. PROBLEM 2: DETERMINING Q(µ, v) = γ

For problem 2, the relationship between a permission µ and
an app v is decided by whether µ is needed by v from
the perspective of functionality. That is, we determine the

mapping Q(µ, v) by identifying the multiple functionalities
of an app.

Especially, the challenges of problem 2 are three-fold:
(i) an app may have multiple functionalities, and then how to
identify the relationship between an app and various function-
alities; (ii) how to mine and define the correlation between
a specific functionality and a corpus of permissions; and
(iii) given an app with a requested permission, how to deter-
mine the mapping Q(µ, v). Thus, the problem II-B can be
defined as the following three stages.
Problem 2-1: Exploring various functionalities of an app.

We use W to denote an app’s functionalities. The mapping
R∞(v, ω) refers to the relationship between V and W . For
each v, it has a set ofW = {ω1, ω2, . . . , ωm}.
Problem 2-2: Analyzing the correlation between a func-

tionality and a set of permissionsR4(ω,µg), where µg rep-
resents the ‘‘Dangerous’’ permission group including several
permissions.
Problem 2-3: Given an app v and a requested permission

µ, the mapping Q(µ, v) is determined by the ranked result
of R(µ, v), while R(µ, v) is determined by R∞(v, ω) and
R4(ω,µg). We leverage the popular LDA topic model to
address the Problem 2-1, and incorporate machine learning
algorithms into the solution to the Problem 2-2, which will
be described in detail in Section III-C.

C. PROBLEM 3: DETERMINING Q̂(µ,kv) = τ

For problem 3, the mapping Q̂(µ, kv) = τ is determined
by the correlation between a permission and a set of similar
apps. While the privacy permission usage in a set of similar
apps provides users a straightforward understanding of the
correlation between permissions and apps, which also helps
users to make decisions. Therefore, we give the following
definition based on these considerations.
Permission Usage: Given a set of similar apps kv, the per-

mission usage is the proportion of apps (in kv) that request
the permission group.

To determine the mapping Q̂(µ, kv) = τ , the challenge
is how to identify similar apps. Although the category is
provided by the Google play to describe an app’s information,
the category is too coarse to decide a precise permission set.
However, we observe that there are a few but very popular
apps given fine-grained categories (almost 2,630 covered by
118 fine-grained categories) in the Google Play store. There-
fore, we adopt a deep learning method to automatically learn
the latent features from the apps with fine-grained categories,
and classify the other apps only with coarse categories.

In this work, we leverage a BISLTMmodel to classify apps,
and thus mine the mapping Q̂(µ, kv) = τ , with the output
decision of ‘‘Allow’’, ‘‘Deny’’ or ‘‘Ask’’. The process will be
introduced in Section III-D.

III. APPROACH
A. OVERVIEW
Our permission recommendation framework, AutoPer+,
contains three main phases: <multi-topic, permission>

76582 VOLUME 8, 2020

H. Gao et al.: Autonomous Permission Recommendation

FIGURE 1. Framework overview.

mapping, similar-app mining, and decision recommendation,
as shown in Figure 1. Since our model is based on description
analysis, given a corpus of collected description instances,
AutoPer+ first carries out a pre-processing to handle invalid
words, filter non-English words, eliminate stop words, etc.
Then the dataset is fed into two modules, <multi-topic, per-
mission> mapping and similar-app mining, to construct dif-
ferent trainingmodels, respectively. Inmore detail, the goal of
the first phase is to build aQ(µ, v) mapping by which we can
explore an app’s multiple functionalities and map the rela-
tionship between functionalities and requested permissions,
mainly including multi-topic mining, permission analysis,
and <topic, permission> mapping. As an output, the result
Q(µ, v) = γ is provided for the further recommendation.

In the second phase, a deep semi-supervised model is
designed to mine similar apps. To this end, our classifier is
built based on two different datasets: Level I and Level II.
We first collect allLevel II appswith the tagged labels for fur-
ther classification. Since the descriptions after pre-processing
can not be directly used for model training, we have to
convert the given description fragment into a vector repre-
sentation. Hence, we exploit a word embedding component
to carry out vectorization as well as keep the contextual
semantics. After that, the produced Level II vector dataset is
fed into a BILSTMwith attention mechanism to train a multi-
classification model. Subsequently, based on our prediction
results of Level I, the analysis report of permission usage in
similar apps is provided to determine Q̂(µ, kv) = τ .
Eventually, we recommend that whether a user adopts

a permission request is a trade-off result between <multi-
topic, permission> mapping and similar-app mining. As an
output, the mapping S(µ) = η figures out the permission
recommendation with additional explanations X .

B. PRE-PROCESSING
Since our approach is based on natural language descriptions
provided by the developers in Android market, we first carry
out a pre-processing to handle the collected raw dataset.

1) NON-ENGLISH REMOVAL
Due to the predominance of English in the Google Play
store, our work only focuses on English text. Thus, after
discarding invalid description instances, we exploit the tool
called langid.py [14] to detect an app description’smost likely
languages and remove non-English descriptions. As a result,
we obtain a total of 31,023 apps across all 30 categories.

2) WORD SEGMENTATION
Word segmentation is the step that divides the text into words.
In English descriptions, words are typically identified by
spaces and punctuation before and after the words. Therefore,
we eliminate the stop words, which are commonly used in
documentation but are considered meaningless for text classi-
fication (e.g., ‘‘is’’, ‘‘it’’, and ‘‘on’’). Apart from that, we also
remove punctuation like commas and quotes in this step.

3) WORD STEAMING
Word steaming is a necessary step in handling English lan-
guage processing, since there are many variations of the
same word such as ‘‘like’’, ‘‘likeness’’, and ‘‘liker’’. As a
natural language processing technique, steaming is used to
reduce derived words to their stems, by which we can also
identify grammatical constructs and the relationship within
the constructs. In practice, we useNLTK package to complete
the task.

C. <MULTI-TOPIC, PERMISSION> MAPPING
1) MULTI-TOPIC MINING
In our work, the various functionalities of an app need to be
identified by mining a set of description topics. To achieve
this goal, we integrate LDA into the topic mining module.
As an unsupervised topic generation technique, LDA gener-
ates a topic containing words that frequently occur together
in the descriptions, which can be regarded as attributes of the
topic. As a result, the text description of each app is divided
into multiple topics with corresponding probabilities, which

VOLUME 8, 2020 76583

H. Gao et al.: Autonomous Permission Recommendation

can be represented as various functionalities W of an app v,
and the relationship within themR∞(v, ω), respectively.
Specifically, in the implementation of LDA, an essential

parameter is the number of topics. Since our apps cover
30 categories in the Google Play store, we set the parameter
as 30. For each app, we filter out the topics with probabilities
less than 5%. In addition, only the top 3 with the highest
probabilities will be considered. As an example, we display
the topics of three apps in Table 2.

TABLE 2. Examples of apps with LDA topics.

From Table 2, we can observe that the app package
‘‘media.music.musicplayer.mp3player’’ is most related to
three topics: ‘‘Music’’, ‘‘Media’’, and ‘‘Communication’’,
with probabilities of 0.653, 0.157, and 0.099, respectively.
While for package ‘‘photo.selfie.camera.hdcamera’’, two
topics, i.e., ‘‘Photography’’ and ‘‘Beauty’’, are reserved.
Note that the topic names, e.g., ‘‘Music’’ and ‘‘Map’’, are
not generated by LDA; they are inferred from their attribute
words.

2) PERMISSION ANALYSIS
In this step, we aim to obtain the requested ‘‘Dangerous’’
permissions in the apps. We first use apktool to decompile
app installation files (.apk files), and then extract permissions
from Android ‘‘Manifest.xml’’ files using aapt tool. In this
process, we only focus on the 24 ‘‘Dangerous’’ permissions
that access to sensitive data, and the ‘‘Normal’’ permissions
(e.g., NFC, VIBRATE, and WAKE_LOCK) are ignored.
As mentioned in Section II, given a set of requested per-
missions µ, we map them to the corresponding permission
groups µg respectively, according to the mapping relation-
ship (shown in Table 1).

In the collected apps, we observe that very few of them
(less than 0.5%) request the permission group SENSORS.
Therefore, SENSORS permission group is not considered in
this step.

3) <TOPIC, PERMISSION> MAPPING
Our approach builds a <topic, permission>mapper to identify
the correlation between topics and permission groups. As an
example, the permission group CAMERA has a larger corre-
lation with the topic ‘‘Photography’’ than the topic ‘‘Map’’.
In order to precisely define the mapper, we useR4(ω,µg) to
represent the correlation of a functionalityw and a permission
groupµg. A strong correlation between them indicates a high
probability of permission being granted. Note that µg is the

‘‘Dangerous’’ permission group that the requested permission
µ belongs to.

The permissions can be regarded as features that describe
the behavior of restricting component access between apps,
while the topics can be treated as classes that classify the
functionalities of an app. Thus, the correlation of topics and
permissions, i.e., the mapping R4(ω,µg) can be evaluated
by measuring the correlation of permissions/features and the
topics/class variables. To achieve this goal, several alternative
machine learning techniques, e.g., mutual information (MI),
Pearson correlation coefficient (CorrCoef), and T-test, can
be considered to build our model. Inspired by our previous
experiment analysis [13], we leverageMI to achieve this goal
with fairly better performance. Consequently, for each topic,
we generate a rank list of eight permission groups according
to the values of γ . Table 3 displays the µg rank lists of topic
‘‘Map’’, ‘‘Media’’, and ‘‘Communication’’.

TABLE 3. Permission group ranking.

By comparing the permission rank lists based on MI, it
is obvious that the most relevant permission associated with
‘‘Map’’ topic is the permission group LOCATION (0.042),
and the secondary is STORAGE (0.033), which are consistent
with the user experience in real life, e.g., locating, down-
loading, and saving offline maps. On the other hand, in a
‘‘Media’’ app, it is straightforward to understand the purpose
of permission groupMICROPHONE; meanwhile, our results
also show that CONTACTS permission group has a closer
correlation with the topic ‘‘Communication’’ than the other
permission group, such as CAMERA and LOCATION.

4) Q(µ, v) MAPPING
Given an app v and a requested permissionµ, the relationship
between them γ is mainly influenced by two factors: the
probability that an app belongs to a topic (i.e., R∞(v, ω))
and the correlation between a topic and a permission group
(i.e., R4(ω,µg)). Thus, the mapping R(µ, v) can be calcu-
lated by

R(µ, v) =
∑
V

R∞(v, ω)R4(ω,µg) (1)

where R∞(v, ω) and R4(ω,µg) are generated by multi-
topic mining and <topic, permission> mapping, respectively.

Finally, we rank the results of R(µ, v) to generate a per-
mission ranking list for each app, and recommend the per-
mission decision Q(µ, v) = γ based on the position of the
requested permission in the ranking list. If the position lies

76584 VOLUME 8, 2020

H. Gao et al.: Autonomous Permission Recommendation

in the top k1, AutoPer+ turns into ‘‘Allow’’, meaning that
our recommender grants permission to this request. If the
position lies in the bottom k2, AutoPer+ instructs ‘‘Deny’’,
which is used to deny the permission request. Otherwise,
AutoPer+ provides a request interface to prompt users to
make decisions by themselves (called ‘‘Ask’’). Based on our
previous experimental results [13], the parameters settings
here are k1 = 2, k2 = 3.

D. SIMILAR-APP MINING
In this step, we seek to analyze the usage proportion of a
permissionµ in a set of apps kv. Therefore, the challenge falls
on how to mine similar apps kv. To address the challenge,
we propose to measure the similarity between app descrip-
tions by exploiting a semi-supervised deep learning algo-
rithm, and design the search model as the following stages.

1) LABELING
To build the classification machine, the first step is to collect
sufficient dataset with the marked labels for model training.
However, there is no similarity score that can be regarded as
the relationship between two apps, and the coarse category
fails to decide a precise permission set, which make the labels
hard to obtain.

FIGURE 2. Dataset levels.

Actually, we can observe that although Google Play store
does not provide a straightforward secondary category for
each app, some popular and representative apps are tagged as
fine-grained categories, which can be regarded as the training
labels for classifier. According to problem II-C, the apps V
can be divided into two levels. Level I: apps only with a
coarse category (Figure 2(a)), and Level II: apps with both
fine and coarse category (Figure 2(b)), each of which consists
of a set of requested permissions and corresponding meta-
data. Therefore, we first crawl all Level II dataset including
118 labels for model training, and then tag the collected
descriptions by labels for further classification.

2) EMBEDDING
Since the LSTMmodel only accepts numeric vectors as input,
a particular vectorization phase is required to obtain such
representation. As a hybrid neural network for text process-
ing, word embedding [15] is an effective method to avoid

dimension exploration while preserving original syntactic
and sequence information.

We adopt Word2Vec [16], a popular unsupervised neural
network method, to perform the word embedding. By con-
verting words and phrases into a vector representation,
Word2Vec can capture extra semantic features that help in
text presentation. In more detail, Word2Vec generates word
vector by two typical language models [17]: Bag-of-Words
(CBOW) and Skip-Gram.

In the CBOW model, the goal is to predict a word based
on the surrounding words, whereas the latter is to predict the
context of words through a given target word. Since the goal
of our work is to analyze continuous text descriptions, which
is relevant to the semantics of the sentence, we employ Skip-
Gram to construct Word2Vec model for better performance
in the practical implementation. Specifically, using softmax
function [18], the Skip-Grammodel predicts conditional pos-
sibilities p(c|w; θ) with parameter θ is calculated as follows:

p(c|w; θ) =
exp(vc � vw)∑
c∈C exp(vc′ � vw)

(2)

where c indicates the context of the given word w, and C
refers to the set of overall available contexts. vw and vc refer
to vector representations of w and c, respectively.

The loss function Lθ of the Skip-Gram training model with
parameter θ can be represented as:

Lθ = −
∑

(c,w)∈D

log p(c|w; θ)

= − log
∑

(c,w)∈D

(log exp(vc � vw)−
∑
c′∈C

log exp(vc′ � vw))

(3)

To train our model, several parameters need to be manually
set, e.g., embedding size of Word2Vec, hidden layer size of
LSTM, and attention dimension, which will be discussed in
Section V-B. Afterward, the dense vectors are fed into our
BILSTM model for further classification.

3) BILSTM BUILDING
In our classification task, we model the text descriptions
using Recurrent Neural Network with long short-term mem-
ory (LSTM) encoder [19]. LSTM has been proved to be
an effective and scalable model for learning from sequence
data and capturing long-range dependencies. The central idea
behind the LSTM architecture is a memory cell, which can
maintain its state over time, nonlinear gating units, and reg-
ulate the information flow into or out of the cell. The LSTM
structure can be represented as:

it = σ (W ixt + U iht−1 + bi) (4)

ft = σ (W f xt + U f ht−1 + bf) (5)

ct = ft � ct−1 + it � tanh(W cxt + U cht−1 + bc) (6)

ot = σ (W oxt + Uoht−1 + bo) (7)

ht = ot � tanh(ct) (8)

VOLUME 8, 2020 76585

H. Gao et al.: Autonomous Permission Recommendation

where σ denotes the sigmoid (logistic) function, and b
denotes bias vectors. The input gate, output gate, and forget
gate are denoted by i, f , o, respectively, while h denotes
the hidden vector. W denotes input weight matrices and U
denotes hidden-state weight matrices. c stands for the cell
activation vectors.

Furthermore, to take advantage of two-directional hidden
features (past features and future features), we adopt bidirec-
tional LSTM networks [20] to explore a forward hidden state
(
−→
ht) and a backward hidden state (

←−
ht) at time t . As a result,

two-directional states are integrated into a final state, and can
be computed as follows:

ht = W
−→t −→ht +W

←−t ←−ht + bt (9)

4) ATTENTION LAYER
Essentially, not all words in a description contribute equally
to the representation. Thus, we capture the distinguished
influences of words on the descriptions by leveraging a word
attention mechanism [21], and thus obtain a dense vector
considering the word weights. Specifically, we have

uti = tanh(Whti + b) (10)

at i =
exp(score(uTti uw))∑n
j=1 exp(score(u

T
tj uw))

(11)

st =
∑
i

atihti (12)

where t refers to t-th description, and i refers to i-th word in
the description. uti is a hidden representation of a continuous
context vector hti, and b is a bias vector. Then we measure
the importance of different words by leveraging the similarity
between uti and context vector uw. As a result, a normal-
ized importance weight ati is obtained through the softmax
function, and thus the sentence vector st is represented as a
weighted sum of the word annotations.

5) DATA IMBALANCE
Data balance is an important factor in building a supervised
model. However, our collected data is limited to achieve
this goal. On one hand, the number of Level II dataset is
insufficient containing 2,630 popular apps while marked by
118 fine-grained labels. On the other hand, the distribution
of these apps is imbalanced, as it relies on their popularity
and varies with different categories. Therefore, for better
training, we leverage semi-supervised learning to alleviate the
deviation of the weak supervision, as shown in Figure 3.
Our BILSTM structure is trained in two stages. In the

first training stage, the classifier is trained (arrow 1© shown
in Figure 3) under labeled dataset (Level II) to predict
(arrow 2©) the unlabeled dataset (Level I). Afterward, we can
get a pseudo-labeled dataset (arrow 3©). In the second training
stage, the input of the raw classifier is converted into a com-
bination of the pseudo-labeled dataset and the labeled dataset
(arrow 4©). As a result, a fine-grained classifier is obtained in
our semi-supervised training model.

FIGURE 3. Semi-supervised learning.

FIGURE 4. Permission groups usage distribution.

6) Q̂(µ, kv) MAPPING
The goal of this step is to look into the permission usage
in various sets of similar apps. Our idea is based on the
observation that if a permission µ is frequently requested by
a cluster of apps kv, the correlation between µ and kv is often
closer than other permission pairs (e.g., for the same purpose
in the description), which is also more likely for users to grant
access to some resources. For instance, the correlation ofMap
apps and the LOCATION-related permissions is closer than
CAMERA and other permissions. Therefore, we focus on
computing the permission usage of all permission groups in
each similar-app cluster. In our study, the output of mapping
Q̂(µ, kv) is ‘‘Allow’’ onlywhen the percentage value is higher
than or equal to %1 in each similar-app set kv, and if the
percentage value is lower than or equal to %2, AutoPer+ turns
into ‘‘Deny’’ mode, τ is ‘‘Ask’’ otherwise, where %1 and
%2 are parameters and will be discussed in the experiments
(Section V-A) later. More specifically, the following permis-
sion usage distribution matrix (Figure 4) displays 10 similar-
app sets of samples (top) and their permission usages (right)
in our collected dataset.

By comparing each similar-app set with its nine permission
counterparts, we can observe that there is a significant differ-
ence in permission usage between different µg, which varies
from cluster to cluster. Specifically, the permission group
with the maximum number is STORAGE, which accounts
for 96.9% of the total ‘‘Create Lasting Photos’’ apps, and

76586 VOLUME 8, 2020

H. Gao et al.: Autonomous Permission Recommendation

the second one is group STORAGE in the ‘‘Capture the
Moments’’ apps (95.2%). It is obvious that most apps apply
for STORAGE-related permissions. Moreover, the permis-
sion usage of MICROPHONE and PHONE are higher in
most clusters, i.e., ‘‘Check Who’s Calling’’ and ‘‘Music is
Your Life’’. Apart from that, our statistics also show that
some ‘‘CheckWho’s Calling’’ apps more frequently request
permission PHONE (93.0%), and ‘‘Make the Beat Drop’’
apps are more likely to request permission MICROPHONE
(56.5%). In contrast, the number of the permissions related
to CALENDAR and SMS is small compared with the other
permissions. Similar to app functionalities mining, group
SENSORS contains too few proportions in each app set
(ranging from 0% to 0.5%), and therefore we discard the
permission group in further study.

E. PERMISSION RECOMMENDATION S(µ) = η

In the last part of our study, we seek to provide a final per-
mission recommendation based on our research results. Given
an app v with a requested permission µ, AutoPer+ captures
a trade-off between the above two recommendation results,
i.e., Q(µ, v) mapping and Q̂(µ, kv) mapping, based on dif-
ferent permission groups. Briefly speaking, if a permission
group achieves better performance for recommendation in
one of these twomappings, then themapping result is the final
decision indicating our recommendation. Thus, S(µ) = η is
a combined result of γ and τ with better performance. In our
work, permission group CALENDAR and SMS are deter-
mined by Q̂(µ, kv) mapping, and the rest permission groups
are the results of Q(µ, v) mapping, which will be discussed
in Section V-A. As the output, in addition to the permission
decision (‘‘Allow’’ or ‘‘Deny’’), the permission explanations
are also provided for users to make decisions by themselves
(‘‘Ask’’).

IV. EXPERIMENTAL SETUP
A. RESEARCH QUESTIONS
To evaluate the performance of AutoPer+, we designed an
exploratory study to answer the following research ques-
tions (RQs):

RQ1: How accurate is AutoPer+ compared to different
permission recommendation approaches?

RQ2: How well does the BILSTM model perform in
detecting similar apps compared to state-of-art models?

RQ3: Are the permission decisions recommended via
AutoPer+ actually useful for users?

B. DATASET
1) APP SELECTION
In this work, we reuse the dataset used in our previous
work [13], which contains 28,850 Android apps, includ-
ing their metadata, e.g., package name, category, number
of downloads, average rating, requested permissions, and
text description, from the Google Play store. Apart from
that, we also collected other 2,630 apps with a fine-grained

category Level II and 2,700 apps with a coarse-grained
category Level I in June 2019 to train our model. When
creating the new dataset, we removed the apps with less than
5,000 downloads. In addition, we also discarded the apps
classified into different fine-grained categories, which are not
feasible for training data. Afterward, we combined these two
sets and removed the duplicate and invalid apps to construct
the new dataset.

Finally, these collected apps are divided into Level I with
the number of 29,275 apps, and Level II with 1,748 apps
covering 118 fine-grained labels. We adopt the cross-
validation method to monitor classification performance,
where Level II data is split into two sets: a training set which
is used to train the model, and a test set which is used to
measure the classification performance. During learning, our
algorithm is terminated when the network starts to overfit the
training data. Table 4 displays the overview of our dataset.

TABLE 4. Dataset, where #TA denotes the total apps; #PA denotes the
previous apps in [13]; #FA denotes the apps with fine-grained categories;
#NA denotes the number of labels in Level II.

2) MANUAL ASSESSMENT
To evaluate the effectiveness of AutoPer+, we collected
264 apps (not included in Table 4) and manually inspected
these samples to check whether the permission requested as
expected. Among them, 173 apps came from our previous
work [13]. Moreover, we added 91 new popular apps, each
of which has been downloaded for more than 50,000 times.
Thus, 264 apps are reserved for manual assessment.

During the manual assessment, three experienced Android
developers are invited to examine these 264 apps, and
the results are defined as the ground truth in our experi-
ment. The experts manually examined the apps’ information
(e.g., category, comments, text descriptions, policies, and
the relationship with similar apps) to make a comprehensive
understanding of their functionalities and requested permis-
sions. A permission is only needed if at least two experts
agree on the necessity of the permission. Similar to our
previous work [13], the manually recommended decision of
each permission sample is also in one of three categories:
‘‘Allow’’, ‘‘Deny’’, and ‘‘Ask’’. During the study period,
given an app with its information, each assessment takes
7 minutes averagely.

C. METRICS AND BASELINES
To evaluate the performance of AutoPer+, three well-known
metrics for the measurement of classification task are used
in the experiment, i.e., precision, recall, and F1-score. As a
weighted harmonic mean of precision and recall, F1-score is
an index of a comprehensive measure, which is described as

F1−score =
2× precision× recall
precision+ recall

. (13)

VOLUME 8, 2020 76587

H. Gao et al.: Autonomous Permission Recommendation

TABLE 5. Performance of AutoPer+, where P denotes the precision; R denotes Recall; F denotes F1-score.

In order to validate the effectiveness of the proposed model
in similar-app classification, we build several baselinemodels
by following feature extraction methods and machine learn-
ing methods.

• TF-IDF + RF (TR∗): We leverage TF-IDF to extract
description features, then the producedword vectors will
be fed into Random Forest (RF).

• Word2Vec + RF (WR∗): We go through the same pro-
cess for producing word vectors (Section III-D2), while
the classification task is conducted by TR.

• TF-IDF + MLP (TM∗): Features are extracted by
TF-IDF, and the classification task is conducted by a
Multilayer Perceptron (MLP) classifier.

• Word2Vec + MLP (WM∗): Features are extracted by
Word2Vec, and the classification task is conducted by a
MLP classifier.

• Word2Vec + BILSTM + Semi-super (WBS∗): In our
work, we propose the Word2Vec + BILSTM + Semi-
super model to handle the challenge of contextual vec-
tor representation and weak labeling in classifying the
similar-app task.

V. EXPERIMENTAL RESULTS
In this section, we present our experimental results to answer
the research questions proposed in Section IV-A.

A. RQ1: PERFORMANCE OF AutoPer+
Table 5 summarizes the precision, recall, and F1-score
of AutoPer+ with eight permission groups mentioned
in Section II (excluding SENSORS permission group).
Essentially, this work addresses a three-classification prob-
lem including categories of ‘‘Allow’’, ‘‘Ask’’, and ‘‘Deny’’.
Similar to our previous work [13], we evaluate the per-
formance of recommendation ‘‘Allow’’ and ‘‘Deny’’, since
‘‘Ask’’ mode only provides permission explanations without
decisions.

As for the recommendation of ‘‘Deny’’, we can observe
that AutoPer+ performs good results for most permis-
sion groups in terms of the same metric. Specifically,
AutoPer+ achieves the best performance with respect to
group CALENDAR, which matches the experts’ decisions
with the precision, recall, and F1-score being 96.30%,

100.00%, and 98.12%, respectively. Similar to CALEN-
DAR, the AutoPer+ also performs a better result for CAM-
ERA, achieving an F1-score of 86.84%. Whereas group
CONTACTS has a lower recall, with the value of 27.27%.
On the other hand, for the recommendation of ‘‘Allow’’,
group CONTACTS and LOCATION achieve the F1-score
of 91.01% and 92.89%, respectively, which perform much
better than decision ‘‘Deny’’. Especially, permission LOCA-
TION attains the best performance, with the F1-score
of 92.89%. Generally, with regard to group STORAGE,
AutoPer+ still retains a reasonable balance between preci-
sion and recall for the recommendation of both ‘‘Allow’’ and
‘‘Deny’’. As discussed before (Section III-D6), since there
are very few numbers of CALENDAR and SMS permission
in both training and assessment dataset, it is reasonable that
TP and FP are zero in our experimental evaluation, and thus
the corresponding precision and F1-score cannot be obtained.
Overall, by computing all eight permission groups’ metrics,
our approach achieves fairly decent performance with an
average accuracy of 84.1%, which indicates the effectiveness
of the proposed approach in permission recommendation.

To evaluate the performance of the proposed approach,
AutoPer+, we present a comparative study against our pre-
vious permission recommendation approach [13], which is
an automatic permission recommender that only mines an
app’s multiple functionalities, denoted as AutoPer. Different
from AutoPer, AutoPer+ takes both app’s functionalities
and permission usage into consideration, which is a com-
bined result of these two approaches. Figure 6 shows the
performance of these two approaches on ‘‘Deny’’ decision
with permission group CALENDAR and SMS. It can be
seen that AutoPer+ performs better than AutoPer in terms
of all metrics. More specifically, AutoPer performs a worse
result for group SMS, achieving an F1-score of 22.22%,
well below the 86.27% threshold reached by AutoPer+.
Especially, AutoPer+ performs the best for group CALEN-
DAR, with the F1-score of 98.12%. Since the amount of
requests for these two permissions is small, it is difficult
for AutoPer to learn the relationship between topics and
permissions during the process of functionality mining. As a
comparison, the permission usage based on a fine-grained
classification in AutoPer+ is more effective to build the
relationship between apps and permissions. While for the rest

76588 VOLUME 8, 2020

H. Gao et al.: Autonomous Permission Recommendation

TABLE 6. Comparison Results, where P denotes the precision; R denotes
Recall; F denotes F1-score.

six permission groups, (e.g., CAMERA, CONTACTS, and
LOCATION), the recommendation results of AutoPer+ for
both ‘‘Allow’’ and ‘‘Deny’’ decisions come from AutoPer,
which are thus not included in Figure 6. Although the results
based on AutoPer are effective for most permission groups
(6/8) in permission recommendation, AutoPer+ improves the
metrics for group CALENDAR and SMS, which demonstrate
the contribution of exploring permission usage in similar apps
for permission recommendation.

In our model, the permission usage in similar apps indi-
cates the correlation between the apps and permissions.
To identify the proper parameters in AutoPer+ mentioned in
Section III-D6 (i.e., %1 and %2), we compare the accuracy of
different parameters for each permission group. Therefore,
there are totally 55 effective combinations (10% increments)
and the candidates with the best performance will be adopted
by AutoPer+. In our model, the parameter combination
(%1, %2) with the best performance for group CALENDAR
and SMS is (30%, 70%), which means if the permission
usage is lower than or equal to 30%, our model recommends
‘‘Deny’’; if the number is higher than or equal to 70%,
our model recommends ‘‘Allow’’; otherwise, ‘‘Ask’’ mode is
recommended.

FIGURE 5. Performance of different approaches.

B. BILSTM VS ALTERNATIVE APPROACHES
Figure 5 presents the performance of different models (men-
tioned in Section IV-C) trained on the same dataset. Due
to the imbalanced distribution of training sets (discussed
in Section III-D5), we compare the performance of various

models based on the top five fine-grained categories with
the largest number in our experiments. We can observe
that the deep BILSTM-based approach outperforms other
baseline models in terms of precision, recall, and F1-score.
In detail, F1-score enhancements with the semi-supervision
tactic to TR∗, WR∗, TM∗, and WM∗ are 0.261, 0.255, 0.237,
and 0.195, respectively. Meanwhile, compared to TR∗ and
TM∗, the models with Word2Vec (WR∗ and WM∗) both
improve the performance in terms of three metrics. Results
highlight that the Word2Vec performs better than TF-IDF
in feature extraction. Especially, the proposed model on the
same vector representation achieves the highest F1-score,
with the value of 0.864. It also can be seen that based
on the same feature representation, e.g., Word2Vec, MLP
algorithm has a relatively comparable performance with
the proposed model, with a more enhancement of F1-score
(0.669), which is much better than RF (0.609). Whereas TR∗

achieves better performance with the precision of 0.610 than
TM∗ (0.608), both of which use TF-IDF to extract the word
vectors.

The practical benefits of the proposed model can be
demonstrated by two reasons: one is the contextual and
semantic word representation; the other is the advantages
of semi-supervised learning implemented by BILSTM tech-
nique. For the first reason, Word2Vec captures the contextual
information when transforming the word set to vector matrix,
which is suitable for our structural semantic descriptions.
Similarly, BILSTM-attention feeds a dense sequence of word
vectors into the model to enhance ultimate performance as
well. For the second reason, the BILSTM-attention model is
employed to classify a description snippet into different fine-
grained categories, which compresses the feature representa-
tions into a set of context-aware hidden vectors, and helps to
build a better model.

Furthermore, in the comparison between other baseline
algorithms, MLP outperforms RF with the F1-score improve-
ment of 0.06. The reason lies in the nature of different algo-
rithms, e.g., RF is a learning method that combines several
weak classifiers into one strong classifier, while MLP is an
artificial neural network model with multi-layer structures,
which is more suitable for our dataset. Moreover, in the multi-
classification problem, we also conduct the comparisons with
the models based on Support Vector Machines (SVM) and
Naive Bayes (NB). The results of these models are relatively
poor than the above algorithms, which are thus not included
in Figure 5.
In addition, during the training process, several parameters

need to be manually set. Figure 6 shows the values of loss at
different epochs. We can observe that when the epoch is set
to 1,500, the loss gains the optimal performance. Similarly,
we adopt various validation tests to set other parameters in
our experiment. As a result, we set batch size as 64; embed-
ding size of Word2Vec is 128; hidden layer size of LSTM
is 128; attention dimension and sequence length are set as
100 and 400, respectively.

VOLUME 8, 2020 76589

H. Gao et al.: Autonomous Permission Recommendation

FIGURE 6. Value of loss.

C. EFFECTIVENESS OF RECOMMENDATIONS
To answer RQ3,we designed our approach into a new app tool
AutoPer+, and distributed it to participants in real world sce-
narios. The newly designed app is extended to show not only
a recommended permission decision (‘‘Allow’’, ‘‘Deny’’, and
‘‘Ask’’) with detailed explanations, but also a feedback inter-
face for users to audit and correct their decisions, as shown
in Figure 7.

FIGURE 7. The interface of AutoPer+.

Here is an example of app ‘‘inCollage’’, requesting access
to CAMERA permission. From Figure 7 (left), we can notice
that AutoPer+ allows ‘‘inCollage’’ to access CAMERA.
Moreover, AutoPer+ provides a comprehensive recommen-
dation explanation consisting of three main parts: (i) a series
of app-related details, e.g., the multi-functionalities of app,
and the purpose of the permission (indicated byQ(µ, v) = γ
in Section III-C4); (ii) the proportion of apps that request
certain permission in a set of similar apps (indicated by
Q̂(µ, kv) = τ in Section III-D6); and (iii) a straightforward
understanding of the correlation degree between the app and
the permissions, such as keywords notification (i.e., ‘‘Close’’,
‘‘Distant’’, and ‘‘Normal’’) and a progress bar-based design.

Besides, Figure 7 (right) displays a feedback interface where
users are prompted for reviewing and adjusting the previous
settings. In detail, the screen presents information about apps
that recently requested (i.e., WhatsApp, YouTube, and Face-
book), including when the permission requests occurred and
whether these permissions were granted.

We deployed AutoPer+ in 37 participants’ rooted Android
devices. Some of them (14/37) are the users who also partici-
pated in our previous work [13]. We recruited the participants
with Android 6.0 devices. They were asked to install the
AutoPer+ app and to use at least two apps for the study. After
two weeks, we collected their decisions concerning recom-
mended permissions and investigated the satisfaction degree
of the participants by filling a questionnaire online. The
questionnaire contains the following four questions: (i) do
you think the ‘‘Deny’’ recommendation protects your privacy,
(ii) do you think it is reasonable to recommend ‘‘Allow’’,
(iii) how do you think the interpretations of apps and permis-
sions help you to make decisions, and (iv) do you think the
feedbackmechanism is useful for your permission regulation.
Each question is rated by users from 1 (completely useless)
to 5 (very useful). Finally, all the questions are summarized
as an average score.

FIGURE 8. Distribution of scores.

The distribution of ratings is represented as a boxplot,
shown in Figure 8. The majority of users (31/37) present
positive opinions, with the score of more than or equal to 3.
Especially, 3 participants scored 5 points, whereas 2 users
scored less than 2 points. The results indicate that partici-
pants have quite different privacy concerns. To capture the
rationales of collected scores, we requested them to make
explanations about their scoring, where the participants that
scored more than 3 primarily stated that the tool matches
their needs or resolves their predicament when making deci-
sions; one participant that scored less than 2 points stated
that he wanted to make decisions by himself; the other one
stated that the permission recommendation is a waste of time.
Moreover, we also requested the 14 participants in our previ-
ous work [13]. They stated that they trusted AutoPer+ more,
not only because of the increased explanations of similar
apps, but also because of the tool’s feedback loopmechanism.
Overall, the majority of recommendations were accepted,

76590 VOLUME 8, 2020

H. Gao et al.: Autonomous Permission Recommendation

which indicates that the tool effectively recommends permis-
sions for users.

VI. DISCUSSION
A. OPTION ‘‘ASK’’
AutoPer+ aims to protect users’ privacy behaviors by
providing runtime-permission decisions. Inspired by prior
works [8], [9], [11], [22], users’ privacy preferences may
change under varying contexts (e.g., user’s location, permis-
sion’s request time, and the status of devices). Our work,
however, is based on static description analysis, rather than
relying on dynamic features. Hence, we additionally provide
an ‘‘Ask’’ interface without recommendations to mitigate this
limitation. Thus, while protecting users’ privacy (Decision
‘‘Deny’’) and data availability (Decision ‘‘Allow’’), we also
consider the impact of the environment on users’ behaviors
(Decision ‘‘Ask’’). Although we do not provide recommen-
dations on ‘‘Ask’’ mode, multiple explanations are presented
to prompt users to make decisions by themselves. From
the feedback of users in Section V-C, we can observe that
the option ‘‘Ask’’ is well-received by the participants. But
in the long term, dynamic analysis paired with static text
descriptions may be a better option.

B. EXPERIMENTAL COMPARISON
Existing research has explored Android permission recom-
mendation from two perspectives: users’ preferences and
security. For users, the effectiveness of a recommendation
system ultimately depends on the degree of user acceptance.
It is obvious that the research based on user preferences and
historical habits will perform a better result on user satisfac-
tion and acceptance. Thus, it is no need to make a comparison
with any previous work from user acceptance. Additionally,
the result of research focusing on security is simply either
‘‘yes’’ or ‘‘no’’. While in our work, due to the characteristics
of our test dataset and the consideration of the ‘‘Ask’’ option,
we perform three decisions. Although it is also not feasible to
make a quantitative comparison with these binary classifica-
tion models, we compare AutoPer+’s performance with our
previous work [13] on the same dataset, and build several
baseline approaches to verify the accuracy of the proposed
algorithms, which clearly demonstrate the effectiveness of
our approach.

C. SIMILAR-APP IDENTIFICATION
The reason why the coarse-grained category provided by the
Google Play store is not feasible to identify the functionality
and similar apps can be demonstrated as follows. On one
hand, to satisfy the diverse needs of users, an app usually
contains multiple functionalities, thus a specific category
in the Google Play store is hard to adequately represent
the functionalities of the app (i.e., Facebook). On the other
hand, the apps with similar functionality may be classified
into different categories. For instance, translation-oriented
apps, such as Microsoft Corporation and Google LLC, are

classified into categories of ‘‘business office’’ and ‘‘tool’’
respectively. Thus, it is unreachable to explore multiple
functionalities just relying on a coarse-grained category.
Similarly, a coarse-grained classification is not effective to
identify similar apps. In our work, based on the Level II apps
with a fine-grained category, we incorporate a deep learning
machine into similar-app identification, which serves as an
effective way to classify apps into fined-grained clusters.
Moreover, to train our model, both Level I and Level II
apps were collected from the Google Play store. Although
the training data is limited to the apps with ‘‘category’’ in
Google Play, AutoPer+ is generic to the appswith description
texts, even some app stores do not provide categories, since
our fine-grained classifier is a supervised model that takes the
app’s description as input.

VII. THREATS TO VALIDITY
Several threats may make impacts on the results of our study.
First, the original training data is not large enough to reli-
ably train an advancedmachine learning classificationmodel.
Although we adopt a semi-supervised model to alleviate
the deviation, a longer-term data collection method will be
considered for a more accurate recommendation. Second,
our evaluation for the recommender mainly comes from two
aspects: manual analysis and participants’ feedback. Due to
the empirical nature of the evaluation, it might have intro-
duced biases, as users’ decisions would be affected by many
factors, e.g., the limitations of permission understanding and
users’ privacy preference. However, such biases are common
and unavoidable in evaluating privacy tools for real scenarios.
For manual analysis, we reduce negative influence by syn-
thesizing the opinions of all three evaluation experts, where
a permission is decided by the most voted decision. Apart
from that, to compensate the participants’ bias, instead of
simply providing a decision, we also present extra explana-
tions for the decisions. Third, as discussed in Section III,
AutoPer+ focuses on the 24 ‘‘Dangerous’’ permissions
divided by the AOFU system. As a result, the ‘‘Normal’’
permissions will be granted by the system automatically.
Essentially, although these ‘‘Normal’’ permissions are con-
sidered low-risk permissions for user’s privacy, some of them
are related to sensitive resources to some extent, e.g., Internet-
related permissions. Hence, we plan to implement AuotPer+
for more data types, such as ACCESS_WIFI_STATE and
READ_HISTORY_BOOKMARKS. Last, in the current
training phase of our model, such asWord2Vec and BILSTM,
the parameters, e.g., dropout rate and epoch are set still
relying on traditional comparisons. We will carry out more
advanced parameter optimizing approaches in the future for
better classification performance.

VIII. RELATED WORK
The research on Android permission can be categorized into
three lines of work: permission rationales and privacy secu-
rity, permission requirements discovery, and learning-based
permission recommendation and prediction.

VOLUME 8, 2020 76591

H. Gao et al.: Autonomous Permission Recommendation

A. PERMISSION RATIONALES AND PRIVACY SECURITY
Prior research [2]–[4], [7] has shown the ineffectiveness of
AOI in protecting user privacy is raised by the lack of user
attention and comprehension. To bridge the gap between apps
and users, various works have attempted to study the prob-
lem of permission rationales. Some research discussed the
factors that affect users in making the installation decisions
[5], [23], [24] and explained how apps access to and share
private data to enhance the user experience [25], [26].
In particular, research [27] attempted to explore the primary
reason that text descriptions fail to prompt the use of sensitive
resources, which are useful in improving users’ cautiousness
in privacy protection. For AOFU prompts, Bonné et al. [12]
found the users’ security decisions in the runtime system
rely on various factors, e.g., app functionalities, app cate-
gories, and permission types. In addition, Liu et al. [28] con-
ducted the first study on runtime-permission-group rationales
to understand the patterns of permission-explaining behav-
iors by analyzing natural language rationales. Furthermore,
Scoccia et al. [29] conducted a large-scale empirical study to
investigate how users perceive the new run-time permission
system of Android by inspecting user reviews. They also
provided a set of insights to improve the Android run-time
permission system.

Moreover, permission has been widely used to deal with
security and privacy tasks, especially malicious application
detection. For instance, Wang et al. [30] explored the risk
induced by permission for detecting malicious apps. Sharma
andGupta [31] proposed a novel approach, RNPDroid, to cat-
egorize the risks into four levels, i.e., high, medium, low,
and none. Furthermore, Shrivastava andKumar [32] proposed
an algorithm that combines permission vectors to identify
benign and malware app permissions, and conducted a sys-
tematic literature survey on permission-based malware detec-
tion [33], which provide useful guidance for the malware and
benign permissions requirement.

Different from exploring the runtime-permission rationale
messages and malicious application detection, our work aims
to help users automatically regulate permission requests by
proposing a novel permission recommender.

B. PERMISSION REQUIREMENTS DISCOVERY
Existing research [34]–[36] has explored the space of per-
mission requirements discovery from the perspective of
app descriptions, which mainly focuses on the permission
over-privilege issue. Specifically, Pandita et al. [34] proposed
a framework, WHYPER, to perform semantic analysis to
app text descriptions using NLP techniques. However, the
scope of the WHYPER is limited to fixed vocabularies,
API documents, and synonyms of keywords. To address
this problem, Qu et al. [35] proposed AutoCog to extract
semantics from descriptions without using API documents.
Moreover, Gorla et al. [36] proposed the CHABADA frame-
work applying an unsupervised clustering algorithm to
extract text descriptions and identify API outliers, which

attempts to check implemented app behavior against adver-
tised app behavior.

All these efforts provide useful resolutions for permis-
sion requirements engineering. However, due to the devel-
opment of Android mechanism and the Internet, prior works
fail to achieve the desired privacy protection, where the
diverse expressions within text descriptions make the rig-
orous semantic analysis ineffective. Similar to prior works,
we also explore permission requirements from the perspec-
tive of app description. The difference is our work aims to
explore the relationship between permission and app as well
as similar apps by leveraging techniques of topic mining and
deep learning.

C. PERMISSION RECOMMENDATION
As for AOFU, machine learning has exhibited its great power
on building permission recommendation models [11], [22].
Various techniques for feature mining and learning have been
used to predict users’ preferences under contextual informa-
tion. Nissenbaum [37] proposed the theory of ‘‘contextual
integrity’’ suggesting that permission models should focus on
sensitive resources. As a follow-up work, Barth et al. [38]
attempted to systematize Nissenbaum’s theory and extend
the theory to smartphones. Based on prior works [37], [39],
Wijesekera et al. [8], [9] conducted a field of study to
explore how often the resources are accessed in practice and
how much a contextualized permission model could improve
dynamic permission granting. Moreover, they also performed
a study using machine learning to analyze and predict
user privacy decisions under contextual circumstances [22].
Closed to the work, Olejnik et al. [11] presented an advanced
permission mechanism, SmarPer, to match users’ privacy
preferences with their historical behaviors by using contex-
tual cues. Furthermore, Tasi et al. [10] designed TurtleGuard,
a novel contextually-aware permission manager, to help users
vary privacy preferences.

Existing studies increase the protection of contextual infor-
mation by proposing new permission models. However, these
learning-based permission recommendations require users’
historical decisions. In contrast, our work helps users make
decisions by mining existing app description, which is imple-
mented and evaluated in practical scenarios.

IX. CONCLUSION
In this paper, we proposed AutoPer+, an autonomous per-
mission recommendation model by reconciling app’s multi-
functionalities and privacy permission usage in similar apps.
The AutoPer+ contains three main modules: a <multi-topic,
permission> module for identifying the relationship between
app’s functionalities and requested permissions, an atten-
tive BILSTM module for classifying the similarity apps,
and a combination module for capturing the advantage of
utility and privacy. The results of extensive experiments
show that our tool achieves better performance in permis-
sion recommendation compared to conventional methods.
Furthermore, we also deployed our tool to the devices

76592 VOLUME 8, 2020

H. Gao et al.: Autonomous Permission Recommendation

of 37 participants in real scenarios. Instead of solely offering
multiple recommendations (‘‘Allow’’, ‘‘Deny’’, or ‘‘Ask’’),
a systematic explanation and a feedback mechanism are
also designed to assist users to make as well as audit per-
mission decisions. Moreover, the permission recommenda-
tions by AutoPer+ achieve considerable positive approvals
by participants, further illustrating the effectiveness of the
proposed approach. For future work, we plan to expand
AutoPer+ by introducing contextual analysis of a dynamic
recommendation.

ACKNOWLEDGMENT
(Hongcan Gao and Chenkai Guo contributed equally to this
work.)

REFERENCES
[1] J. Clement. Number of Available Applications in the Google Play

Store From December 2009 to Jun. 2019. Accessed: Jul. 3, 2019.
https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/

[2] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. A. Wagner,
‘‘Android permissions: User attention, comprehension, and behavior,’’ in
Proc. Symp. Usable Privacy Secur. (SOUPS), Washington, DC, USA,
Jul. 2012, p. 3.

[3] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. M. Sadeh, and
D. Wetherall, ‘‘A conundrum of permissions: Installing applications on
an Android smartphone,’’ in Proc. Financial Cryptogr. Data Secur. FC
Workshops USEC WECSR, Kralendijk, Bonaire, Mar. 2012, pp. 68–79.

[4] X.Wei, L. Gomez, I. Neamtiu, andM. Faloutsos, ‘‘Permission evolution in
the Android ecosystem,’’ in Proc. 28th Annu. Comput. Secur. Appl. Conf.
(ACSAC), Orlando, FL, USA, 2012, pp. 31–40.

[5] C. Gibler, J. Crussell, J. Erickson, and H. Chen, ‘‘Androidleaks: Automat-
ically detecting potential privacy leaks in Android applications on a large
scale,’’ inProc. 5th Int. Conf. Trust Trustworthy Comput. (TRUST), Vienna,
Austria, Jun. 2012, pp. 291–307.

[6] S. Biswas, W. Haipeng, and J. Rashid, ‘‘Android permissions manage-
ment at app installing,’’ Int. J. Secur. Appl., vol. 10, no. 3, pp. 223–232,
Mar. 2016.

[7] S. Biswas, K. Sharif, F. Li, and Y. Liu, ‘‘3P framework: Customizable per-
mission architecture for mobile applications,’’ in Proc. Int. Conf. Wireless
Algorithms, Syst., Appl. Springer, 2017, pp. 445–456.

[8] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. A. Wagner, and
K. Beznosov, ‘‘Android permissions remystified: A field study on contex-
tual integrity,’’ inProc. 24th USENIX Secur. Symp.,Washington, DC, USA,
vol. 15, Aug. 2015, pp. 499–514.

[9] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S. Egelman, D. Wagner,
and K. Beznosov, ‘‘The feasibility of dynamically granted permissions:
Aligning mobile privacy with user preferences,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), San Jose, CA, USA, May 2017, pp. 1077–1093.

[10] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes, S. Egelman, D. A. Wagner,
N. Good, and J. Chen, ‘‘Turtle guard: Helping Android users apply con-
textual privacy preferences,’’ in Proc. 13th Symp. Usable Privacy Secur.
(SOUPS), Santa Clara, CA, USA, Jul. 2017, pp. 145–162.

[11] K. Olejnik, I. Dacosta, J. S. Machado, K. Huguenin, M. E. Khan,
and J.-P. Hubaux, ‘‘SmarPer: Context-aware and automatic runtime-
permissions for mobile devices,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
San Jose, CA, USA, May 2017, pp. 1058–1076.

[12] B. Bonné, S. T. Peddinti, I. Bilogrevic, and N. Taft, ‘‘Exploring deci-
sion making with Android’s runtime permission dialogs using in-context
surveys,’’ in Proc. 13th Symp. Usable Privacy Secur. (SOUPS), 2017,
pp. 195–210.

[13] H. Gao, C. Guo, Y. Wu, N. Dong, X. Hou, S. Xu, and J. Xu, ‘‘AutoPer:
Automatic recommender for runtime-permission in Android applications,’’
in Proc. IEEE 43rd Annu. Comput. Softw. Appl. Conf. (COMPSAC),
Hlwaukee, WI, USA, Jul. 2019, pp. 107–116.

[14] M. Lui and T. Baldwin, ‘‘langid. py: An off-the-shelf language identifica-
tion tool,’’ in Proc. ACL Syst. Demonstrations, 2012, pp. 25–30.

[15] O. Levy and Y. Goldberg, ‘‘Neural word embedding as implicit matrix fac-
torization,’’ in Proc. Adv. Neural Inf. Process. Syst. Annu. Conf., Montreal,
QC, Canada, Dec. 2014, pp. 2177–2185.

[16] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ in Proc. 1st Int. Conf. Learn.
Represent. (ICLR), Scottsdale, AZ, USA, May 2013.

[18] Y. Goldberg and O. Levy, ‘‘Word2vec explained: Deriving Mikolov et al.’s
negative-sampling word-embedding method,’’ 2014, arXiv:1402.3722.
[Online]. Available: http://arxiv.org/abs/1402.3722

[19] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[20] A. Graves and J. Schmidhuber, ‘‘Framewise phoneme classification with
bidirectional LSTMand other neural network architectures,’’Neural Netw.,
vol. 18, nos. 5–6, pp. 602–610, Jul. 2005.

[21] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, ‘‘Hierarchical
attention networks for document classification,’’ in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol., 2016,
pp. 1480–1489.

[22] P. Wijesekera, J. Reardon, I. Reyes, L. Tsai, J.-W. Chen, N. Good,
D. Wagner, K. Beznosov, and S. Egelman, ‘‘Contextualizing privacy deci-
sions for better prediction (and protection),’’ in Proc. CHI Conf. Hum.
Factors Comput. Syst. (CHI), Montreal, QC, Canada, 2018, p. 268.

[23] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, ‘‘Android taint flow
analysis for app sets,’’ in Proc. 3rd ACM SIGPLAN Int. Workshop State Art
Java Program Anal. (SOAP), Edinburgh, U.K., Jun. 2014, pp. 5:1–5:6.

[24] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. D. McDaniel, and
A. Sheth, ‘‘TaintDroid: An information-flow tracking system for realtime
privacy monitoring on smartphones,’’ in Proc. 9th USENIX Symp. Operat-
ing Syst. Design Implement. (OSDI), Vancouver, BC, Canada, Oct. 2010,
pp. 393–407.

[25] M.Harbach,M.Hettig, S.Weber, andM. Smith, ‘‘Using personal examples
to improve risk communication for security & privacy decisions,’’ in
Proc. Conf. Hum. Factors Comput. Syst. (CHI), Toronto, ON, Canada,
Apr./May 2014, pp. 2647–2656.

[26] P. G. Kelley, L. F. Cranor, and N. M. Sadeh, ‘‘Privacy as part of the app
decision-making process,’’ in Proc. ACM SIGCHI Conf. Hum. Factors
Comput. Syst. (CHI), Paris, France, Apr./May 2013, pp. 3393–3402.

[27] T. Watanabe, M. Akiyama, T. Sakai, and T. Mori, ‘‘Understanding the
inconsistencies between text descriptions and the use of privacy-sensitive
resources of mobile apps,’’ in Proc. 11th Symp. Usable Privacy Secur.
(SOUPS), Ottawa, Canada, Jul. 2015, pp. 241–255.

[28] X. Liu, Y. Leng, W. Yang, W. Wang, C. Zhai, and T. Xie, ‘‘A large-scale
empirical study on Android runtime-permission rationale messages,’’ in
Proc. IEEE Symp. Vis. Lang. Hum.-Centric Comput. (VL/HCC), Lisbon,
Portugal, Oct. 2018, pp. 137–146.

[29] G. L. Scoccia, S. Ruberto, I. Malavolta, M. Autili, and P. Inverardi, ‘‘An
investigation into Android run-time permissions from the end users’ per-
spective,’’ in Proc. 5th Int. Conf. Mobile Softw. Eng. Syst. (MOBILESoft),
2018, pp. 45–55.

[30] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, ‘‘Explor-
ing permission-induced risk in Android applications for malicious appli-
cation detection,’’ IEEE Trans. Inf. Forensics Security, vol. 9, no. 11,
pp. 1869–1882, Nov. 2014.

[31] K. Sharma andB. B. Gupta, ‘‘Mitigation and risk factor analysis of Android
applications,’’ Comput. Electr. Eng., vol. 71, pp. 416–430, Oct. 2018.

[32] G. Shrivastava and P. Kumar, ‘‘Android application behavioural analysis
for data leakage,’’ Expert Syst., to be published.

[33] G. Shrivastava, P. Kumar, D. Gupta, and J. J. Rodrigues, ‘‘Privacy issues
of Android application permissions: A literature review,’’ Trans. Emerg.
Telecommun. Technol., to be published.

[34] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, ‘‘WHYPER: Towards
automating risk assessment of mobile applications,’’ in Proc. 22th USENIX
Secur. Symp., Washington, DC, USA, Aug. 2013, pp. 527–542.

[35] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, ‘‘AutoCog:
Measuring the description-to-permission fidelity in Android applications,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), Scottsdale,
AZ, USA, Nov. 2014, pp. 1354–1365.

[36] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, ‘‘Checking app behavior
against app descriptions,’’ in Proc. 36th Int. Conf. Softw. Eng. (ICSE),
Hyderabad, India, May/Jun. 2014, pp. 1025–1035.

VOLUME 8, 2020 76593

H. Gao et al.: Autonomous Permission Recommendation

[37] H. Nissenbaum, ‘‘Privacy as contextual integrity,’’ Wash. L. Rev., vol. 79,
p. 119, 2004.

[38] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum, ‘‘Privacy and
contextual integrity: Framework and applications,’’ in Proc. IEEE Symp.
Secur. Privacy (S&P), Berkeley, CA, USA, May 2006, pp. 184–198.

[39] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. A. Wagner, ‘‘How
to ask for permission,’’ in Proc. 7th USENIX Workshop Hot Topics Secur.
(HotSec), Bellevue, WA, USA, Aug. 2012, p. 7.

HONGCAN GAO received the M.S. degree from
the Hebei University of Technology, in 2017. She
is currently pursuing the Ph.D. degree with the
College of Computer Science, Nankai University.
Her research interests include software analysis on
mobile apps and software security.

CHENKAI GUO (Member, IEEE) received the
Ph.D. degree from Nankai University, in 2017.
He is currently an Assistant Professor with the
College of Computer Science, Nankai University.
His research interests include software analysis on
mobile apps, information security, and intelligent
software engineering.

DENGRONG HUANG (Member, IEEE) received
the B.E. degree from Nankai University, in 2017.
She is currently pursuing the master’s degree with
the College of Computer Science, Nankai Univer-
sity. Her research interests include mobile apps
analysis and intelligent software engineering.

XIAOLEI HOU received the B.E. degree from the
Hebei University of Technology, in 2018. He is
currently pursuing the master’s degree with the
College of Computer Science, Nankai University.
His research interests include recommendation
systems and machine learning.

YANFENG WU received the B.E. degree from
Nankai University, in 2017. He is currently pursu-
ing the Ph.D. degree with the College of Artificial
Intelligence, Nankai University. His research inter-
ests include deep learning, software engineering,
and speaker recognition.

JING XU (Member, IEEE) received the Ph.D.
degree from Nankai University, in 2003. She
is currently a Professor with the College of
Artificial Intelligence, Nankai University. Her cur-
rent research interests include intelligent soft-
ware engineering and medical data analysis. She
received the Second Prize with the Tianjin Sci-
ence and Technology Progress Award, in 2017
and 2018.

ZHEN HE received the B.E. degree from Nan-
tong University, in 2018. He is currently pursuing
the master’s degree with the College of Artificial
Intelligence, Nankai University. His main research
interests include video processing and machine
learning.

GUANGDONG BAI (Member, IEEE) received the
bachelor’s and master’s degrees in computing sci-
ence from Peking University, China, in 2008 and
2011, respectively, and the Ph.D. degree in com-
puting science from theNational University of Sin-
gapore, in 2015. He is currently a Senior Lecturer
with The University of Queensland. His research
interests include cyber security, software engineer-
ing, and machine learning.

76594 VOLUME 8, 2020

