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ABSTRACT Nowadays, huge amounts of data have been captured along with the day-to-day operation
of assets including railway systems. Hence, we have come to the era of big data. The utilization of big
data technologies for asset condition information management is becoming indispensable for improving
asset management decision making. The vital information such as precursor information collected on failure
modes and knowledge that may be available for analysis is hidden within the large extent of data. There
are analysis tools incorporated with techniques such as multiple regression analysis and machine learning
that are facilitated by the availability of big data. Therefore, the utilization of big data technologies for asset
condition information management is becoming indispensable for improving asset management decision
making. This paper provides a review of the requirements and challenges for big data analytics applications
to railway asset management. The review focuses on railway asset data collection, data management, data
applications with the implementation of Blockchain technology as well as big data analytics technologies.
The need for, and the importance of big data analytics in railway asset management; and the requirement for
the asset condition data collection in the railway industry are highlighted. Research challenges in railway
asset management via application of big data analytics are identified and the future research directions are

presented.

INDEX TERMS Big data analytics, asset management, railway, data management, blockchain.

I. INTRODUCTION

The term of ‘Big Data’ was coined by a few pioneer
researchers and scientists in later 1990s ([1]-[3]) since the
first proposal of World Wide Web (WWW) was invented
by Berners-Lee in 1989 [4] and its wide application started
in 1993 [5]. Since then, the global data volume has been
growing extremely fast year by year. ‘Big Data’ refers to
“the explosion in the quantity (and sometimes, quality) of
available and potentially relevant data, largely due to the
result of recent and unprecedented advancements in data
recording and storage technology” [6]. With the advance-
ment of technologies, increasing numbers of sensors have
been implemented in various industry fields. Therefore, huge
amounts of data are collected in day to day operations in
different industry sectors including railways. Those large
volumes of data bring us great value while with big challenges
as well. The traditional way to handle the data including data
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storage, processing and management is obviously incapable
of satisfying the current social and industrial activity needs.
The technologies being capable of dealing with large volumes
of data are therefore required thereby the appearance of a
new term of ‘Big Data Analytics’. ‘Big Data Analytics’ refers
to a process from data collection, data management to real
application by applying available techniques/technologies
applicable to dealing with large volumes of data, i.e., big data.
The discussion and investigation of related technologies and
their applications have been soon rapidly expanded through
almost every industrial field.

Big data analytics has become a hot research topic in
recent ten years. The number of published articles has been
exponentially increasing especially in the last five years.
These include many review papers discussing the related
technologies and open issues for application of big data and
big data analytics, e.g., [7]-[11] and many others by focusing
on application of big data analytics in specific industrial
fields such as [12] covering agricultural production, [13] in
healthcare, [14] in supply chain management, [15] in smart
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manufacturing, and also a very recent review article on appli-
cation of big data analytics in railway transportation systems
(RTS) [16]. The key contribution of this review paper given
by [16] is the taxonomy of the selected papers in review with
analysis and discussions on big data sources and by consid-
erations of applications of big data analytics on maintenance,
operation, and safety of RTS. In view of asset management
life cycle activities and to the best of authors’ knowledge
based on the literature survey, it lacks a comprehensive review
with discussions in detail about the application advances of
big data analytics in railway network area for railway asset
management. From railway system operation point of view,
however, there are huge amounts of data collected every day.
As aresult, it has been identified that this is a typically impor-
tant area that big data analytics will show and demonstrate its
power. In addition, the migration towards the digital railway
by a number of rail operators worldwide will increase the
uptake of big data analytics into rail infrastructure asset man-
agement [17]. For these reasons, we think an overall review
on big data analytics and its application status in railway
industry is required and it is also timely needed in order
to provide an insight into the technological development,
challenges and gaps for the railway system operators and
researchers.

Railway networks have been one of the largest assets
in most countries and to manage it well has always been
a concern of the railway asset owners and operators. This
has led to the initial idea for asset management within a
railway infrastructure environment which has evolved from
a number of sources including the concept of Total System
Support [18]. As industry support for asset management sys-
tems has developed, standardization processes have resulted
in the development of asset management standards such as
ISO 55000 ~ ISO 55002 [19]. An asset management Sys-
tem is concerned with the planning and control of all asset-
related activities and their relationships to ensure that asset
performance meets the intended competitive strategy of the
organization. All aspects related to asset life cycle activities
from concept design to disposal are crucial to the success of
an organization. Asset lifecycle activities can be considered
to be both interdisciplinary and interrelated [20].

Rail assets are capital intensive. They drive a significant
proportion of the organization’s service delivery costs. Even
a small improvement in asset management can bring a large
benefit. The rail industry is concerned with the condition of its
assets and is actively involved in developing advanced strate-
gies and techniques to maintain its infrastructure. The moti-
vation for managing the asset condition and the movement
towards condition-based maintenance has provided an impe-
tus to the adoption of big data analytics for rail asset man-
agement. The challenge that asset management presents in
the rail industry, however, extends beyond infrastructure and
into assets of all classes, including transportation systems,
operations, rolling stock, services, safety, and security. There
is amix within the infrastructure of complex linear assets such
as track and electrical overhead wires with discrete assets
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such as bridges, switches, and stations [21]. This amalgam of
infrastructure assets needs to be correlated with rolling stock
assets to provide an overview of asset condition performance
including the wheel/rail interface [22], [23].

Asset condition monitoring plays a primary role in asset
management because it provides asset condition information
that enables subsequent activities to be decided efficiently
and effectively. As highly sophisticated condition monitor-
ing systems produce huge amounts of data every day, it
is obviously impractical or arguably impossible to handle
the data in an alphanumerical form. Instead, most of the
data gathered must be properly visualized in order for users
to gain insight into the actual behavior of the objects in
question. Hence high-quality visualization of the analyzed
data is needed when it comes to infrastructure management.
This has led to the utilization of evidence-based decision
making [24].

In order to provide high-quality decision-support, a railway
asset management system requires a large amount of data to
be available for analysis. This data, however, is usually con-
tained in various databases and storage systems. It requires
careful data-selection and transfers to a railway asset manage-
ment database for infrastructure condition analysis and work-
planning purposes. The data may be in a structured format
(which can include sensor data, real-time monitoring data,
failure codes) or in semi-structured or unstructured data such
as maintenance reports and service logs. In traditional asset
management systems, the maintenance reports and equip-
ment service logs are normally stored separately. However,
for analysis purposes, the maintenance reports and equip-
ment service logs may be reviewed in a combined format.
In terms of big data classification, structured, semi-structured
and unstructured data are often classified under “Content
Format” in terms of their characteristics [8]. For traditional
asset management systems, data selection is known to be
very sensitive (and important) as all the future analyses
and subsequent planning are to be performed based on the
data stored in the asset management database [25]. Hence,
the quality and reliability of the transferred data represent
one of the crucial issues and keys to the success of any
railway asset management system in use. However, data
characteristics are not normally considered in conventional
asset management data models, whereas big data utilizes
the data characteristics to identify heterogeneous formats
for handling [11]. The other issue is the Rule-creation, i.e.,
the transfer of the user’s knowledge, standards and regula-
tions comprising, in fact, the overall maintenance policy into
asset management decision-rules [26]. In very recent years,
the idea of big data analytics within the railway industry has
been introduced [27]. In terms of building transport network
sustainability, the measurement of performance indicators to
show progress towards sustainability can be challenging in
the presence of big data where managing the amounts of
big data can be a significant challenge [28]. Other issues
have also been identified in using big data for predicting the
behavior of assets in use.
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The purpose of this paper is to conduct a thorough
review of big data analytics and its applications in railway
industry in order to identify the gaps in the areas that are
particularly important for asset management and condition
monitoring. More importantly, this paper seeks to identify
cross-disciplinary concepts and opportunities for both rail
asset management practitioners who have traditionally used
small data and are now facing big data challenges, and big
data researchers who are engaged in technological develop-
ment for handling big data. It is our view that the recent
progress made in use of big data analytics has the potential
to drive fundamental advances in research in rail asset perfor-
mance monitoring and, at the same time, the knowledge accu-
mulated in transportation research in the past many decades
can guide big data studies to answer questions that matter to
the rail transportation systems.

With the purposes as described above, this paper is orga-
nized as follows: Section II gives a brief introduction to
the methodology utilized in this review; Section III provides
background knowledge about big data and big data analytics
in railway asset management; Section IV gives an overview
of railway asset data collection requirements in big data
environments; Section V discusses the big data analytics
technologies available for implementation where the chal-
lenges and technical gaps are also highlighted; Section VI
presents a brief overview of big data analytics applications
to railway infrastructure where challenges in the applica-
tions are indicated, and this paper is concluded as given in
Section VII.

il. METHODOLOGY

Methodologies utilized in literature review papers in the
related fields have been studied. For simplicity, the method-
ological approach followed in this paper is adapted from [29]
and [30] where there were three phases identified, namely,
research question statement or focus, research methodology
and research scope. In this paper, six dimensions or aspects
of big data analytics were considered in the selection of
keywords for literature search as follows:

i. The areas of railway infrastructure asset management
in which big data analytics could be applied;
ii. the level of big data analytics in rail network
management;
iii. the trend towards condition-based maintenance;
iv. prognostic health management and smart monitoring of
rail assets;
v. types of big data models, and big data tools and tech-
niques used for applying these models; and
vi. Blockchain technology for railways and its current
application status.

The selection of these six aspects is based on detailed
discussions among the authors and the determined scope
of this work. The research scope is a literature review on
applications of big data analytics in the railway industry from
the published research articles and reports published between
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1992 to 2019. The reason to choose this time period is due to
that the research area is relatively recent.

To evaluate the available literature, multiple Scopus
searches were carried out initially based on the following
query format. As an initial phase, keywords used included:
(TITLE-ABS-KEY(““asset management” OR “condition
monitoring” OR “data quality” OR “missing data” OR
“machine learning” OR “big data”) AND TITLE-ABS-
KEY (decisionx) AND TITLE-ABS-KEY (railx)). Then the
literature search was progressively adapted and driven by
considerations of the industry issues. Research was under-
taken to further identify the relevant literature and discussions
to focus on the issues, challenges, and opportunities being
faced by industry including potential application domains.
Some of the key challenges identified within rail asset man-
agement included both the trend for increasing volume and
concern about the veracity of data available for analysis
within an asset management system. Other challenges iden-
tified included the need for selection of appropriate big data
analysis tools to match the data being collected and the trend
towards condition-based maintenance and prognostic health
monitoring systems within rail infrastructure organizations.
The volume of data being collected for import and anal-
ysis within asset management has exponentially increased
with the increasing number of condition monitoring systems
implemented onto the railway network. However, the veracity
of the data is possibly more critical in cases where rail safety
models are required as part of the analysis. Data quality
is inherently impacted by uncertainty and unreliability of
data sources to some extent [31]. As traditional corporate IT
networks may not be compatible with the introduction of big
data analytics, these aspects were considered to be a part of
the focus of the paper and included in the methodological
framework for this paper. The trend towards condition-based
maintenance has also focused attention on the requirement for
intelligent asset management systems with machine learning
capabilities built in. Additional search terms were identified
during this process for the methodology. As other industries
have also faced challenges in big data analytics, the search
terms were then widened to include other industry sectors
such as the health and manufacturing industries to include
case studies for analysis. For evaluation of available litera-
ture on big data technologies and big data analytics, search
engines through Google Scholar, Web of Science, and IEEE
Xplore were utilized. Based on the article search process
as described above, over 2000 papers were identified for
review and analysis. The selection process was adapted from
Ngai et al. [29] and involved a three-stage approach where
papers were judged primarily on their title, abstracts and
keywords. Two co-authors then debated the extent to which
the paper addressed the six aspects of literature search criteria
identified above. The selected articles were then grouped in
different categories as outlined in Figure 1 based on their
primary contributions to each of the category. It is understood
that one paper may cover several categories, but it is only
allocated to the category to which it contributed the most
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1. Blockchain (Other) (45); 2. Decision Support (41); 3. Missing
Data (42); 4. Condition Monitoring (51); 5. Big Data Analytics
(110); 6. Big Data (75); 7. Asset Management (124); 8. Rail
Infrastructure (169); 9. Infrastructure Maintenance (243); 10. PHM
(Structural Health Monitoring) (40); 11. Asset Management (Oil &
Gas, Utilities) (40); 12. Fault diagnostics and prediction (120);

13. Blockchain (Rail) (14).

FIGURE 1. Grouping of the searched articles in different categories.

and counted only once to avoid any duplicated counting.
As condition-based maintenance for railway transportation
systems with application of big data was discussed in [16]
and it was identified that the fault diagnostics and prognostic
health management (PHM) for railway systems is well suit-
able for a separate paper, the detailed discussion on these
two aspects was therefore not included in this paper due
to the paper length limit requirement. Finally, 200 articles
(including 9 published through online sources) were cited in
this paper to support discussion and analysis. Some others
were excluded as not being relevant to the focus of this
paper or similar contents have been covered by the ones cited
in this paper.

Instead of providing a taxonomy analysis of the selected
articles, the analysis and discussions in the following sections
are more focused on the technical perspective.

Ill. UNDERSTANDING OF BIG DATA ANALYTICS FOR
RAILWAY ASSET MANAGEMENT

A. BIG DATA IN RAILWAY NETWORK MANAGEMENT

Big data is often referred to as the data as having five
characteristics, i.e., large volume (Volume), fast processing
speed (Velocity), multiple domains (Variety), low density of
the value distributed (Value) and complexity of data formats
(Veracity) [32]. Veracity was initially a term developed by
IBM in 2012 [31] to convey the idea of uncertainty and
unreliability of the data. However, some researchers would
like to highlight the 4 V’s as “Value’ is the results extracted
from the data through analysis and modeling. The value of
big data in the decision sciences has been highlighted by
Wang et al. [33] where the different stages of data capture,
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curation, analysis, visualization, and decision-making were
discussed. The availability of big data is regarded as one of
the enablers for intelligent decision making with complex
systems [34]. Big data analysis technologies are required to
process and analyze the data having these five characteristics.
In addition, big data has facilitated the use of techniques
such as machine learning and expert systems for knowledge
discovery [35]. Examples of application of these techniques
to big data analysis in other industries include the use of
statistical process control with big data analytics in smart
manufacturing processes [36]. A generic system for machine
learning using big data has been explored by [37]. Another
case of using big data analytics has been discussed by [38]
where the existing systems using business intelligence and
data warehouse are limited to handling and relating unstruc-
tured data to structured data. Structured data, once uploaded
from source and analyzed, can be used as variables in a
statistical/machine learning model. Unstructured data, how-
ever, requires further analysis and decomposition into a set
of structured data elements [39]. The significance of big data
analytics for asset management has been described in [40].
In this particular case, the whole of the asset management
system can be supported by the use of big data analytics and
the Internet of Things (IoT).

Figure 2 provides an overview of some of the charac-
teristics of big data pertaining to railway network manage-
ment. Big data dimensions have been proposed in different
forms to meet challenges in implementation for various dis-
ciplines [41]. Numerous people have increased the number
of “V’s’’; however, we focus our discussion on the five V’s
in Figure 2. For railway asset management, the big data
problem can be described in terms of a) aggregating multiple
databases which are individually manageable and come from
different sources, b) individual datasets that by themselves are
too large to be processed by standard algorithms on legacy
hardware [42] and c) relational databases have been designed
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to deal mainly with structured data, and little support is
provided to semi-structured or unstructured data [43]. While
linking the asset and equipment identification (ID) with asset
condition information is seen as a key aspect for adding value
to railway asset management systems, this information may
be from different sources and requires aggregation and pro-
cessing to adding value. As data is aggregated from multiple
sources, the data may sometimes exhibit heavy tail behavior
and non-trivial tail behavior [44]. There may also be an imbal-
ance in the datasets where the most important relationships
to be discovered in the datasets are presented by a small
number of examples in the dataset [45]. In a similar manner
to trackside systems, rolling stock on-board systems may
perform the analysis or processing prior to transmission to
trackside-based storage, in a similar approach to the Internet
of Things (IoT) applications. The challenge here for the asset
condition data analysis is to understand where the raw data
analysis is being performed.

B. UNDERSTANDING OF BIG DATA ANALYTICS

Big data analytics is a process of collecting, organizing and
processing large amounts of data to discover useful infor-
mation and extract patterns for the purpose of asset condi-
tion prediction, process optimization and decision making
in management to drive better business decisions. A taxon-
omy of different processes within big data is provided by
Khan et al. [46]. The focus on big data analysis is to typically
discover the insight into the knowledge that comes from
analyzing the data [47].

Asset condition data on its own without analysis will not
create value for the asset owners who are collecting and
own the data. Once the data is stored and analyzed, it can
create tremendous value [48]. The data analysis or process
can consist of a number of technologies and approaches such
as in-memory analytics, in-database analytics, and appliances
to examine large and varied data sets [49]. There are six
analytical techniques [50] which can be grouped into four
different kinds of analytics as follows [32]:

a) descriptive analytics, which includes reporting/online
analytical processing (OLAP), dashboards/scorecards,
and data visualization. These applications have been
widely used for some time, and are the core applica-
tions of traditional asset management systems;

b) diagnostic analytics, which is used for discovery or to
determine why something happened;

¢) predictive analytics, which can suggest what will occur
in the future. The methods and algorithms for predictive
analytics include regression analysis, machine learn-
ing, and neural networks that have existed for some
time; and

d) prescriptive analytics, which can identify optimal solu-
tions, often for the allocation of scarce resources. Pre-
scriptive analytics are seen as the future of big data [51].

To select one of the four kinds of analytical approaches,
an awareness of the concepts of design data and organic data
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is required. Hence, in addition to the evolution of analytics,
the ideas of “design data and organic data” have also been
discussed and developed in parallel [52].

IV. DATA COLLECTION AND MANAGEMENT IN RAILWAY
ASSET MANAGEMENT

A. UNDERSTANDING OF BIG DATA ANALYTICS

A typical railway infrastructure condition monitoring data
collection is shown in Figure 3.

Each of the monitoring systems in Figure 3 is collecting
structured data where the format of the data is dependent on
the type of system being monitored as well as unstructured
data including log files. For example, the noise monitor-
ing station may be collecting acoustic audio files. Storage
requirements may also be different for different data types.
Field Technician will collect unstructured data and log files
that need to be linked to the monitoring system structured
data. Linking the work order generation from the CMMS
with the correct asset and accessing log files provides infor-
mation for later analysis. Within traditional CMMS systems,
the unstructured data including log files may be stored sepa-
rately from the structured data within the CMMS.

Within typical asset condition monitoring systems, sen-
sors are located either on trackside or within the railway
vehicle undertaking measurements. Typical asset condition
data may include a mixture of related data from high to low
sample rates [53]. The asset condition data sample rate may
be affected by the requirement for the data collection when
equipment passes near a sensor, e.g., a rolling stock vehicle
passes over a track sensor or by a trigger when measured data
passes over a threshold. In this particular example, the amount
of data sent may increase significantly to allow the evaluation
of the trends by an expert system for the particular threshold
that has been reached [54].

Condition monitoring sensor systems also provide data
that must be interpreted to turn into alarms [55] and stored
separately in a database for later verification. This highlights
the development of maintenance recording features of asset
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condition data which are the precursors for asset management
systems today. Other key considerations in the introduction
of condition monitoring to railway asset management are
ensuring that the technology being used is as reliable as the
asset being monitored and being prepared for analysis and
storage of large volumes of data. Analysis of the data may
have challenges due to the volume of the data being captured
in real-time [56].

Railways across Australia including ARTC and Sydney
Trains have implemented a number of trackside condition
monitoring systems within their network for monitoring of
infrastructure and train assets including the wheel/rail inter-
face. The Wheel Impact Load Detector (WILD) system [55]
has been utilized for providing notification when wheel
impacts are detected. Condition assessment is based on visual
inspection and some other measures, e.g., track machines run
over the track and provide a record of the condition of the
rail [57]. Integration of data from condition monitoring sys-
tems with track machine recording can identify the locations
where defects are present and assist in the decision making
process [54]. In recent years, Sydney Trains has implemented
pantograph condition monitoring using laser and computer
vision technology [58]. A range of applications using LIDAR
and video recording technology has also been utilized in rail
corridors to provide track degradation measurement data for
prediction of track deflection.

B. DATA MANAGEMENT REQUIREMENTS

There are a number of key requirements within condition data
management including a) data retention requirements that
may be linked to organizational requirements, b) data accu-
racy and quality requirements c) data volume requirements
and d) identification of key data required for decision making
and verification purposes. Each of the requirements can be
traced back to the asset management data model required to
meet the asset management objectives of the organization.
Within the advent of intelligent railway networks, data man-
agement has also been identified as a key challenge in their
implementation.

Condition-based maintenance and the requirement for
management of the increasing volume of data have also
required organizations to focus on the development of new
requirements to meet these needs as railway organizations
migrate away from a preventative maintenance approach [16].
These requirements may include real-time analysis of stream-
ing data, identification of owner and labeling of source data
in a real-time environment, sharing of data in real-time to
provide for safety hazard notifications as well as the storage
and identification of models to be applied to the condition-
based maintenance data. The condition-based maintenance
data must be converted into information including details
about the quality of the data collected, any uncertainties,
maintenance or operational options [59]. A case study was
undertaken by the Swedish Railways with the support of
Bombardier systems for the collection of condition-based
maintenance data of railway vehicles [60]. A key requirement
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is to identify at an early stage what needs to be measured
and how to measure, collect and store the data. The real-time
identification of alarms and trend prediction is identified as
requirements [61]. Further development is occurring within
the American Association of Railways (AAR) to develop
interface standards for condition-based maintenance [62].
A ten-year initiative has been set up to provide nationwide
monitoring and repair information of freight cars operating
in North America. Data modeling prior to integration may be
seen as key to identifying relationships between the data for
rail maintenance purposes [63].

While standards including IEEE 1451 [64] have been pro-
posed for regulating the condition monitoring sensor inter-
face, the asset condition data may be collected and stored in
a proprietary format [65]. Innovative approaches to convert-
ing the data to an open standards format may be required
to extract useful information. Integration of the condition-
based maintenance data using different condition-monitoring
tools used within railway infrastructure is a critical require-
ment to ensure the usefulness of the data [66]. The require-
ment for integration of data from different data sources has
been extended to other infrastructure areas where complex
decision-making is required to manage a hierarchy of assets
to support maintenance decisions [67].

C. DATA MANAGEMENT SYSTEM ARCHITECTURES

A data warehouse model incorporating condition-based
maintenance using the open systems framework (OSA) is
proposed for an asset management system [68], in which it
is identified that the use of standard terminologies and tools
can assist in more effective use of asset management infor-
mation in data warehousing scenarios, with all of the data
being used. This model consists of seven (7) layers as shown
in Figure 4 which is modified for the railway environment.
With the advent of the internet and 10T, the presentation layer
in some cases has evolved to provide a web-based user inter-
face to match the internet technologies or via a dashboard.
However, the lowest three layers may still be based on propri-
etary or bespoke solutions from the manufacturer or supplier
of the condition monitoring solution. Migrating the top three
layers of the OSA-CBM model to a big data analytics frame-
work can be achieved if the business process rules for the asset
being monitored is known and understood. In the UK rail
industry, an ontology-based data management approach has
been proposed by the Rail Safety and Standards Board [69].
An agent-based approach is suggested to relate the identities
and locations of asset equipment.

To utilize the data in an operational environment, dash-
boards have been implemented to display real-time asset
condition data [71] to allow for real-time decision making
on asset operational management using descriptive and diag-
nostic analytics. Figure 5 provides a technical architecture
overview of data collection, integration, storage, applica-
tion and presentation. The dashboard allows for real-time
monitoring of agreed key performance indicators to allow
early indication and notification of divergence from baseline
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Display [ Dashboard BI Portal Scorecard }
Application [ Monitoring Analysis Management }
Data { ODS, In-memory cache Data Warehouse I Datamart I Report I Documents }
Integration [ Custom API I EAI I ETI I EI T Manual }
Data [ Legacy systems I Packaged Apps I Web Pages l Files I Surveys I Text }

FIGURE 5. Overview of technical architecture for data integration and
application [71].

performance. From those blocks shown in Figure 5, it iden-
tifies how to develop appropriate customer application pro-
gramming interfaces (API) and other technologies including
enterprise information integration (EII), enterprise applica-
tion integration (EAI) as well as data extraction, transforma-
tion and loading (ETL) tools to pull data from source systems.

The type of bespoke applications or services and the ana-
lytical requirements are shown in Figure 6 which is modified
to suit the rail asset data model. Asset condition information
is outputting from each of the applications and exported to
the asset management database. In terms of big data ana-
lytics, analytics engines are required to be tailored to be
compatible with the data formats and calculations performed
at the source data collection points. For the MongoDB shown
in Figure 6, a document store is used ‘“‘that does not have any
schema restrictions and supports multi-attribute lookups on
records” [72].

In terms of a migration strategy between the existing tra-
ditional relational database systems storing asset condition
data and the NoSQL storage provided by MongoDB, a hybrid
approach can be utilized to minimize the risk of losing data
during the migration [73].

In each of the rail applications identified in Figure 6,
there are separate calculations, in parallel, on the data with
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FIGURE 7. Example of data source integration for asset management
systems.

common access to the asset register. Asset condition infor-
mation is output from each of the applications and exported
to the asset management database. In terms of big data
analytics, analytics engines are required to be tailored to
be compatible with the data formats and calculations per-
formed at the source data collection points. Data records
from train describer systems are a valuable source of infor-
mation for analyzing railway operations performance and
assessing railway timetable quality [74]. The asset condi-
tion database in Figure 6 may be installed by the condi-
tion monitoring applications provider. The database choice
may be subject to Corporate IT policies within an organi-
zation and utilize databases such as Microsoft SQL, Oracle
and other commercially available or open-source databases.
To ensure compatibility across data sources, a common data
management framework [75] has been adopted by different
railway infrastructure organizations including CrossRail [76]
and Deutsche Bahn [77] to meet asset master data register
requirements [78]. This practice has been adopted by rail
infrastructure organizations within Australia [79], [80].
Figure 7 provides an idea of the integration of various data
sources within the asset management system. Data analytics
tools using linear, nonlinear and simulation models such as
FlexSim can provide predictive trends for maintenance man-
agement. Data integration is another critical task that needs
to be handled well in asset management. It requires a com-
mon platform to process and manage diverse sources’ data.

15549



IEEE Access

P. McMahon et al.: Requirements for Big Data Adoption for Railway Asset Management

Malntenance
Operator

mu@

Trackside DB

Network
Layer

4G Mobile

e e I e B )

FIGURE 8. Condition monitoring data integration for rolling stock
modified from [88].

The data can be divided at component level, system level,
and operation level data. It then requires efficient database
management using techniques such as data warehouse for
data store and data mining for classification, etc.

D. CHALLENGES OF DATA VOLUME MANAGEMENT

Collection and classification of condition monitoring data
have become an issue in terms of management of large
amounts of data where duplication of resources and data can
occur within the asset management discipline [82]. These
challenges and complexities include the volume of data in
collection, tracking of changes to the assets, tracking and/or
recording of maintenance performed on these assets, and
willingness to share data within the organization [83]. For
rail assets that may consist of 100’s of kilometers of rail track
including ballast and undertrack infrastructure, the necessity
of spatial information to identify exact locations in terms of
asset condition is an immense challenge. Converting asset
location information to GPS coordinates may utilize time
and resources away from maintenance tasks. This challenge
is not unique to railway organizations and synergies can be
gained from reviewing how other organizations with spa-
tial datasets are meeting the challenge [84]. For complex
projects, delivery of the asset management information can
be a significant challenge from a big data perspective [85].
The unstructured nature of design delivery with information
capture can provide a large amount of unstructured data that
needs to be included within an asset management system for
configuration change management. In terms of the volume
of data, the information technology (IT) infrastructure may
require re-engineering to support the volume of data available
for collection with each asset operation. The impact of using
information and communication technology to achieve the
benefits of big data analytics for rail infrastructure assets have
been highlighted by Takikawa [86]. This may mean a new
platform dedicated to big data analytics [87]. An example of
the complexities in providing access to real-time asset condi-
tion information for rolling stock is shown in Figure 8 pro-
vided from NedTrain [88]. The complexities can include
the interrelationship among multiple suppliers for an asset.
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For legacy assets such as older rolling stock, retrofitting of
condition monitoring equipment may be desirable to meet
organizational safety and performance requirements. In these
particular cases, where there is no train management system
(TMS) installed, other modules are required to be imple-
mented such as the train communication handler (TCH)
connected to the main equipment room (MER) and the sec-
ondary equipment room (SER) modules to pull data from
the diagnostic modules and sensors. The TCH connects to
the network layer which can be either a cellular 3G, 4G net-
work or Wi-Fi to connect to the trackside layer which includes
network operations control center (NOC) and databases (DB)
for storage of the condition monitoring data. A further key
consideration of the complexities is the utilization of radio
frequency identification device (RFID) technologies to accu-
rately identify the location of the asset (GPS plus track loca-
tion information) with trackside information using real-time
data analytics [89]. In terms of real-time data collection and
continuous analytics, a paradigm shift may be required from
traditional database methods. This could include ‘keeping
analytics results in small-sized tables’ [90]. An alternative
approach may be to utilize the many task computing paradigm
(MTC) for ensemble-based prediction methods [91]. This
can be extended to utilizing artificial intelligence or other
stochastic methods such as Markov chains for degradation
modeling using asset condition data.

Other railway manufacturers including Bombardier and
IBM have developed big data analytics for train condi-
tion monitoring [92]. These approaches have generally been
focused on the collection of data for fault prediction and
diagnostic explanation. Transportation systems in large cities
such as London are integrating sensor data streams for predic-
tion purposes and transformation [93]. However, data volume
management is still challenging. The Public Transport Ser-
vices Division of the Department of Planning, Transport and
Infrastructure in South Australia has utilized an IBM Maximo
system for asset management and is progressively rolling out
asset condition monitoring systems as part of transportation
expansions [94]. The Swedish Railways have implemented
Maintenance 4.0 with the requirement for support of large
databases [40]. Scalable data structures are recommended as
a requirement to cope with the increasing volumes of data
being collected within a railway environment.

E. SUMMARY OF DATA MANAGEMENT AND

OTHER ASPECTS

With the volume of data now available, tools and tech-
nologies have been developed to extract useful information
and patterns from datasets, particularly for spatial data sets
where high dimensional data is stored [95]. The complex-
ity of spatial data types, spatial relationships, and spatial
autocorrelation has meant that organizations need to develop
Spatial Data Analysis (SDA) to handle this complexity [96].
Therefore, intelligent data analysis methods with application
of advanced technologies need to be developed. This is the
focus of research in the past about 20 years and a number
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of techniques for condition monitoring data interpretation
have been developed (e.g., [97]). None of the techniques,
however, is perfect and each is only applicable to certain
circumstances. To assist in application of these intelligent
data analysis methods, technologies such as streaming data
analysis have been developed to cater to the large amounts of
data [98].

The idea of missing or incomplete data within spatial data
sets undergoing data mining processes has been discussed
in Brown and Kros [99]. The impact of missing data on
the prediction models can be significant and for this reason,
owners of incomplete data sets may be reluctant to share the
data for asset prediction purposes [100].

In summary, the key challenges facing organizations man-
aging data on railway infrastructure asset condition include
a) handling of different data types based on systems being
monitored; b) presence of structured and unstructured data;
¢) identification of missing or incomplete data sets; d) han-
dling of volume of data collected with asset condition systems
to sift through for information content and e) asset data model
maturity in measuring conflicting key performance indicators
(KPIs). Display of data sets that are missing or incomplete
which are required for KPIs may require flags to label the sta-
tus of these data sets for potential users of the data sets. A fur-
ther challenge for management of the asset data are bespoke
applications provided with the legacy condition monitoring
systems that may not be easily migrated to support a big data
analytics framework. However, rail organizations will need
to consider the future-proofing of asset information using
data analytics technologies [101]. Only a small number of
railway organizations have implemented big data analytics
within their organizations due to the challenges in the man-
agement of asset data [16]. However, there is a “potential
for the application of big data techniques to manage railway
safety” [102]. Big data analytics for railways include the uti-
lization of sensor technology for data collection and real-time
monitoring of track geometry, waves, joints and sun curves
of rail as well as relative height, position, wear and defects
of catenary wires. Big data analytics combined with artifi-
cial intelligence (Al) has allowed for real-time prediction of
alarms and trends within the Swedish railways. This can allow
an organization to identify what is critical and what the real
problems are. Further discussions on the application of big
data are also extended to other aspects such as selection of
suitable technologies and tools for some specific applications
when facing challenges.

V. BIG DATA ANALYTICS TECHNOLOGIES

AND CHALLENGES

Advanced analytic techniques have become available with the
advent of big data. At data collection stage, the data to be
collected may include unstructured data from heterogeneous
sources managed through big data analytics engines such
as HADOOP combined with a NoSQL database. At data
analytic stage, the techniques utilized may include regression
analysis, machine learning, deep learning, Bayesian inference
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and data mining. The technique selection is closely related
to the data characteristics as well as platforms used for data
collection, management and processing.

A. CONSIDERATION OF BIG DATA ANALYTICS
APPLICATIONS FOR RAILWAY INFRASTRUCTURE

Before we start to consider big data analytics applications,
it would be good to have an overall view of data in integration
such as what is shown in Figure 9. The diagram gives an
overall picture of asset data divided into different types. The
right-hand side of the diagram presents a number of key appli-
cations depending upon the types and context of the data. That
means data availability determines the potential applications.
Identification of the context of data being collected is critical
to the usefulness of the data.

The considerations on data collection that impact on the
selection of the big data analytics techniques in railway indus-
try may include: a) which part of the track or rolling stock is to
be monitored, b) which type of sensor is to be placed and what
kind of data (structured, semi-structured or unstructured) is
expected from the sensor systems, c) sparsity of the data to
be collected and whether the collected data reached the SQL
database on time or not, and d) how to deal with bad data
(or missing information such as missing tag reader identifi-
cation). Each of the considerations above can be addressed
initially with the concept of ‘“design data” where the data
requirements are included in the design of the system to be
monitored. However, as the system is monitored in a real-time
environment, the concept of “organic data” is introduced
which can include sensor data, sentiment data and various
types of machine data that can be characterized by context.
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The data context is important in providing the links or rela-
tionships between each of the nodes of big data [103].
Big data analytics techniques such as machine learning and
Bayesian inference could be used to read monitoring data
and also learn data context and correlation (e.g., rolling stock
identity vs wheel temperature) for efficient maintenance plan-
ning and decision-making.

There are new questions on data analytics in terms of
accuracy such as: a) which technique accurately predicts the
condition of the asset; b) how to deal with missing data in
the modeling and how it will affect the trends produced from
the modeling and c¢) how to manage the data flow where the
data may be intermittent based on equipment availability and
timeliness requirements of the data. Veracity of the data is
of key importance within railway asset management due to
the requirement for safety as a priority where uncertainty
and reliability of data sources can arise. While large data
sets are assumed to be better, they may contain systematic
biases or have large amounts of missing information, and
even missing key variables which can be magnified with the
size of the dataset [104]. Big data sets may be collected under
some complex and unknown measurement process [105].
This process needs to be included in the process of design
data. Alternatively, the big data set may have been collected
for a different purpose and an analysis is being performed to
see if any inference can be drawn from this data set [39].

In terms of diversity of data, the key challenges are in
matching the diverse data sources to a data management
model. Alternate approaches using heterogeneous data inte-
gration are provided by [106] where multiple kernel esti-
mators have been proposed to develop an understanding
of the underlying data structure for integration into a data
model. Data sources such as equipment maintenance logs
may not match the structure of the other data sources being
imported. Analytics approaches using sentiment analysis and
natural language processing may be required for information
extraction to associate the unstructured data with a failure
event [107]. Further development is required for utiliza-
tion of these techniques within engineering asset manage-
ment. Computational analytical solutions, particularly using
unstructured data, may not yet be sufficiently developed
for safety-critical infrastructure systems [108]. While some
failure modes can be identified during the design phase for
a system, failure modes may be identified after operational
trials [109] which mean additional separate sensors to be
used for collecting failure information that are not part of
the asset system model. A way of achieving data integration
with diverse data sources is to utilize scenario-driven data
modeling (SDDM) [110]. This method also allows for the
identification of gaps within a data management model to
allow adaptation for missing data elements. This approach
can also allow for event-driven data collection where the col-
lected data can change depending on an event [111]. If failure
modes can be identified after the event, the use of event-
driven data analysis and scenario data modeling can help
identify gaps within the existing data management model to
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identify patterns in failure data. The required changes to the
data management model can then be modeled using universal
modeling language tools (UML) to assess impacts on the data
collection requirements. Where failure modes are not readily
identifiable, then maintenance staff may need to collect all of
the data and search for patterns within the data. An example
of an ontology method for data integration with big data is
provided by Eine et al. [112] where the relationships can be
mapped using equivalence rules to automatically deduce the
relationships between different data sources. This method can
also be prepared with the approach of using ontology for data
management discussed earlier.

In the railway asset condition monitoring example,
the trackside data collection site can be designated as the
primary site while a large amount of data collection process
can be designated as the secondary site where the data inte-
gration and mapping begin. The other part of the integration
process is in identifying an authoritative source uniting over-
lapping datasets from separate primary data sources, which
may supply redundant or conflicting values [113]. For each of
the databases (DB) in Figure 6, a separate service is required
to pull the data from the DB to the primary source (Global
Model). Each of the separate services may utilize proprietary
technology based on the origin of the primary source. For
example, if the trackside sensor produces sound files with text
data, a ‘Service’ that is suited to importing these types of files
may be utilized for import facility to the Global Model. The
RailBAM™ application, for example, produces wave files
with text files based on the train consistently for each train
pass.

Another example of the type of bespoke applications or ser-
vices and the analytical requirements is given in Oweis [21]
where, in each of the bespoke applications identified, there
are separate calculations in parallel on the data, with common
access to the asset register.

An illustration of a modeling framework for track mainte-
nance is shown in Figure 10 [114]. From this figure, a model
is selected for the particular asset being assessed and the live
asset condition data is applied to the model with an evidence-
based track working model as its output which is stored in the
asset management system.

The collection of rail inspection data has increased in
volume and quality in recent years and has been presented as
abig data analytics challenge [115]. Rail inspection processes
have developed from two approaches: a) on-board sensors
mounted on rolling stock and b) track-mounted sensors.
In these approaches, further discussion is required to ensure
data format standards and requirements can be met by the
different manufacturers within the rail industry.

The considerations outlined above need to be evaluated for
each of the asset classes and types included within the railway
infrastructure asset management model.

B. BIG DATA ANALYTICS TECHNOLOGIES
A short review of big data technologies can be found
from [116]-[119]. These technologies are related to the
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FIGURE 10. Modeling framework for track maintenance modified
from [114].

challenges being faced by using big data, namely, volume,
complexity and high-speed processing. Advanced analytics
technologies are developed to support predictions using sce-
nario developments rather than probabilities as in more tradi-
tional analytics technologies. Analytics is about the discovery
of new or existing relationships within the data sets and
making sense of the data for modeling purposes. Multiple
analytics technologies may be utilized within big data appli-
cations to support the variety of heterogeneous data being
collected. In-memory analysis can be performed during the
data collection stage to determine the value and relationships
of the data prior to storage [48]. These technologies can be
grouped into two key categories of a) storage and b) query-
ing/analysis [120]. Storage relates to the ‘““‘persistently storing
and managing of large-scale datasets” [121]. The technolo-
gies associated with data storage and management are also
closely related to the frameworks and platforms utilized, e.g.,
HADOOP frameworks, HDFS and non-relational databases
such as NoSQL. Due to the volume and speed, incoming data
may be initially split and stored across several machines. Big
data storage technologies may be required to split the incom-
ing data across several machines simultaneously for storage
and analysis. These technologies and tools are discussed
further in Section V.D. Querying and analysis relate to the
use of analytical technologies or tools to inspect, transform,
and model data to extract value (information). At this stage,
big data analytics may be divided as descriptive, diagnos-
tic, predictive and prescriptive analytics with the purpose of
application from information learning to insight and further to
foresight (optimization) of the process. Technologies utilized
for the querying and analysis include data mining, cluster-
ing, knowledge discovery, machine learning, MapReduce,
Massively Parallel Processing (MPP), Multi-Dimensional
On-Line Analytical Processing (MOLAP), visual analytics
and statistical models [122]-[125]. Table 1 provides an exem-
plar of big data analytics technologies for reference.

In each of the examples provided in Table 1, aspects of
the analytics technologies may be used in more than one
example. Machine learning has been utilized across multiple
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TABLE 1. Examples of big data analytics technologies.

Big Data
Analytics
Technologies
Descriptive
Technologies

Examples

Examples include OLAP, EAL EII,
ETL with dashboards for display and
real-time reports. Data visualization
allows for condensing big data into
smaller, more useful nuggets of
information. Mining historical data
to look for the reasons behind past
success or failure.

Variety of technologies such as drill-
down, clustering, data discovery,
data mining and correlations. It is to
examine data or content to answer
the question “Why did it happen?”.
Variety of statistical, modeling, data
mining, machine learning, and
sentiment analysis technologies
(natural language processing, text
analysis, computational linguistics)
to study recent and historical data.
Predictive analytics can be
probabilistic in nature.

Variety of technologies such as
graph analysis, simulation, complex
event processing, neural networks,
recommendation engines, heuristics,
and machine learning. Prescriptive
technologies can be considered to be
predictive technologies with
additional components for actionable
data and feedback that tracks the
outcome produced by the action
taken to provide optimization and
then suggest decision options to take
advantage of the predictions.

Diagnostic
Technologies

Predictive
Technologies

Prescriptive
Technologies

analytics technologies to increase efficiency. A key challenge
being faced by railway organizations in introducing asset con-
dition monitoring sensors is issues with scalability, security,
economics, and engineering. Currently, connectivity between
railway condition monitoring sensors utilizes a number of
mediums for connectivity (see Figure 8). This means that
the IoT structure can be regarded as a centralized structure.
This can impede the flow of communications between sensor
devices and the analysis processing units. To address the
limitations of a centralized structure, Blockchain technology
has been proposed to assist in decentralized computation
and asset condition monitoring by providing a distributed
ledger that can record transactions between two parties effi-
ciently and in an authentic way [126]. Further discussions
on Blockchain and its applications to the railway distributed
processing are provided below.
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C. BLOCKCHAIN TECHNOLOGIES

1) CURRENT APPLICATION STATUS OF BLOCKCHAIN
TECHNOLOGY IN RAILWAY INDUSTRY

Blockchain can be described as a shared distributed
ledger [127] with encryption to provide authenticity [128].
For distributed parallel processing of data coming from mul-
tiple sensors, there is a problem arisen that is the trust between
sensors and processing components and the generation of dig-
ital signatures for each of the sensor devices. Blockchain can
be utilized to build a trust relationship using a smart contract
concept [129]. An alternative decentralized system to register
and assign IoT devices to an owner based on the Blockchain
technology has been proposed by Ghuli et al. [130]. In this
approach, initial ownership is provided by the manufacturer
of the device and then being transferred to an owner based
on Blockchain technology. However, it is not clear with this
approach if replacement of the failed devices would have
occurred with updated registration of devices.

Blockchain can be utilized to provide parallel process-
ing and communications architecture where the data flow is
decentralized and security is improved [131]. This can also
decrease response times where data flows can be directed to
the closest node where the data may be utilized. Data on track
status such as faults or obstacles including location informa-
tion can be shared between the track devices and the train
(rolling stock) without first sending the information to a cen-
tral device (Rail Control Centre). The same data can be sent to
the central device in parallel using Blockchain technology to
verify the receipt of the data [132]. The types of applications
currently being reviewed by Deutsche Bahn with Blockchain
include safety applications where track obstacle reporting is
provided directly to trains, and track condition monitoring
and maintenance systems [133]. Enterprise asset manage-
ment systems such as the IBM Maximo product currently
support Blockchain for asset management applications [134].
Pacific National within the Australian rail freight network
has been utilizing Blockchain for supply chain management
of perishable goods [135]. This involves the tracking of the
perishable goods across the network with multiple partners.
The approach adopted within the rail industry has utilized
a similar approach to that outlined for the energy sector
in [136]. Other examples representing the current application
status of Blockchain technology in railways are summarized
as shown in Table 2.

2) CONSIDERATION OF THE FUTURE APPLICATIONS OF
BLOCKCHAIN TECHNOLOGY IN RAILWAYS

The data flows in a railway network can be expressed using
an IoT architecture as shown in Figure 11, in which the Rail
IoT Connections represent parallel distributed connections
between track, trains and station staff; and the Rail Network
Connections represent the centralized communications path.
Thus, the asset condition data collected from trackside sen-
sors may be received twice and arbitration may be required
to distinguish between the two paths for the same data.
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TABLE 2. Summary of current application examples of Blockchain in
railway industry.

Name of Examples

Company or

Organization

Swiss Federal Tested a worker identity management

Railways system ( [137], [138]).

Blockchain in Making efforts to develop new

Transport framework and standards for

Alliance transportation companies ([139],

(BiTA) [1407).

Go-Ahead The company is reportedly partnering

Group Plc in with Blockchain start-up DOVU to

the UK launch a tokenized, Blockchain-based
rewards system for its customers
([141]).

Russian Launched the Freight Transport, an

Railway (RZD) | electronic trading platform
underpinned by Emercoin and more
than 5000 freight consignments
ordered via the platform over a nine-
month period [142]. The company is
going to implement Blockchain
applications for ticket sales and smart
contracts all in crypto ( [143], [139]).

Bourque Unveiled the RAILChain™

Logistics in the | platform to explore the application of

UsS Blockchain technology for its rail
shipper clients. The platform is
designed to enable shippers to
securely exchange bill of lading
information, as well as settle freight,
repair and lease costs using smart
contract technology [144].

The State Is investing Blockchain to manage

Railway of signalling, passenger information

Thailand systems, ticketing and goods delivery
[139].

Shenzhen Launched the first-ever Blockchain-

Metro in China | based digital invoicing system in
March 2019 [145].

However, the data available in a single public distributed
ledger shared among several parties can be more reliable than
multiple centralized databases. A time-stamped version of the
‘data’ can be available on the distributed ledger to show the
arrival of the data at various devices for audit purposes.

The data flows can be enabled more effectively with
Blockchain technology. For example, the verification of the
asset condition status by the asset management system after
maintenance intervention by trackside staff can be achieved
using Blockchain technology and IoT network in Figure 11.
Each of the devices can be arranged into a peer-to-peer (P2P)
connection where the Blockchain is a decentralized, dis-
tributed ledger (public or private) of different kinds of trans-
actions arranged into each device. The data cannot be altered
without the consensus of the whole network. Track location
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information with vehicle RFID information can be shared
between trackside staff and the Rail Operations Centre for
decision-making with the assurance that the information has
been validated without manual verification processes being
utilized. Work orders can be sent directly to maintenance
staff for allocation of maintenance resources without human
intervention. The utilization of Blockchain technology allows
the verification of the source of the information as a trusted
source in real-time with distributed processing and storage
of the data by big data analytics. Different communication
mediums such as WIFI, 4G mobile and trackside communi-
cation systems can be utilized directly as available without the
concern about the security of the communication mediums.

Given the description above, it can be foreseen that the
applications of Blockchain technology in railway network
management will be promising in the near future. These
include smart maintenance with better data tracking for
improving safety and reducing service costs, transit payment
and ticketing for improving service and cutting customer
costs. To sum up, Blockchain technology is at the start-up
stage [147]. “The opportunities are exciting but companies
will need time to familiarize themselves with the technol-
ogy and to identify the best prospective application areas
which are supported by a universally-accepted set of stan-
dards™ [142]. These, however, are still in the developing
process.

Blockchain has its strengths and advantages in application
but the speed and scalability would be remaining as a big
concern in developing Blockchains for a busy network.

D. BIG DATA ANALYTICS TOOLS AND OTHER ASPECTS

Tools have been developed to manage the five characteris-
tics of big data described above and the five-stage process
which forms two main sub-processes of data management and
analytics [148]. These tools can allow for parallel processing
and loading of chunks of data to assist in key activities for

VOLUME 8, 2020

the handling of the large volume and diverse types of data.
Examples of these tools include MapReduce which allows,
for example, splitting of the input data-set into independent
chunks which can then be processed in a completely parallel
manner [69], [107], [149]. Python is commonly used when
data analysis tasks need to be integrated with web apps or if
statistics code needs to be incorporated into a production
database [150]. The utilization of Python for big data analyt-
ics is generally via a framework using Python libraries and
tools [151]. Each of these Python frameworks has charac-
teristics that are designed for specific models. Other tools
such as Regular Expressions (RegEx) can be used to detect
and repair errors for data input as part of the pre-processing
stage [152]. The requirement for expert systems or artificial
intelligence was identified to pre-process the large amounts of
data [70]. This approach has been further developed with the
concept of machine learning [153]. The Machine Learning
Library (MLIB) is utilized to provide a number of machine
learning algorithms that can be implemented within big data
infrastructure [154]. However, other machine learning tools
such as backpropagation can be parallelized with big data
analytics such as MapReduce [155]. In this example, the
original data information is maintained in the data subset,
which can be useful for verification purposes. For the types
of data collected by condition monitoring systems, different
tools may be selected to process the data from the raw to the
processed data stage (e.g., semantic analysis for the raw text
files). Semantic analysis for message analysis can be done
with big data analytics [156] and semantic analysis can be
performed using support vector machines (SVM) where the
accuracy of sentiment classifications can be improved [157].
The semantic analysis process developed could be applied
to unstructured data such as log files or status messages
provided as part of the asset condition monitoring process.

E. BIG DATA ANALYTICS TOOL SELECTION

AND CHALLENGES

The challenges for the use of big data within an asset man-
agement environment relate to a) storage of the diverse and
also heterogeneous types of data; b) management of the data
collection process to ensure the accurate and reliable collec-
tion of data; ¢c) managing the changing relationships between
the data and the assets that the data describes and d) inconsis-
tency and incompleteness of the data [158]. These challenges
include, for example, handling of heterogeneity, dealing with
inconsistency and incompleteness, merging data, timely pro-
cess and analysis, and ensuring privacy and data owner-
ship [159]. Track geometry measurements (see Figure 10)
in particular are described as requiring a high sample rate
to capture the trends for prediction and analysis purposes.
Analyzing large volumes of data in real-time may require
the combination of in-memory processing with analysis by
advanced machine learning techniques. Companies have had
to deal with profound changes in the use of technologies for
big data analytics [160]. The selection of different unconven-
tional tools such as Python and MongoDB to meet big data
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challenges has meant that companies have had to adapt to
changes in the enterprise data model and data analytics [161].
The use of JavaScript Object Notation (JSON) data format
with NoSQL databases such as MongoDB allows for efficient
analytics functionality [162].

The selection of tools for managing big data is often
described as a collection of related techniques and tool
types. Those are usually utilized for predictive analytics, data
mining, statistical analysis, and database management that
support analytics [32] such as MapReduce with in-database
analytics, in-memory databases, and columnar data stores.
As most traditional tools and algorithms are regarded as
inefficient, the development of new algorithms is required.
The design of an asset management system at this stage may
appear to be different from that expected for a conventional
asset management system using off the shelf applications and
tools. Python and R programming languages can be used
to implement machine learning (ML) techniques to support
complex degradation models requiring sufficient data. This
can help improve the outcomes of complex maintenance
decisions [163]. The benefits of migrating to new tools, par-
ticularly in a data-rich environment can be large [164].

While big data has been applied to transit forecasting
and ridership forecasting within rail systems [27], the use
of big data analytics for predictive maintenance is in its
infancy. Network Rail has utilized Deloitte’s suite of cloud-
based analytics tools to provide real-time timetable informa-
tion for timetable management [165]. The development of
advanced analytics for train delay prediction using exogenous
data is provided by Oneto et al. [166] where multivariate
statistical concepts are implemented using big data analyt-
ics tools, and improvements in train delay prediction using
advanced data analytics including multivariate statistics over
traditional delay prediction methods are discussed. Further
work is suggested for inclusion of railway asset condition
data to improve prediction accuracy. Within rail infrastructure
environments, energy efficiency has been given increasing
priority to improve sustainability. An example of predictive
analytics using artificial intelligence (AI) for rolling stock
power consumption on the railway network has been given
by Furutani et al. [167]. While Al has been regarded as being
in its infancy within rail infrastructure networks, impetus
is being provided to roll out Al to the rail sector. The key
challenge identified here is the real-time processing of the
stream of data from sensors. This is also the case for other
industries such as health care and infrastructure organiza-
tions [10]. A key item is identified as the maturity of the
available big data platforms and analytics software which are
still regarded as being in their infancy [125]. This includes
concerns about scalability to meet increasing data volumes
and substantial real-time requirements for asset condition
monitoring. The use of big data analytics for transit fore-
casting analysis of human mobility has been given by [168].
This has applications for transportation passenger utilization
prediction using passenger mobile phone location data. Trials
of this approach are currently being conducted in the US and
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Europe to assist in passenger load forecasting and congestion
reduction. Access to passenger information can be difficult
when evaluating the value of rail infrastructure investments.
There is currently a digital transformation focus on rail-
ways in terms of utilizing big data for better management
of resources including passenger utilization of assets [169].
The recent development of European standard (EN12896)
for a reference data model for public transport information
has provided for sharing of timetabling, fares, operational
management, real-time data, and journey planning across
railways [170]. In addition, the AAR has published a set
of standards for data handling to meet railway operational
requirements [171].

In terms of rail maintenance applications, an example
of using machine to machine (M2M) procedures with a
customized condition-based maintenance platform to handle
big data challenges has been proposed by Palem [172]. For
this application, real-time data collection and analysis have
been emphasized for fleet maintenance prediction purposes.
A reference architecture (platform) is proposed where Python
and R have been proposed for the data analytics engines.
In particular, R-frameworks can be utilized where the analyst
does not need to know the underlying intricacies of the big
data architecture or data model [173]. A decision support
system using smart data for a railway metro system is pro-
vided by He er al. [174]. In this case, the use of data from
different sources for the decision support system is described
and compared with the innovation requirements to support
a large-scale railway metro system. This has supported a
change in focus from equipment-centric to asset-operation
centered. The concept of smart maintenance decision support
systems is being trialed in the US where the data analytics is
used to extend the linkage between the analysis of condition
monitoring data and statistical trending with prediction and
simulation-based scenarios [175]. The availability of large
volumes of data to build accurate simulations of complex sys-
tems can extend the predictive maintenance concept within
large infrastructure organizations.

Challenges have also been identified in capturing changes
in assets particularly when delivering a major piece of infras-
tructure such as a new railway in the era of big data [85].
Related IoT technologies are being deployed within industrial
asset management environments to provide the connectivity
for big data [176] through the improvement of the data acqui-
sition process for condition monitoring sensors. The choice of
big data analytics tool is then based on the IT & technology
policies of the particular organization undertaking the data
analytics development. In addition, the security and privacy
of the stored data have become a challenge as the volume
of data has increased. Automation and centralisation of the
processing of the data with the added security and privacy
requirements may require a re-think on IT strategy [177].
Where datasets are heavily skewed, changes in the clustering
algorithms such as DBSCAN for parallel processing may
be required [178]. In addition, a reference architecture may
need to be developed for implementation [179]. There must
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be very clear requirements for implementation of big data
analytics [180]. Identifying the underlying structure and key
information is important in achieving the value of big data
analytics.

In summary, rail organizations are focusing on the devel-
opment of big data analytics framework for railways while
technology choices are being made by individual organiza-
tions based on requirements [181].

VI. OVERVIEW OF BIG DATA ANALYTICS APPLICATION
TO RAILWAY INFRASTRUCTURE

Big data analytics within the railway environment is still in
its infancy as highlighted earlier. Key applications of big
data analytics within railway infrastructure include decision
making for infrastructure maintenance based on available
condition monitoring data as well as operational performance
and train timetabling data. The data processing require-
ments for the collection of decision-making data include
integration of data from heterogeneous sources where low
latency requirements for decision making need to be provided
through parallel architectures. These include track circuit
status monitoring where data flows may be triggered on train
movements through track sections in short time periods of
seconds or more. Other approaches include the collection of
rolling stock condition information for condition analysis to
provide a plan for maintenance when the rolling stock reaches
a destination.

A. BRIEF DISCUSSION ON APPLICATIONS OF BIG DATA
ANALYTICS FOR PROGNOSTICS (PHM)

As organizations move towards predictive maintenance
programs away from planned and reactive maintenance,
the importance of prognostics and health management (PHM)
has increased. Detection of anomaly patterns within PHM
can be used to detect the existence of a fault before a fail-
ure happens [182]. Key aspects of the prognostics models
available have been identified by Peng et al.[183]. Hybrid
approaches using machine learning using a combination of
two or more algorithms to model the system were suggested.
The four dimensions of prognostics, i.e., a) sensing, b) prog-
nosis, ¢) diagnosis and d) management have been described
by Kwon et al. [184] where prognosis requires additional
data including maintenance history, operational and perfor-
mance parameters that were not previously available with
sensors or diagnosis but are available with data integration
from heterogeneous sources. PHM has been described as a
recent advance that can allow for a better understanding of
the degradation process of a component and a system so as to
extend and manage efficiently the life duration of industrial
systems [185]. The PHM methodology allows for the utiliza-
tion of remote sensing data, condition monitoring data and,
the interpretation of environmental, operational and perfor-
mance parameters to indicate systems’ health status [186].
The availability of data from multiple sources such as condi-
tion monitoring systems and reliability analysis systems has
allowed for the use of regression, degradation model, support
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vector machines (SVM), neural networks, and other Artifi-
cial Intelligence (AI) techniques particularly with decision
support and decision-making models for PHM [164], [187].
A discussion of the model-driven and data-driven approaches
for PHM using artificial intelligence has been conducted
by Schwabacher and Goebel [188], where verification and
validation of the diagnostic models are difficult to achieve
before deployment. A key reason for this is that the failure
modes can occur which are not identified in the model-driven
approaches prior to deployment as well as the lack of histor-
ical state (condition) data that can impact on the data-driven
approaches. Choice of algorithms to be used for PHM will be
based on the level of complexity required of the model and the
amount of noise presented in the data [189], [190]. Another
key challenge faced in using PHM methods is in “taking
uncertainty into account” [191]. However, a key challenge
with machine learning in prognostics health monitoring based
on analysis of asset condition data is the handling of high
dimensional data sets. Using domain knowledge that faults
and their implications correlate to a type of information con-
tained in an asset’s life cycle data and are translatable to a type
of domain knowledge representation with an entropy mea-
sure can be utilized to provide a dimension reduction frame-
work [192]. Alternative approaches for dimension reduction
using principal components with machine learning have been
identified by Gorban and Zinovyev [193]. Table 3 below
provides a summary of the application of big data analytics
with prognostics health monitoring.

B. DATA MINING

Traditional techniques such as data mining have also been
utilized with big data analytics to provide improved outcomes
for condition-based maintenance and rail infrastructure asset
management. Predictive analytics using data mining with
big data has been identified as a future need where real-
time analysis will be the key to meet scenario-based analysis
techniques [194]. The utilization of technology for onboard
train equipment can assist in the collection of condition data
for analysis using data mining techniques. In the example
provided by Sammouri et al. [195], the association of Spatio-
temporal data is utilized to determine if a significant asset
condition related event has occurred to trigger the mining of
the data associated with this event for analysis. Condition-
based maintenance may require a continual monitoring of an
asset leading to volumes of data requiring real-time analysis.
A challenge for rail operators is in being able to predict
a defect beforehand so that the failure does not occur in
operation and does not cause a train delay [196]. To meet this
challenge, a spatio-temporal-nodal model has been proposed
to analyze the interdependencies of various rail systems and
identify root causes for failures and system behaviors.

An approach using big data streaming analysis has been
provided by Fumeo et al. [98]. In this approach, the continual
monitoring is akin to a prognostic approach where triggering
of maintenance actions occurs when degradation is detected.
However, older data in some cases may no longer be available
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TABLE 3. Summary of application of big data analytics with prognostics

health monitoring.

Application Type of Analytics approach
condition
monitoring
sensors

Rail condition Vehicle- Real-time analytics

monitoring

mounted sensors

comparing with a
model for
diagnostics of
deviations from
track geometries.
Environmental data
can be added to
predict when track
geometries may
require attention

Train
performance
monitoring

Trackside and
vehicle-mounted
sensors; wheel
flats measured
by impact
sensors mounted
on track

Real-time analytics
comparing with
different models for
threshold alarms.
Hybrid data
approaches used to
enhance existing
models. Alarm
threshold
information can be
provided to train
operators in real-
time for planning
maintenance
intervention

Traction
Overhead Wire
Sag measurement

Trackside and
vehicle-mounted
Sensors; sag
measured by
deviation from
known height
using CCTV
images

Real-time analytics
of sensor and
CCTV images to
measure traction
wire sag while train
is passing under
overhead wire.
Environmental data
can be added to
predict when
overhead wire sag
could reach a
threshold.

Railway Points

Trackside audio

Real-time analytics

monitoring measurement of sensor and audio
sensors data to detect
collecting audio | anomalies while a
data to train is crossing a
efficiently detect | set of points using
and diagnose support vector
faults in railway | machines (SVMs).
condition
monitoring
systems.
Foreign object Vehicle- Real-time analytics
detection on mounted sensors | using convolutional
track using CCTV neural network
images to detect | (CNN) of CCTV
objects in front | images to detect
on track objects while train
is travelling on
track Radar and
location data can be
added to predict
when objects may
be present.
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to revise earlier suboptimal models. Further strategies includ-
ing data mining may be required to assist in the data analy-
sis process. An example provided by Cannarile et al. [197]
outlines how data mining for a large number of assets can
be used to optimize the maintenance strategies for a partic-
ular group of railway infrastructure assets. Population-based
strategies were compared with cluster-based strategies for a
group of 30,000 switch point machines. While improvements
in analysis were reported when using cluster-based strategies,
further work in the selection of the starting point or decision
variables for the cluster analysis is required. This is consistent
with the traditional usage of data mining and clustering algo-
rithms. It may be difficult to choose an appropriate clustering
algorithm for use in specific big data sets without detailed
knowledge of the characteristics of the big data set [198].

C. SUMMARY

Big data analytics with the increased availability of data has
provided tools for the analysis of more complex systems,
while also improving the outcomes for analysis of existing
systems [187]. However, the increased availability of selec-
tion of tools has complicated the task of selection of the right
tools for big data analytics with rail infrastructure assets.
The selection of methods for a practical application will
be based on the availability and quality of the data for the
analytics process. However, there is a tendency towards the
hybrid approach due to the limitations with the model-driven
approach, in which the model-driven approach is used as a
starting point for the hybrid approach. While the volume of
big data is increasing, the challenge is in being able to select
the right data to describe the asset condition information and
also in undertaking degradation modeling analysis. Selection
of machine learning techniques may impact on the scalability
of the applications for increasing data volumes and high
dimensionality. Each selected algorithm may have a point
where performance starts to drop with increasing volumes
of data. Hybrid approaches to analysis techniques may be
required. Uncertainty is built into the data and needs to be
accommodated in the collection and analysis of the data. Big
data analytics algorithms need to be developed further in
order to make full use of information hidden in big data. Tech-
niques are crucial to reducing uncertainty in big data analytic
process for improving the performance of prediction. Further
research has been proposed for the utilization of deep learning
techniques to recognize model limitations and improve the
prediction accuracy when data quality is poor, or missing
data patterns are evident within the data collected where
the concept of platform analytics including machine learning
and expert systems is introduced for optimization of timing
and types of maintenance to be performed for different rail
infrastructure assets [86].

VII. CONCLUSION
Big data analytics for rail infrastructure management is

not fully mature, while condition monitoring systems are
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in general use for asset condition classification purposes.
However, there is no agreed common method of applica-
tion or use of algorithms for asset condition assessment.
There is also no agreed interface for integration of the types
of information utilized for measurement of the asset condition
with asset management systems for big data analytics. Issues,
challenges, and future research directions are summarized
below.

A. GAPS AND ISSUES IN CURRENT RAILWAY ASSET
MANAGEMENT WITH APPLICATIONS OF BIG

DATA ANALYTICS

The collection and updating of asset condition data at orga-
nizational levels of control are extremely time-consuming.
Collection and classification of condition monitoring data is
an issue in terms of management of large amounts of data
and duplication of resources within the asset management
discipline. This may involve the collection of historical data
with current component failure data to uncover new patterns
for prognostics applications. A change in approach from
model-driven to data-driven algorithms may be required to
analyze data/information collected from the system(s) and the
operational environment. The addition of unstructured data
into the mix and the requirement to identify relationships
for decision-making purposes can increase the complexity
of the challenge. Timelines of the analysis may be difficult
with the volume of the asset condition data being collected.
Smart frameworks with machine learning combined with,
for example, fuzzy systems models can be used to optimize
the decision-making based on the data-driven inputs [199].
However, the proprietary nature of the condition monitoring
systems used to collect the data can restrict the ability of end-
users to integrate condition monitoring data from different
sources to provide aggregate views of asset condition. This
has led to the development of open systems architecture for
condition-based maintenance. Condition monitoring systems
data collection can provide timely data for maintenance plan-
ning at scales appropriate to a variety of maintenance activi-
ties. The problems of quality control and quality monitoring
from the perspective of condition monitoring data classifica-
tion by non-experts require development of new approaches.
Disparate and large registers of all asset types, most of which
are remote, are all subject to annual verification primarily
motivated by financial accounting concerns. The volume of
data collected is so huge that it has become humanly impos-
sible to do any intelligent data analysis. Hence, there is an
increased reliance on automated big data analysis tools which
requires an increased level of testing and verification. A lot
of managerial tasks including research works need to be done
in a large railway organization before a condition-monitoring
database is established and can be used in assisting in asset
management decisions.

Evidence-based asset management models are currently
being developed to meet the requirement for justification
of investment decisions in assets. Applying big data ana-
lytics design methods can provide potential values in the
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transportation field in terms of cost, risk reduction, delay
reduction and optimization. A well-developed evidence-
based database is very helpful to transportation executives
and researchers as it is more strategic by taking advantage of
proven and useful information. Utilization of evidence-based
approaches with risk management requires a great use of
condition assessment data. This can help in the identification
and measurement of benefits achieved with the optimization
of the asset under management. One of the key tasks con-
fronting the asset management custodian is the selection of
the approach for big data analytics techniques for classifica-
tion of condition data. Approaches utilizing big data analytics
with design data combined with organic data from measure-
ments during the asset lifecycle may be required including
a selection of big data technologies discussed earlier. Asset
integrity reports utilizing asset condition data are required for
compliance with the relevant standards or regulators’ require-
ments within Australia and overseas. Current approaches do
not provide the required accuracy levels for classification
of condition monitoring data where there are several asset
condition classes. Hence further development of autonomous
approaches as outlined using artificial intelligence may assist
in meeting the required accuracy levels required by organiza-
tions for safety-critical assets.

B. THE FUTURE OF BIG DATA IN INFRASTRUCTURE

ASSET MANAGEMENT

A key challenge facing railway asset owners and operators
is in being able to view the interdependencies of various
systems that are a part of the railway network and identify
root causes for failures and system behaviors before delays
occur [200]. This may also involve big data mining with spa-
tial and Spatio-temporal properties to provide visualization of
trends and relationships between assets. The spatial dimen-
sion would involve the real-time location of key assets and
their respective systems and sub-systems in each key asset.
Technologies exist to provide the real-time location informa-
tion, but generally are stored separately to measurement and
log data. The temporal dimension would involve the display
of historical and current asset condition measurements with
performance criteria as a sub-category. The temporal dimen-
sion would require the integration of design and organic
data to a common asset data model with machine learning
techniques utilized to identify the relationships. While there
would be value in displaying asset performance in the two
dimensions, namely spatial and temporal, the further value
could be derived if a third dimension could be added to show
the interdependencies and hierarchy of various systems that
make up the network. The third dimension would also involve
artificial intelligence with expert systems and machine learn-
ing utilized to identify the interdependencies and hierarchies.
While building information management (BIM) systems exist
for fixed assets, a key challenge will be in integrating the fixed
asset information with mobile asset information using het-
erogeneous data sources. The development of scenario-based

15559



IEEE Access

P. McMahon et al.: Requirements for Big Data Adoption for Railway Asset Management

modeling with PHM would also become a necessary adjunct
to big data analytics in railway asset management.

C. RECOMMENDED RESEARCH DIRECTIONS IN USING
BIG DATA ANALYTICS

Research efforts are required to investigate and develop com-
monly agreed processes and methods for application of big
data analytics as well as well accepted tools for integration
of asset data including condition monitoring data in railway
asset management systems.

Big data analytics technologies are still in their infancy
within the IT pillars of rail organizations. It is recommended
that the research efforts could be directed to define potential
big data analytics frameworks, and to integrate different big
data approaches for condition and failure monitoring.

The introduction of big data analytics to the railway sector
will require further development of tools and models for
investigation of asset condition status such as using multi-
state degradation modeling and correlation analysis of man-
agement activities in asset lifecycle.

Application of Blockchain technology in the railway indus-
try is at the start-up stage but the research direction is promis-
ing. The future research efforts are directed at developing new
frameworks and standards for the industry to use and eas-
ily implement their Blockchains. New technologies will be
explored to handle the issues related to the required speed and
scalability when developing Blockchains for a complicated
and busy network.

On the basis of the work presented in this paper, the next
step would be directed at providing a review of application
of big data analytics to PHM for railway communication
networks, infrastructure and transportation systems.
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