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ABSTRACT To measure conflict between two basic probability assignment functions plays the key role of
conflict management in Dempster-shafer evidence theory. In this paper, a new conflict measure is proposed.
First, the classical pignistic probability transform (PPT) is generalized as pignistic belief transform (PBT).
One of the advantages of PBT is that it can assign belief to multiple sets. When the belief is assigned to single
element, the proposed PBT is degenerated as classical PPT. Then, the betting distance of two pignistic belief
transforms is proposed, which can be used as a new conflict degree of BPAs. Finally, a numerical example
is illustrated to show the use of the proposed method to combine conflicting evidence.

INDEX TERMS Dempster-Shafer evidence theory, belief function, conflict, pignistic belief transform.

I. INTRODUCTION
In order to enhance the efficiency of decision system,
multi-sensor data fusion is widely used [1]–[5]. There are
many methods to deal with information fusion under uncer-
tain environment, such as fuzzy sets [6], rough sets [7],
D numbers [8], [9], Dempster-Shafer evidence theory [10],
[11] and so on [12]. Many new methods to deal with
uncertain information based on fuzzy sets are proposed
[13]–[18]. Dempster-Shafer evidence theory takes advantage
of handling imprecise and unknown information [19]–[21]
since the basic probability assignment (BPA) provides a
more flexible way to process uncertainty than probability
distribution [22]–[27].

In addition, Dempster rule in evidence theory can com-
bine two or more BPAs and plays an important rule in
information fusion. However, Zadeh has found that Demp-
ster combination rule leads to counter-intuitive results in
highly conflicting environment [28]. Therefore, Yager [29],
Dubois and Prade [30], Smets [31], Muphy [32] and others
have proposed some new methods to combine the conflicting
BPAs [33]–[35].

However, conflict management is still an open issue
[36]–[38]. Even conflict measurement of BPA is argued
[39]–[42]. Jousselme et.al proposed the distance between
BPAs [43], which is widely used in conflicting data fusion
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[44]–[46]. But, Liu argued that only the distance function is
not enough to measure the conflict. As a result, the distance
between betting commitments combined with the classical
conflict coefficient k are constructed a two dimensional con-
flicting measure [47]. However, it still has some problems in
some situations. When the set A in the difBetP in [41] is not a
single element set, pignistic probability transform(PPT) used
in difBetP just sum up the value of BetP of each element and
distribute belief to each element rather than its power sets
equally.

To address the issue in [47], Smets’ Pignistic probabil-
ity transform (PPT ) [48] is generalized as pignistic belief
transform(PBT). Based on the presented PBT, a new conflict
measure of BPA is proposed. The presented PBT (A) has two
parts: (1) belief from subsets of A. (2) belief from those that
are not contained in A. Firstly, belief of sets which contain
A is assigned to its power sets equally. Then belief of sets
that have an intersection with A is assigned to A with the cor-
responding weight. Conflict is measured by calculating the
proposed betting distance between the PBT s. Some numeri-
cal examples are used to show the efficiency and rationality
of the proposed method.

The rest of the paper is organized as follows. In section 2,
the basic concepts and definitions in evidence theory, a typical
combination example with high conflict, distance between
BPAs [43], pignistic possibility transform [48] and distance
between betting commitments [47] are reviewed. In section 3,
the proposed method is introduced and some numerical
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examples are given to show its efficiency and rationality.
In section 4, we show the proposed method’s application
in data fusion and compare it with some existed methods.
Finally, section 5 concludes the paper by showing the pro-
posed method’s advantage and limitations.

II. PRELIMINARIES
In this section, some preliminaries are briefly introduced,
including Dempster-Shafer evidence theory [10], [11], dis-
tance betweenBPAs [43], Pignistic probability transform [48]
and distance between betting commitments [47].

A. DEMPSTER-SHAFER EVIDENCE THEORY
Real world is very complicated [49]–[52]. How to deal with
uncertainty is still an open issue [53]–[56]. The basic con-
cepts of evidence theory, including BPA and Dempster com-
bination rule, are introduced as follows.
Definition 1: Let 2 be a finite nonempty set of mutually

exclusive hypotheses called discernment frame. [10], [11]

2 = {H1,H2, · · · ,Hi, · · · ,HN } (1)

The power set of 2 is defined as follows

22={∅, {H1}, · · · ,{HN }, {H1,H2},· · ·, {H1,· · ·,Hn}} (2)

where ∅ is an empty set.
Definition 2: Amass function m, is a mapping of 22, which

is defined as follows [10], [11].

m : 22→ [0, 1] (3)

which satisfies the following conditions:

m(∅) = 0
∑
A∈22

m(A) = 1 (4)

The mass function m(A) represents how strongly the evi-
dence supports A, which is also called the basic probability
assignment function (BPA).
Definition 3: The belief function(Bel) is defined as follows

[10], [11],

Bel(A) =
∑
B⊆A

m(B) (5)

It’s used to measure one’s belief that hypothesis A is true.
Definition 4: The plausibility function(Pl) is defined as

follows [10], [11],

Pl(A) =
∑

A∩B6=φ

m(B) (6)

It’s used to measure the total belief that can be assigned
to A. The value of probability that hypothesis A is true should
be in the interval [Bel(A),Pl(A)].
Combined evidence can be obtained after usingDempster’s

combination rule [10], [11].

Definition 5: Given two BPAs m1 and m1, Dempster com-
bination rule is defined as follows [10], [11].m(∅) = 0

m(A) =

∑
B

⋂
C=A

m1(B)m2(C)

1−K

(7)

where K =
∑

B
⋂
C=∅

m1(B)m2(C).

Combination rule plays an important role in evidential
reasoning and decision making [57]. It is markable that K
is the coefficient to measure the conflict between evidences,
and the combination rules could not be used when K > 1.

B. A TYPICAL CONFLICT EXAMPLE
Given two BPAs, let

m1(A) = 0.99, m1(B) = 0.01, m1(C) = 0

m2(A) = 0, m2(B) = 0.01, m1(C) = 0.99

Applying Dempster combination rule, then

m1 ⊕ m2(A) = 0

m1 ⊕ m2(B) = 1

m1 ⊕ m2(C) = 0

And m⊕(φ) = 0.99
Evidence fusion with Dempster combination rule gets

counterintuitive results when there is high conflict. It’s essen-
tial to combine evidences when high conflict exists [58] and
conflict measure is a key point.

C. DISTANCE BETWEEN BPAs
Definition 6: The distance between BPAs is is defined

as [43]

dBPA =

√
1
2
(m1 − m2)TD(m1 − m2) (8)

where D is 2�× 2�-dimensional matrix with d(i, j) = |A∩B|
|A∪B| ,

and A ∈ 2�, B ∈ 2� are the names of columns and rows
respectively (note, we define |∅

⋂
∅|/|∅

⋃
∅| = 0).

D. PIGNISTIC PROBABILITY TRANSFORM
Definition 7: Pignistic probability transform(PPT) is

defined as follows [48],

BetP(A) =
∑
B⊆2

|A ∩ B|
|B|

·
m(B)

1− m(φ)
(9)

where |B| is the cardinality of B and the essence of PPT
is to convert a BPA function into a probability distribution.
It allocates the belief to each elements equally.
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E. DISTANCE BETWEEN BETTING COMMITMENTS
Let m1 and m2 be two BPAs,
Definition 8: the distance between betting commitments

[47] is defined as follows

difBetPm2
m1
= maxA⊆�(|BetPm1 (A)− BetPm2 (A)|) (10)

which is called the distance between betting commitments of
the two BPAs.

III. PROPOSED METHOD
The intersection of two sets may occupies different pro-
portion in these two sets, while the relevant components
are added together without weight when calculating BetP.
In this paper, sets are classified into three categories and
different weights are given when calculating pignistic belief
transform.

A. PIGNISTIC BELIEF TRANSFORM
To calculate the PBT of set A, we divided the BPA into two
parts, (1)B ⊆ A. (2)C * A. For the first part, the belief is
added together directly. The first part of PBT is obtained. For
the second part, the belief of the set is divided into its power
sets equally. After that, these sets are divided into two parts
(2.1)E ⊆ C,E ⊆ A. (2.2)D ⊆ C,D * A.

As mentioned before, belief of set C is divided into its
power sets. Cardinality of each set in the power set may be
different. And the intersection of each set in the power set
and set A may be different.

An asymmetric similarity measure method between set A
and set B is defined as follows.

S(A,B) =
2|A∩B|

2|A|
(11)

For part 2.1, actually, E represents the subsets of set A∩C .
As a result, 2|A∩C| − 1 is used to represent the number of
the power sets of the intersection of A and C. The cardinality
of E

⋂
C is equal to E

⋂
A. Then belief of set E is added

directly.
For part 2.2, S(A,D) and S(A,C) are calculated and the

quotient of them are used to represent the relevance of
D and A. Then the obtained relevance is set as the weight.
Belief of D is assigned to its element equally and then mul-
tiply the weight. By adding the two parts(part 2.1 and 2.2)
together, the second part of PBT is obtained.
Definition 9: Pignistic belief transform(PBT) is defined as

follows,

Bf (A) = Bd1(A)+ Bd2(A) (12)

It is not normalized. While the first part is defined as
follows,

Bd1(A) =
∑
B⊆A

m(B) (13)

the second part is defined as follows,

Bd2(A)

=

∑
C*A

m(C)
2|C| − 1

· (
∑

E⊆C,E⊆A

|E ∩ C|
|E ∩ A|

+

∑
D⊆C,D*A

|A
⋂
D|

|D|
·
S(A,D)
S(A,C)

)

=

∑
C*A

m(C)
2|C| − 1

· (2|A∩C| − 1+
∑

D⊆C,D*A

|A
⋂
D|

|D|
·
2|A∩D| − 1
2|A∩C| − 1

) (14)

When |A| = 1, the first part becomes

Bd1(A) = m(A) (15)

the second part becomes

Bd2(A) =
∑

C*A,A∩C 6=0

m(C)
2|C| − 1

· (1+
∑
D⊆C,
D*A

1
|D|

)

=

∑
C*A,A∩C 6=0

m(C)
|C|

(16)

Proof: First of all, a symbol M (n, i) is defined.

M (n, i) =
n!

i! ∗ (n− i)!
(17)

And n! = 1 ∗ 2 ∗ 3 ∗ · · · ∗ n.
For the binomial expansion, it’s easy to obtain that

(x + y)n =
n∑
i=0

M (n, i) ∗ x i ∗ yn−i (18)

when x = 1 and y = 1,

(1+ 1)n =
n∑
i=0

M (n, i) ∗ 1i ∗ 1n−i =
n∑
i=0

M (n, i) (19)

and M (n, 0) = 1, so
n∑
i=1

M (n, i) = 2n − 1 (20)

besides,

M (n− 1, i) ·
1

i+ 1
=

(n−1)!
(n−1−i)! · (i+1)!

=
M (n, i)
n

(21)

Then

Bd2(A)

=

∑
C*A,A∩C 6=0

m(C)
2|C| − 1

· (1+
∑

D⊆C,D*A

1
|D|

)

=

∑
C*A,A∩C 6=0

m(C)
2|C| − 1

· (1+
|C|−1∑
i=1

M (|C| − 1, i)
i+ 1

)

VOLUME 8, 2020 15267



Q. Cai et al.: PBT: New Method of Conflict Measurement

=

∑
C*A,A∩C 6=0

m(C)
2|C| − 1

· (
M (|C|, 1)
|C|

+

|C|−1∑
i=1

M (|C|, i+ 1)
|C|

)

=

∑
C*A,A∩C 6=0

m(C)
(2|C| − 1) · |C|

· (
|C|∑
i=1

M (|C|, i))

=

∑
C*A,A∩C 6=0

m(C)
(2|C| − 1) · |C|

· (2|C| − 1)

=

∑
C*A,A∩C 6=0

m(C)
|C|

(22)

As a result,

Bf (A) = Bd1(A)+ Bd2(A)

= m(A)+
∑

C*A,A∩C 6=0

m(C)
|C|

= BetP(A) (23)

Example 1: Suppose the discernment frame is � =

{A,B,C} and

m(B) = 0.3, m(C) = 0.1

m(A,B) = 0.3, m(�) = 0.3

A simple example is given to prove that equivalence of
BetP(A) and proposed function Bf (A), results are shown in
Tab.1.

TABLE 1. Values of BetP and proposed function Bf .

Example 2: Suppose the discernment frame is � =

{A,B,C,D} and

m(B) = 0.2, m(C) = 0.1

m(A,B) = 0.3, m(�) = 0.4

and we list Bel function,Pl function, and the possibility func-
tion in Tab.2.

The proposed method works when the Dempster combi-
nation rule works, which means K<1. The value of Bf is in
the interval [Bel(A),Pl(A)], which shows that the method for
allocation is acceptable.

B. CONFLICT MEASURING
Definition 10: Given two PBTs, the betting distance is

defined as follows.

difBf m2
m1
= maxA⊆�(|Bfm1 − Bfm2 |) (24)

The value of difBf m2
m1 is used to measure the conflict.

Then the example in [47] was used and dBPA [43], difBetP
[47] and the proposed method were compared.

TABLE 2. Values of belief function Bel ,plausibility function Pl and our
possibility function Bf .

Example 3: In [47], let � be a frame of discernment with
20 elements. The first BPA, m1 is defined as

m1(2, 3, 4) = 0.05, m1(7) = 0.05,

m1(�) = 0.1, m1(A) = 0.8

where A is a subset of �.
And the second BPA, m2 is defined as

m2(1, 2, 3, 4, 5) = 1

As the subset A changes, we calculate the value and results
are shown in Tab.3.

FIGURE 1. Comparison of different methods,+→ dBPA,◦ → difBetP ,∗ →
difBf .

Fig.1 shows that the tend of the value calculated with our
method is similar to dBPA [43]. And the minimum conflict
appears when A = {1, 2, 3, 4, 5}. As subset A increments one
more element at a time, from A = {1} to A = {1, 2, . . . , 20},
the value of conflict decreases when the cardinality of A is
less than 5, and increases when it’s bigger than 5. When the
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TABLE 3. Comparison of dBPA,difBetP ,difBf and m⊕(φ) values of m1 and m2 when subset A changes. Here m⊕(φ) = m1 ⊕m2.

TABLE 4. Comparison of Dempster’s combination rule, Murphy’s average combination rule, Deng et.al’s combination rule, Proposed modified average
combination rule.

cardinality of A is close to 20, the upward trend slows down
and the value is finally stable at around 0.9.

It seems unreasonable that the conflict gets the same value
when A = {1, 2, 3, 4} and A = {1, 2, 3, 4, 5} while using
difBetP [47]. As a result, we proposed PBT and measured the
conflict based on it. And the results shows that we only obtain
the minimum conflict when A = {1, 2, 3, 4, 5}, which is the
same as applying dBPA. The overall trend of the proposed
method is similar to dBPA.

However, when the cardinality of A is less than 5, dBPA is
larger than difBf . When the cardinality of A is larger than 5,
dBPA is smaller than difBf . And the value of difBf is not equal
to dBPA in all cases here, which implies that the proposed
method doesn’t work for measuring precise conflict between
BPAs. It works for calculating the relative distance between
conflicting evidence rather than the precise distance.

To test the efficiency, a fictitious example which applies
the proposed method for data fusion is given. And numerical
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results obtained from different combination rules were com-
pared.

IV. APPLICATION IN DATA FUSION
D-S theory is widely used in many fields such as informa-
tion fusion systems [34], [59]–[63], complex network [64],
[65], target identification [66]–[69], decision-making method
[70]–[72], fuzzy systems [73]–[77].

An example of data fusion is given here, which applies the
proposed method.

A. COMBINATION METHOD
The method proposed by Deng in [78] is adopted for data
fusion. But instead of using dBPA [43], the proposed conflict
measuring method was used to calculate the similarity of two
pieces of evidence. And brief procedure is given as follows.

Firstly, calculate each similarity between different evi-
dences.

Simmi,mj = 1− difBf
mj
mi (25)

The remaining part is the same as that in [78]. Pseudo code is
as follows. If there are k evidence.

1: Let sum← 0,WAE ← 0;
2: for each i ∈ [1, k] do
3: Sup(i)← 0;
4: for each j ∈ [1, k] and i 6= j do
5: Sup(i)← Sup(i)+ Simmi,mj ;
6: end for
7: sum← sum+ Sup(i);
8: end for
9: for each i ∈ [1, k] do
10: Crd(i)← Sup(i)

sum ;
11: end for
12: for each i ∈ [1, k] do
13: WAE ← WAE + Crd(i)× mi;
14: end for
15: Use Dempster’s combination rule to combine k WAEs k-

1 times;

B. NUMERICAL EXAMPLE
A fictitious example is illustrated to show the use of the
proposed combination rule. A is supposed to be the real target
in a multisensor-based automatic target recognition system.
And from five different sensors, five bodies of evidence are
collected which is shown as follows:

(R1,m1) = ([{A} , 0.6], [{A,B,C} , 0.1],

[{A,B,C,D} , 0.3])

(R2,m2) = ([{A} , 0], [{B} , 0.8], [{B,C,D} , 0.2])

(R3,m3) = ([{A} , 0.4], [{A,B,C,D} , 0.6])

(R4,m4) = ([{A} , 0.6], [{A,B,D} , 0.2],

[{A,B,C,D} , 0.2])

(R5,m5) = ([{A} , 0.3], [{A,B} , 0.2], [{A,C} , 0.2],

[{A,C,D} , 0.3])

m2 is a bad evidence. As shown in Tab.4, system with
Dempster’s combination rule [10], [11] draw the conclusion
that the target is B, which is counterintuitive. Murphy’s aver-
age combination rule [32], Deng et.al’s rule [78] and the
proposed method all draw the correct conclusion that the
target is A. However, when applying Murphy’s combination
rule [32], the probability that the target is A is always lower
than the other twomethods in this example. And the proposed
method has the same high accuracy as Deng et.al’s method
[78], which implies that the proposed method is efficient and
rational. When bad evidence is involved in the calculation,
Dempster’s combination rule [10], [11] would get wrong
result sometimes, especially when evidence that distribute no
belief to the right target. Murphy’s average combination rule
[32], Deng et.al’s rule [78] and the proposed method assign
weight to each evidence so that each target is possible to be
the final result. When good evidence is more than bad evi-
dence, the right target would be assigned bigger probability.
Differently, Deng et.al’s rule [78] and the proposed method
use similarity to assign the weight rather than treating each
evidence equally. As a result, the probability of A in the
results obtained from these two methods is higher.

The presented method changes the way for attaining the
similarity in order to change the SMM . It retains the original
advantage in [78] that the weight of bad evidence is decreased
by defining the similarity matrix and use the weighed average
to combine the evidence.

V. CONCLUSION
Conflict management is still an open issue. Conflict measur-
ing is a key problem in conflict management. By considering
adding weight when combining evidence and allocate belief
to its power set equally,PBT is presented and a newmethod to
measure the conflict has been proposed. A fictitious example
is illustrate to show that the proposed method can get true
target when a certain amount pieces of good evidence are
obtained. Besides, PBT is the generalized form of PPT , and
Bf (A) can be represented by the BetP(A) [48] when the cardi-
nality of A in Bf (A) equals to 1. Differently, PBT provides a
new way to allocate belief to sets with multiple elements by
setting weight. And it leads to different results when compare
difBf with difBetP in some situations. The proposed method
has the promising aspect in real engineering. One of our
ongoing works is to decrease the complexity of the proposed
method.
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