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ABSTRACT In this paper, we generated intelligent self-driving policies that minimize the injury severity
in unexpected traffic signal violation scenarios at an intersection using the deep reinforcement learning.
We provided guidance on reward engineering in terms of the multiplicity of objective function. We used
a deep deterministic policy gradient method in the simulated environment to train self-driving agents.
We designed two agents, one with a single-objective reward function of collision avoidance and the other
with a multi-objective reward function of both collision avoidance and goal-approaching. We evaluated their
performances by comparing the percentages of collision avoidance and the average injury severity against
those of human drivers and an autonomous emergency braking (AEB) system. The percentage of collision
avoidance of our agents were 78.89% higher than human drivers and 84.70% higher than the AEB system.
The average injury severity score of our agents were only 8.92% of human drivers and 6.25% of the AEB
system.

INDEX TERMS Autonomous vehicles, collision avoidance, intelligent vehicles, injury severity,
multi-objective optimization, reinforcement learning.

I. INTRODUCTION
A. MOTIVATION
According to the National Highway Traffic Safety Admin-
istration (NHTSA), the main cause of 94 percent of the
critical pre-crash event is attributed to drivers [1]. Among the
driver-related reasons, recognition error and decision error
accounts for 41 and 33 percent respectively. These statistics
implies that the ability of drivers to recognize the driving sit-
uation and to decide the optimal driving control is imperfect.
Drivers cannot fully recognize risky situations, since they are
not able to consider the frontal, lateral, and rear situations
simultaneously due to their physical limitation. Moreover,
in risky situations caused by unexpected behaviors of arbi-
trary vehicle, it is extremely difficult for the driver to precisely
recognize the situation and immediately decide to act in a way
of avoiding the collision or minimizing the damage on his or
her body. These unexpected collision scenarios include, for
example, a case where a risky vehicle runs a red light dashing
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from the lateral direction while the ego-vehicle is straightly
crossing the intersection [2].

Motivated by aforementioned needs, we focus on making
our vehicle self-drive to avoid the collision or minimize the
injury severity in 3 unexpected traffic signal violation sce-
narios at an intersection, described in Fig. 1. Our suggested
scenarios occur about 254,000 times economically costing
about 6,627 million dollars annually [2], which can be greatly
reduced with a viable solution to avoid them.

B. RELATED WORKS
Many technologies have been investigated for the risk avoid-
ance in driving situations. An Autonomous Emergency Brak-
ing (AEB) system [3] is a system that recognizes the driving
situation using cameras and a laser scanner and autonomously
brakes the vehicle when another vehicle is detected within
the range of risk. However, an AEB system cannot take
suitable actions other than just braking the vehicle in situ-
ations not predefined in advance. In [4], they introduced a
cooperative collision avoidance (CCA) scheme for intelligent
transport systems presenting a cluster- based organization
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FIGURE 1. Visualizations of 3 scenarios considered in this paper. In (a) and (b), the risky vehicle runs a red light from two lateral
directions when the ego-vehicle start to go straight up at a green light. In (c), the risky vehicle runs a red light to make a left turn
from lateral directions when the ego-vehicle start to go straight up at a green light.

of the target vehicles. In [5], they employed a cooperative
autonomous driving system where a vehicle overtakes the
one in front based on collective perception. A path plan-
ning and tracking framework is presented to maintain a
collision-free path for autonomous vehicles in [6]. Various
techniques handling the intersection collision avoidance are
listed in [7]. Besides, there are still many Advanced Driver
Assistance Systems (ADAS) like the pedestrian detection [8],
autonomous parking systems and Tesla’s Autopilot. In [9],
a driving assistant companion system that provides drivers
with useful information using an LSTM network is proposed.
In [10], they propose a mixed-integer linear program-based
urban trafficmanagement scheme for an all connected vehicle
environment at an intersection scenario. These studies usu-
ally assume a predefined or simplified situation and are not
practically applicable in high dimensional and changeable
state space like our problem. Therefore, investigations on
the collision avoidance strategy considering the injury sever-
ity are scant. Our study uses a deep reinforcement learning
method to solve unexpected traffic signal violation scenarios,
which have never been attempted to be solved with deep
reinforcement learning methods.

Reinforcement learning methods have been used in vari-
ous tasks regarding autonomous driving [11]–[16]. In [11],
a deep deterministic policy gradient method [12] was used
to make a mapless motion planner taking 10-dimensional
range findings and the goal position as the state. In [13],
the asynchronous actor-critic method [14] was used to make
an end-to-end driving agent using only the RGB image from
a forward facing camera. In [15], a deep Q-network [17] was
used to make an efficient strategy to navigate safely through
unsignaled intersections. In [16], [18], [19], and [20], a deep
Q-network and a deep deterministic policy gradient method
were used for discrete and continuous actions respectively for
the autonomousmaneuvering in an open source car simulator.

C. CONTRIBUTIONS
The main contributions of this paper are as follows. First,
using the deep reinforcement learning with only Light Detec-
tion and Ranging (LIDAR) observations, we generate intel-
ligent self-driving policies that can avoid the collision or

minimize the injury severity in unexpected traffic signal vio-
lation scenarios at an intersection. Next, we provide guidance
on reward engineering in terms of the multiplicity of objec-
tive function, i.e., collision avoidance with or without goal-
approaching. Finally, we consider the injury severity score to
minimize the injury on the driver in case the agent cannot
avoid the collision.

As a result our agents show 78.89% higher percentage of
collision avoidance than human drivers and 84.70% higher
than the AEB system. The average injury severity score of
our agents are only 8.92% of human drivers and 6.25% of the
AEB.

Only single-channel Light Detection andRanging (LIDAR)
observations were used as sensory inputs to recognize the
surrounding situation. This constraint of sensor usage makes
our work challenging comparing to the fact that most of the
ADAS technologies require multiple types of high-cost sen-
sors (e.g., multi-channel LIDAR, camera, and radar). Experi-
ments in this paper shows that our agents performmuch better
than human drivers and the AEB system. We design two
agents, one with a single-objective reward function and the
other with a multi-objective reward function, and compared
their performance and driving behavior. For minimizing the
injury on the driver, we refer to [21] which studies a model
that estimates the injury severity score in the two-vehicle
crash using the Newtonian mechanics and generalized linear
regression.

The organization of this paper is as follows. In Section II,
we introduce backgrounds of reinforcement learning and a
deep deterministic policy gradients method. Our problem in
this paper is defined and the method to solve it is described.
Experimental and comparison studies against human drivers
and an AEB system are illustrated in Section III. Finally,
results and conclusions are presented in Sections IV and V.

II. APPROACH
A. REINFORCEMENT LEARNING
In the reinforcement learning, an agent observes its state st
and takes an action at decided by the policy π . The agent
moves to the next state st+1 getting a reward rt . A reinforce-
ment learning problem is normally set as a Markov Decision
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FIGURE 2. The actor-critic architecture. The policy function structure is
known as the actor, and the value function structure is referred to as the
critic. The actor produces an action given the current state of the
environment, and the critic produces a temporal difference (TD) error
signal given the state and reward.

Process (MDP) 〈S,A,P,R, γ 〉, where S is a finite set of
states, A is a finite set of actions, P is a state transition proba-
bilitymatrix,R is a reward function, and γ is a discount factor.
MDP assumes the Markov property that the probability of
moving to a new state is independent of all states and actions
except for the current state and the previous action. The state
transition probability defines the transition probability from
all states to all successor states, the reward function yields a
reward for a given time step, and the discount factor discounts
future rewards preventing the total reward from going to
infinity. The reinforcement learning agent learns to decide
actions that maximize the expected return E[Rt ], defined in
the following equation.

E [Rt ] = E

[
T∑
k=0

γ krt+k

]
(1)

We use a deep deterministic policy gradients method for
this optimization problem, which will be explained in the
following section.

B. DEEP DETERMINISTIC POLICY GRADIENTS METHOD
We chose the deep reinforcement learning method to solve
our problem. Recently deep reinforcement learning has been
steadily improved. In [17], a deep neural network is used for
function estimation of value-based reinforcement learning.
This method is applicable only to tasks with discrete action
space. To solve a continuous control task such as driving, [12]
proposed a deep deterministic policy gradient method, which
uses an actor-critic method shown in Fig. 2 to represent
policy µ(s|θµ) and value Q(s, a|θQ) using deep neural net-
works. A replay buffer and target networks are introduced
to solve the instability of learning caused by using deep
neural networks. A replay buffer makes the training sam-
ple independently and identically distributed, which makes
the algorithm much more data-efficient. The target network
makes the parameters changemore slowly. The critic network
is trained using the following Bellman equation,

Qµ(st , at ) = Ert ,st+1∼E [r(st , at )+ γQ
µ(st+1, µ(st+1))],

(2)

where in the algorithm a random minibatch of N transitions
(si, ai, ri, si+1) is sampled from a replay buffer and set as (3).

yi = ri + γQ′(si+1, µ′(si+1|θµ
′

)|θQ
′

) (3)

The following policy gradient is used for updating the actor.

∇θµJ = Est∼ρβ [∇θµQ(s, a|θ
Q)|s=st ,a=µ(st |θµ)] (4)

In the algorithm the sampled policy gradient is calculated
from the sampled minibatch as

∇θµJ ≈
1
N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θ
µ)|si (5)

Since a deep deterministic policy gradient method is a
proper deep reinforcement learning method for tasks requir-
ing continuous action spaces, we applied this method to our
problem to output continuous control action for the vehicle;
desired speed and steering angle. The actor-critic network
model is designed as described in Fig. 3. The actor network
takes the state as input and returns the control action, and the
critic network takes the state and the corresponding control
action in that state as input and returns the value of the chosen
action.

C. PROBLEM STATEMENT
We assume 3 scenarios of traffic signal violation accidents
where the ego-vehicle is supposed to go straight through
an intersection and a risky vehicle unexpectedly runs a
red light in 3 different directions as visualized in Fig. 1.
In the first and second scenario, the risky vehicle runs a
red light from two lateral directions when the ego-vehicle
start to go straight at a green light. In the third scenario,
the risky vehicle runs a red light to make a left turn from
lateral direction when the ego-vehicle start to go straight at
a green light. These scenarios are adopted from the most
frequent light-vehicle pre-crash scenarios reported by the
NHTSA and occur about 254,000 times, economically cost-
ing about 6,627 million dollars annually [2]. Our prob-
lem is to make our vehicle self-drive to avoid the collision
or minimize the injury severity in 3 described scenarios
using a deep reinforcement learning method. The overall
flowchart of solving our problem in this paper is shown
in Fig. 4.

D. ENVIRONMENT FOR REINFORCEMENT LEARNING
We built up the reinforcement learning environment using
a virtual robot experimentation platform (V-REP, Cop-
pelia Robotics, Zurich, Switzerland) [22]. In this simulator,
the ego-vehicle is equipped with LIDAR sensor which can
simulate 36 LIDAR data around 360 degree range to detect
surrounding vehicles. The desired vehicle speed vt and steer-
ing angle αt at timestep t are calculated by the policy network
as the action of the agent. The schematic for the controller
of the vehicle motion is described in Fig. 5. From the action
(vt , αt ), the desired angular velocity of the wheel, ωwheelref , and
the desired angle of left and right wheel from straight ahead,
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FIGURE 3. Actor-Critic model used in (a) goal-unaware agent and (b) goal-aware agent. The goal-unaware
agent takes 4 sequences of 36 simulated LIDAR data and the action at the previous time step as the state to
understand the surrounding situation. The goal-aware agent additionally takes the goal position as the state.(

α
left
ref , α

right
ref

)
, are calculated from the vehicle kinematics

of following equations, which is known as the Ackermann
steering model in Fig. 6.

ωwheelref =
vt

rwheel
(6)

α
left
ref = arctan

[
L

−D+ L/ tanαt

]
(7)

α
right
ref = arctan

[
L

D+ L/ tanαt

]
, (8)

where L denotes the wheel base of the vehicle, D denotes
the distance between the center line and the wheel, and rwheel
denotes the radius of the wheel. These reference values are
sent to the ego-vehicle and controlled by internal closed-loop
controllers of the simulator. We set the ego-vehicle’s goal on
the position across the intersection, described in Fig. 11(b).
The position of this goal will be chosen to be used or not
used as state inputs for the performance comparison. In the
following section, the reinforcement learning environments
for the agent considering goal and the agent not considering
goal will be described.

FIGURE 4. The overall flowchart of solving our problem. The API
communicates with the simulated environment to observe sensory data
and send control commands. Deep reinforcement learning algorithm
receive this observation and compute the action while training the actor
and critic networks.

1) GOAL-UNAWARE AGENT
The goal-unaware agent takes 4 sequences of 36 simulated
LIDAR data and the action chosen at the previous time step as
state inputs. It is trained to output an action that minimizes the
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FIGURE 5. The schematic for the controller of the vehicle motion. Reference values calculated from the vehicle kinematics are sent to the
ego-vehicle and controlled by internal closed-loop controllers of the simulator.

FIGURE 6. A graphical description of the Ackermann steering model. L
denotes the wheel base of the vehicle and D denotes the distance
between the center line and the wheel. From the geometry we can
calculate the desired angle of left and right wheel from straight ahead,(
αleft

ref , α
right
ref

)
, given the desired steering angle, αt .

injury severity score of the crash. In each scenario one risky
vehicle and one ego-vehicle are involved. At the beginning
of each episode, the agent takes decent amount of simula-
tion steps of pre-learning action to generate an impending
collision situation. Each episode starts as the risky vehicle
runs a red light with a speed of 60km/h. The ego-vehicle then
accelerates forward watching the green light ahead. From the
moment when it is 1 second before collision, the agent starts
making decision. This procedure is visualized in Fig. 7. The
type of scenario, the lane of ego-vehicle and risky vehicle,
and the existence of neutral vehicles are randomized in every
episode for the robustness against various unseen situations,
as described in Fig. 8.

Now we define the reward function for minimizing the
injury severity of the crash. To this end we need to estimate
the injury severity score of the crash in our simulated environ-
ment. Sobhani et al. [21] studied a model that estimates the
injury severity score in the two-vehicle crash using the New-
tonian mechanics and generalized linear regression. Using
this model, we can approximate the injury severity score in
our simulated environment by observing the speed change
between before and after the crash and the area of most

significant damage. The reward function is defined in (9),

r =

{
0 if not crash
−f (1V ,A) if crash

(9)

where f is the linear regressionmodel in [21] fitted to estimate
the injury severity score (ISS) in the two-vehicle crash given
the speed change before and after the collision, 1V , and the
area of most significant damage, A. We will explain this ISS
estimation model in more detail in section 11.

2) GOAL-AWARE AGENT
In addition to the goal-unaware agent in 1), we train another
agent which is aware of the location of the goal across the
intersection. By taking additionally the distance and angle
to the goal with respect to the ego-vehicle as state inputs,
the agent is expected to learn how to drive into the goal while
minimizing the injury severity of the crash.

The reward function for this goal-aware agent is defined
in (10),

r =

{
dt−1 − dt if not crash
−f (1V ,A) if crash

(10)

where dt denotes the distance to the goal at the time
step t . Plus to the reward defined in the goal-unaware agent,
the goal-aware agent obtains additional reward as much as the
distance it approached to the goal.

E. ESTIMATION OF INJURY SEVERITY SCORE
As mentioned in section II-D.1, we use the model from [21]
that estimates the injury severity score in the two-vehicle
crash using theNewtonianmechanics and a generalized linear
regression model. They first identify factors contributing to
the speed change 1Vs of a subject vehicle using the law of
conservation ofmomentum. ALog-Gamma regressionmodel
is fitted to estimate 1Vs of the subject vehicle based on the
identified crash characteristics. Then another Log-Gamma
regression model is fitted to estimate the Injury Severity
Score (ISS) of the crash based on the estimated1Vs, the area
of most significant damageA, gender and age of the occupant,
and the presence of airbag and seat belt. Since we can directly
read the speed change 1Vs from our simulated environment,
we used only the ISS model. For the simplicity, we fixed all
factors other than the speed change1Vs and the area of most
significant damage A. The fitted ISS model is

ISS = exp[2.011× 10−7 × (0.5M1V 2)+ α] (11)
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FIGURE 7. Visualization of procedure of every episode. At the beginning of each episode, the agent takes decent amount of simulation steps of
pre-learning action to generate an impending collision situation. From the moment when it is 1 second before collision, the agent starts making
decision.

FIGURE 8. Visualization of all possible positions and paths of vehicles.
Type of Scenario, position of appearance and paths of ego, risky and
neutral vehicles are randomized at the beginning of every episode for
obtaining robustness against various unseen situations.

where M is the mass of the vehicle, which is fixed at 1,500kg,
and α is the fitted parameter related to the area of significant
damage, which is listed in the Table 1.

F. STATE SPACE REPRESENTATION
As explained in Section II-D, 4 sequences of 36 simulated
LIDAR data enter the actor network and the critic network
as a part of state inputs. Unlike the other low-dimensional

TABLE 1. Table of α value according to the area of most significant
damage. The 3 types of area listed are described in Fig. 9.

FIGURE 9. The area of significant damage is classified to 3 levels; near
and far side to the driver and rear side of a vehicle.

state inputs like the previous action at−1 and the goal position,
this high-dimensional LIDAR data contains spatio-temporal
features; it has depth data along 36 angle indices spatially,
stacked along 4 temporal sequences. For extracting the spatio-
temporal features implicated in this high-dimensional LIDAR
data, we used 1-D convolution layers as described in Fig. 3.
This spatio-temporal feature extraction technique is neces-
sary because the surrounding situation rapidly changes in our
problem and our agent has to deal with it.

III. EXPERIMENT
In this section, we first train two agents (goal-unaware agent
and goal-aware agent) as described in the previous section
using a deep deterministic policy gradient method for the
three scenarios and compare their performance against human
drivers and an autonomous emergency braking system. In the
following we describe the experiment apparatus for human
drivers and an autonomous emergency braking system and
study the results with statistical analysis.
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TABLE 2. Results of experiment. 30 trials were made for each scenario per each approach.

FIGURE 10. The experimental apparatus for human driver. A human
driver can manipulate the steering wheel, gas pedal, and brake pedal and
is available with the front, left and right view through 3 displays.

A. HUMAN DRIVERS
The experiment apparatus for human drivers is described
in Fig. 10. A human driver can manipulate the steering wheel,
gas pedal, and brake pedal and is available with the front,
left and right view through 3 displays. Before experiment
each subject is allowed to freely drive a simulated vehicle
in an empty driveway for 10 minutes to get familiar with
the manipulation of our experiment apparatus. Each subject
is made to drive across one normal intersection without any
risky vehicle and in the second intersection after seeing the
green light encounters one of the three risky scenarios. Since
we deal with unexpected collision scenarios, subjects are not
informed of the risky situation in advance. For each scenario,
the injury severity scores of 30 subjects are recorded.

B. AUTONOMOUS EMERGENCY BRAKING SYSTEM
Various vehicle manufacturers improve the safety of their
vehicle by applying Autonomous Emergency Braking (AEB)
systems. An AEB system automatically apply braking to the
vehicle when a potential collision is detected by sensors.
We implement a simple AEB system in our experimental
simulator where the ego-vehicle is controlled to take a brak-
ing action when it detects an object in front of itself within
3 meters. Here we assume our problem is a stationary low

TABLE 3. Results of one-way ANOVA.

speed scenario referring to [23], where the ego-vehicle’s
speed is between 10km/h to 50km/h before the accident. Then
we evaluate its performance in our offered scenarios.

C. EVALUATION METRICS
We evaluate the performance of each method using following
metrics in our experiment.
• Avoidance percentage: the percentage of trials where the
ego-vehicle successfully avoids the rushing of the risky
vehicle without any subsequent collision with neutral
vehicles.

• Average injury score: the average injury severity score
recorded throughout the experiment.

IV. RESULTS
Table 2 shows the results of experiment. The two reinforce-
ment learning agents of ours outperformed the human driver
and the AEB system in both the percentage of collision avoid-
ance and the average injury score. The one-way ANOVA
is conducted to see whether the differences of performance
between the comparison groups are statistically significant.
We had the p-values of the difference of the mean between
the goal-unaware agent, the goal-aware agent, human drivers,
and the AEB system shown in Table 3. The result shows
that our two agents outperformed both human drivers and the
AEB system in avoiding unexpected collisions by a statis-
tically significant gap. Most human drivers had difficulties
in even responding to the rush of risky vehicle and had
themselves injured as shown in Fig. 11c. Although the AEB
system succeeded in avoiding the risky vehicle in most of
the experiment, it was not able to avoid subsequent acci-
dents, for example a rear-end collision with a rear vehicle,
as shown in Fig. 11d. AEB system can only consider the
frontal distance and stop, which make the system vulnerable
to accidents coming from its rear or lateral side.
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FIGURE 11. 6 sequential pictures showing the behavior of the three comparison group, (a) Goal-unaware agent, (b) Goal-aware agent, and
(c) Autonomous Emergency Braking system in scenario 1. The black vehicle is the ego-vehicle and the red vehicle dashing from the right side is the
risky vehicle.

As for the two reinforcement learning agents of ours,
both the goal-unaware agent and the goal-aware agent avoid
the collision with the risky vehicle in most time. After the
first avoidance against the risky vehicle, however, the goal-
unaware agent often failed to avoid the subsequent accidents
from the rear and lateral side as shown in Fig. 11a, while
the goal-aware agent tended to drive forward avoiding the
subsequent accidents until the end of the episodes as shown
in Fig. 11b. We discuss some insight on these results of our
two agents in the following.

The goal-unaware agent is trained to optimize a single-
task problem, which minimizes the injury severity of the ego-
vehicle. On the other hand, the goal-aware agent is trained
to optimize a multi-task problem, in which the agent has to

consider both minimizing the injury severity and approaching
to the goal (driving across the intersection). Our reinforce-
ment learning environment can be considered as a particu-
lar environment in which general traffic rules are applied.
Vehicles other than ego-vehicle and the risky vehicle keep
the traffic signal and drive straight in the middle of their
lanes. Indeed, the difference of performance between the
goal-unaware agent and the goal-aware agent may come from
whether or not the ego-vehicle avoids the subsequent acci-
dent against the other neutral vehicles. Once the ego-vehicle
avoids the collision against the risky vehicle, the situation
becomes just normal driving situation, where every vehicle
is supposed to abide by the traffic rules. The goal-aware
agent is trained considering this intrinsic objective of driving,
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which is designed as the goal-approaching reward in (3) in our
case. In the other hand, the goal-unaware agent is ignorant of
this intrinsic rule of driving and trained to optimize only a
single task of minimizing the injury severity, which could be
a reason for underperforming than the goal-aware agent.

V. CONCLUSION
We synthesized the self-driving policy that minimizes the
injury severity when unexpected traffic signal violation acci-
dents occur at an intersection. We showed that our agents out-
perform both human drivers and the autonomous emergency
braking system in the percentage of collision avoidance and
the average injury severity by statistically significant gap.
We also showed that the agent trained with the goal infor-
mation performed slightly better and showed more desirable
driving behaviors after the collision avoidance than the agent
trained without the goal information.

However, there are limitations that, for example,
we couldn’t consider a lane detection since we used only
LiDAR. To improve from these limitations, our future work
can consider self-driving policy using the visual sensory
input, which is more challenging task since it is in much
higher dimensional state space. Some other state-of-the-art
deep reinforcement learning method like the A3C might be
used in that future work.
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