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ABSTRACT The logical representation and analyses of biological systems provide us with valuable insights.
Inherent fluctuations play an important role in the long-term behaviors of biological systems. In this work,
we mainly investigate the effects of function perturbations that might contribute to the development of
effective therapies. We propose a stochastic model for one-bit perturbations and perform effective analyses
of biological systems subjected to function perturbations. In addition, we also consider the scenario of a
multibit perturbation (i.e., a one-bit perturbation occurring in multiple columns); thereby, we can determine
the most effective column combination for the purpose of maximizing or minimizing the desired signal
probability. Through stochastic analysis of the caspase3 signaling pathway, the corresponding practicability
and effectiveness are demonstrated. Consequently, appropriate therapies can be determined to maximize or
minimize the probability of caspase3 signaling.

INDEX TERMS Stochastic analysis, signaling pathway, function perturbation, potential target or target
combination.

I. INTRODUCTION
Biological functions are widely used to indicate the
interactions among genes, proteins, and other intracellular
molecules. Biological systems (either signaling pathways or
genetic networks) are used to mediate the signal transduc-
tion inside cells and have been extensively studied. The
chains of interactions have been actively investigated to better
understand biological processes at the system level. Thus
far, to gain biological insights, various approaches have been
proposed, including logical models [1]–[3] and continuous
models using differential equations [4]–[7]. Among those
models, logic models, especially Boolean networks (BNs),
have been thoroughly studied and have been adopted as an
informative and effective means of qualitatively modeling
biological systems [2], [3], [8], [9].

For biological systems, considerable research has focused
on investigating dynamics or performing robustness analysis
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of situations with fluctuations. State perturbations and func-
tion perturbations are predominantly investigated. In [10],
the effects of gene perturbations were thoroughly investigated
with the adoption ofprobabilistic BNs (PBNs). Moreover,
the effects of stochasticity and variability were further investi-
gated in [11]. Furthermore, state perturbations in multivalued
scenarios, usually referred to as probabilistic multiple-valued
networks (PMNs), were studied in [12], [13]. To improve
the efficiency of analyzing systems withstate perturbations,
stochastic models have been proposed for PBNs and PMNs
in [14] and [15], respectively. In addition, the authors in [16]
consider the effects of state perturbations in context-sensitive
genetic networks. Sometimes, the dysfunction of a certain
gene node might lead to an undesirable transition from a nor-
mal network to a defective one. Better understanding of the
importance of molecules can provide valuable insights for
the identification of potential drug targets [17], [18]. Besides,
the authors in [19] thoroughly studied the node vulnerability
in signaling pathways where a certain gene node was deliber-
ately suppressed or mutated [19]. However, thesemethods are
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usually very time consuming and have a high computational
complexity, which hinder the further applications in the real
worlds.

Consequently, we mainly focus on varying the rule-based
structure, i.e., function perturbation, which also provides
valuable insights into biological systems. Function perturba-
tion is used to model the influences of uncertainty and latent
variables that can be formulated by varying the updating
functions. Structural intervention has the potential to alter
the dynamic behavior permanently while enabling the sys-
tem to evolve in a desirable direction. In [20], the authors
thoroughly investigated the effects of function perturbation
on the attractors of BNs. To perform an analytic study of
function perturbation, perturbation theory was used to ana-
lyze finite Markov chains in [21]. Moreover, the impacts
of function perturbations were also investigated and applied
to a D. melanogastergene network [22]. In [23], algorithms
were proposed to identify the optimal one-bit perturbation
strategy for BNs. For simplicity, the function perturbation,
including one-bit perturbations and multi-bit perturbations,
in this work mainly refers to the alteration of updating rules.
One-bit perturbation refers to a one-bit flip (i.e., changing
from 1 to 0, or vice versa) of the truth table. However, these
methods are usually not able to obtain the explicit solutions,
which can’t be use to real applications directly.

To obtain therapeutic benefits, we might determine desir-
able strategies by applying function perturbations to certain
molecules. Thus, attractive targets can be determined to facil-
itate the design of intervention strategies aiming to alter the
direction of a system’s evolution or to maximize (or mini-
mize) the signal probabilities. As discussed above, stochastic
analysis can improve the efficiency of investigating biological
systems. Thereby, we try to perform a stochastic analysis of
systems with function perturbations in this work. Further-
more, as in [24], a pair of molecules with high vulnerability
typically includes a highly vulnerable molecule. Inspired by
that finding, we also consider multi-bit perturbation for the
purpose of maximizing or minimizing signal probabilities.

Overall, this paper makes the following three folds contri-
butions:

1. first, stochastic models for biological systems are pro-
posed with relationships that are implemented by logic gates.

2. Then, we perform the corresponding stochastic analysis
in order to study the effects of function perturbations on sig-
naling pathways effectively. To identify desirable strategies,
we also study the impacts of applying function perturbations
(either single column or column combinations) to different
molecules.

3. To save space without losing generality, in the present
study, we mainly focus on the investigation of signaling
pathways. Moreover, with modifications, the analyses in this
work are also applicable to multistate scenarios.

The remainder of the paper is organized as follows.
Section II first reviews the fundamentals related to the
stochastic computational approach. Section III presents an
introduction to one-bit perturbations and the corresponding

stochastic architecture. In Section IV, the model is gener-
alized subsequently to consider multi-bit perturbation. Sub-
sequently, analyses of several benchmarks are performed in
Section V; moreover, we also study the effects of incorporat-
ing function perturbation into the caspase3 signaling pathway
through stochastic analysis. Finally, Section VI concludes the
manuscript.

II. STOCHASTIC COMPUTATION
A. PGMs FOR RELIABILITY EVALUATION
Aprobabilistic gate model (PGM) relates the output probabil-
ity of a gate to its input and error probabilities; this is accom-
plished according to the function and malfunction (such as
in the presence of an error) of the gate [30]. In general,
the output probability of a gate can be calculated by the
following equation,

Z = P(output‘‘1’’|gatefaulty) · P(gatefaulty)

+P(output‘‘1’’|gatenotfaulty) · P(gatenotfaulty). (1)

Consider a von Neumann fault, i.e., a fault that flips the
correct output of a gate and resembles the behavior of a soft
error. Let’sdenotethe errorrate, i.e., s = P(gate faulty), and p,
the fault-free output probability, i.e., p = P(output ‘‘1’’| gate
not faulty). The following equation is then applicable to any
logic gate/function for the calculationof its output probability,

Zv = (1− p) · ε + p · (1− ε). (2)

Stuck-at faults can also be modeled in a PGM. For a stuck-
at-1 fault, (6) becomes

ZSA1 = ε + p · (1− ε) (3)

For a stuck-at-0 fault, this is given by

ZSA1 = p · (1− ε). (4)

An accurate algorithm using the PGMs accounts for signal
dependencies in a circuit [30]. If all inputs are mutually
independent, reconvergentfanouts are the only topological
structures that introduce signal correlations in a circuit with
no feedback. Signalcorrelationscanbe eliminatedby decom-
posing a circuit into twosub-circuits for each reconvergent
fanout. When all reconvergent fanouts are eliminated by this
fanout decomposition, the gate PGMs can then be applied to
obtain the reliability of the original circuit. As the required
computation almost doubles for each reconvergentfanout,
however, the PGM algorithm has a computational complexity
that increases exponentially with the number of dependent
reconvergent fanouts [30]. As applicable to any analytical
approach, the accurate analysis of large circuits is therefore
likely to be intractable due to its very large computational
overhead.

B. STOCHASTIC COMPUTATIONAL MODELS (SCMs)
For reliable circuit design, a stochastic computational
approach was initially presented in the 1960s [25]. For
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stochastic analysis, signal probabilities are indicated by ran-
dom bit streams (also referred to as stochastic sequences)
by setting a proportional number of bits to a specific
value [26].

This computational capability of stochastic logic allows
the numerical evaluation of circuit reliability using stochastic
computational models(SCMs).SCMs are based on the opera-
tion of stochastic logic and the notions of PGMs.As discussed
previously, any gate affected by a von Neumann fault can
be modeled by (2). In fact, (2) can be implemented by the
stochastic logic of an XOR gate [31], as follows:

XORcto(p, ε) = p(1− ε)+ (1− p)ε, (5)

where p is the fault-free output probability and ε is the gate
error rate. The special case of a stochastic XOR is used
to compute (2) because gate errors are assumed to occur
independently. The general model must be used if there is a
correlation between the gate error and the input signals. (5)
shows that regardless of the type of logic gate modeled by
PGM, (2) can be implemented by a stochastic XOR logic.
Therefore, an SCM can be obtained by adding an XOR gate
to an unreliable gate and using an input of XOR to implement
the gate error rate. In this case,

p = P(X1 = 1 and X2 = 1), (6)

and the XOR gate computes (5).
In addition to the von Neumann fault that was originally

modeled in [31], the stuck-at faults can also be modeled by
SCMs. For (3) considering a stuck-at-1 fault, an SCM can be
constructed by adding an OR gate to the unreliable gate and
using an input of the OR to implement the gate error rate, as

ORcto(p, ε) = p+ ε − p · ε = ε + p · (1− ε). (7)

For a stuck-at-0 fault, AND and NOT gates are used to
implement the function of (8):

ANDcto(p, ε) = p · (1− ε). (8)

As indicated in (6), (7) and (8), an SCM is universal,
because it can be constructed for an arbitrary logic gate.
Moreover, it also masks errors through the function of a logic
gate; so logicmasking is explicitly considered in an SER anal-
ysis. Signal correlations are inherently accounted, so the use-
ofSCMssignificantlyreducesthecomputational complexity of
a probabilistic analysis by using redundancy in the time
domain and stochasticlogicfor processingand calculating the
gate error rate.

Fig. 1 illustrates the logic gates adopted for stochastic com-
putation in this manuscript. As shown in Fig. 1(a), an inverter
can efficiently compute the complement of a probability,
whereas the multiplication of two independent probabilities
is implemented with the adoption of an AND gate (Fig. 1(c)).
Moreover, the weighted sum can be efficiently implemented
by the 2-to-1 multiplexer shown in Fig. 1(e), and the out-
put is affected by the distributions of zeros and ones in
the control sequence. For a simple example, a sequence

FIGURE 1. Boolean logic gates for stochastic computation. (a) An
inverter; (b) buffer; (c) AND; (d) OR; (e) XOR; (f) 2-to-1 multiplexer.

of 10 bits is adopted to encode the probabilities, as shown
in Figs. 1(a)–(d). To achieve a significantly higher accuracy,
adopting a longer sequence length is a reasonable method,
as shown in Figs. 1(e)–(f).

By propagating the binary sequences through logic gates,
a probabilistic computation can be efficiently conducted.
However, the obtained results are not deterministic but are
probabilistic because of the inevitable stochastic fluctuations.
With the adoption of non-Bernoulli sequences, the fluctu-
ations can be reduced to a large extent [26]. That is, if a
reasonable sequence length is adopted, the inaccuracy can
be significantly reduced or can even be negligible.Moreover,
signal correlations are also inherently handled by the bitwise
dependencies.

III. ONE-BIT PERTURBATION
For biological systems, we usually assume that eachmolecule
possesses two activity states (i.e., active or inactive, usually
indicated by 1 and 0, respectively). For a simple example,
a BN consisting of n nodes (denoted x1, x2, · · ·, xn) is inves-
tigated here, and the network is described as:

x1(t + 1) = f1(x1 (t) , x2 (t) , · · · , xn(t))
x2(t + 1) = f2(x1 (t) , x2 (t) , · · · , xn(t))

...

xn(t + 1) = fn(x1 (t) , x2 (t) , · · · , xn(t))

(9)

where fi is a Boolean updating function for xi. Similarly, sig-
naling pathways can also be described by representing rela-
tionships among molecules with Boolean functions. Given a
molecule xi with ki parent molecules, i.e., xi1, xi2, · · · , xiki
(ki ≤ n), the state of xi at time t + 1, i.e., xi(t + 1),
is represented as:

xi(t + 1) = fi(xi1(t), xi2(t), · · · , xiki (t)) (10)

where ki represents the indegree for molecule xi and fi denotes
the corresponding Boolean function. According to the defini-
tion of a one-bit perturbation in Section 1, if the perturbation
occurs at the jth entry (i.e., flipping the value at the jth entry),
the perturbation is denoted fi→ f (j)i .
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FIGURE 2. (a) Stochastic model for f2 → f (5)
2 ; (b) a general stochastic model.

TABLE 1. Truth table for f2
(
x1, x2, x3

)
.

TABLE 2. Signal probability distribution of x1, x2, x3.

Given the occurrence of a function perturbation, the cor-
responding output signal probability distribution is likely
affected. These changes might be helpful in diagnosing
changes caused by a disease, radiationtherapy, drug treat-
ment, etc.Nevertheless, function perturbation is studied in
this manuscript from another perspective (specifically, not as
an identification issue but a utilization issue). We focus on
developing function perturbation strategies to encourage the
system to evolve in a desirable direction. We know that BNs
and signaling pathways can both be described by Boolean
functions, as indicated by (9) and (10), respectively; hence,
the function perturbation models for BNs are also applicable
to signaling pathways.
Example 1: Here, we consider a BN consisting of three

molecules; f2 represents the updating function for x2 and is
denoted f2 (x1, x2, x3) = OR(AND(x1, x2), x3), where x2 is a
molecule with an indegree of three. According to the analysis
of f2, the corresponding truth tableis listed inTable 1.

With the provided signal probabilities for x1, x2 and x3 (i.e.,
p(x1) = 0.4, p(x2) = 0.3, p(x3) = 0.8), the probabilities
for different state combinations are illustrated in Table 2.
Assuming a one-bit perturbation occurs at the 5th column
(i.e., f2 → f (5)2 ), as we see in Table 2, the value at the 5th
entry f2 (0, 1, 1) = 1 will switch to f̃2 (0, 1, 1) = 0.

According to Table 2, the probabilities for x2 being
1 and 0 before and after the one-bit perturbation are
calculated as

p(1) = 0.096+ 0.024+ 0.224+ 0.144+ 0.336 = 0.824

and

p(0) = 0.056+ 0.036+ 0.084 = 0.176,

respectively. However, given the occurrence of f2 → f (5)2 ,
the corresponding signal probabilities are calculated as

p′ (1) = 0.096+ 0.024+ 0.224+ 0.336 = 0.68

and

p′ (0) = 0.056+ 0.036+ 0.144+ 0.084 = 0.32,

respectively. Similar analysis can be performed if f2 → f (i)2
occurs (j ∈{1,2, · · · , 8}); the corresponding results obtained
through accurate analysis are presented in Table 3.

For a simple example, a one-bit perturbation at
f2 (x1, x2, x3) = OR(AND(x1, x2), x3) is used here. A stochas-
tic architecture for f2 → f (5)2 is presented in Fig. 2(a).
Initially, the signal probabilities for x1, x2, x3 are encoded as
stochastic sequences (i.e., S (x1), S (x2) , and S (x3), respec-
tively (a longer sequence is usually required to improve the
accuracy for stochastic analysis)). By propagating sequences
through the stochastic architecture as shown in Fig. 2(a),
the output sequence can be efficiently derived and further
used to determine the signal probability.

For simplicity, 8 bits from the sequences (correspond-
ing to the number of possible combinations of x1, x2, x3 as
shown in Table 2) are adopted for an illustration here. For
the input combination 011, the output equals 1, which is
anticipated to be switched to 0 given the occurrence of a
function perturbation at the 5th entry (marked in red). This
switch can be easily implemented with the adoption of a
2-to-1 multiplexer (with a control sequence of SC ). For SC ,
if the function perturbation is occurring at the ith entry, then
the entry corresponding to the anticipated state combination
should be 1. For instance, in Fig. 2(a), we are supposed to
perturb the 5th entry; thus, the entries with an input combi-
nation of 011 equal 1. According to the mechanism of the
multiplexer, if (SC )i = 1, the corresponding bit in the output
sequence for f2 is flipped, which is efficiently implemented
by an inverter; otherwise, the corresponding bit is main-
tained. Hence, a control sequence of 00001000 is necessary
for f2→ f (5)2 .
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TABLE 3. Signal probabilities for x2 with the occurrence of f2→f (f)
2 . For

stochastic analysis, the adopted sequence length is 10K.

Thus, the remaining problem is proposing a stochastic
architecture to derive SC from S (x1), S (x2) , and S (x3).
As indicated by the example in Fig. 2(a), we can construct
the architecture with the adoption of minus and abs gates,
where the minus gate outputs the difference between two
inputs and the abs gate gives the absolute value of the input.
For the 5th entry, S1, S2 and S3 can be adopted to encode
the anticipated entry. By feeding the sequences through the
stochastic architecture, we can obtain S ′ (x1), S ′ (x2) , and
S ′ (x3). As we see, the bits at the 5th entries equal 0; then,
an OR gate can be adopted. Hence, a sequence S is obtained;
the bit corresponding to the combination 011 equals 1, while
the other bits equal 0. That is, the previously mentioned
control sequence for the 2-to-1 multiplexer is derived with
the proposed stochastic architecture.

Accordingly, one-bit perturbation at any entry (f2 → f (i)2 )
can be easily implemented by varying S1, S2 and S3. More-
over, for a general function f , the corresponding stochastic
model can be easily derived with the adoption of combina-
tions of logic gates, as presented in Fig. 2(b).

The results for perturbations at different entries are
presented in Table 3 and are obtained through different
approaches. As shown in Table 3, various output proba-
bilities are obtained by applying one-bit perturbations at
different entries. Thus, different perturbation strategies can
be adopted according to our expectations. Moreover, as we
see in Table 3, stochastic analysis can predict the output
probability approximately with an acceptable inaccuracy. The
disparity incurred by the inevitable stochastic fluctuations can
be reduced greatly by increasing the sequence length.

If f2→ f (2)2 occurs, the results obtained by stochastic anal-
ysis are the same as those obtained by an accurate analysis.
For f2→f (2)2 , the truth table is further presented in Table 4.
Here, the signal probability after f2 → f (2)2 is calculated
as p′ (1) = p(x3) = 0.8 as f2 is changed to f̃2 = x3,
which holds regardless of the states of x1 and x2. Thereby,
as in Table 3, the results obtained through stochastic analysis
with the occurrence of f2→ f (2)2 are accurate, as p(x3) can be
accurately encoded.

For x2, the state of 1 is anticipated to be desirable. The
results of applying a one-bit perturbation at different entries
are presented Fig. 3. As we see in Fig. 3, we can apply a one-
bit perturbation at the 4th, 6th, or 8th entry for the purpose

TABLE 4. Signal probability distribution of x1, x2, x3 when f2→f (2)
2 .

FIGURE 3. Signal probabilities obtained through stochastic analysis (the
sequence length is 10k).

of increasing the probability of being expressed (i.e., p(1)).
Moreover, applying a one-bit perturbation at the 8th entry
results in the highest probability, whereas the perturbation
occurring at the 7th entry is themost undesirable, as the lowest
probability is obtained.

IV. MULTIBIT PERTURBATIONS
Furthermore, the previously discussed perturbations might
also occur at multiple entries, and the output probability is
likely to be affected to a larger extent than that for the incor-
poration of only a one-bit perturbation. The stochastic model
of f2 with a two-bit perturbation (occurring at the 3rd and 5th
entries) is presented in Fig. 4(a) (for simplicity, the sequence
length is 8 bits here, corresponding to the possible combina-
tions of x1, x2 and x3). As shown in Fig. 4(a), after propagating
S(x1), S (x2) , and S(x3) through the stochastic architecture
in the lower box, two stochastic sequences S1 and S2 are
obtained. Please refer to the explanation for the architecture
in Fig. 2 in Section III for details. If S1,i = 1, then the
outputs of the entries corresponding to (S(x1), S(x2)S(x3)) =
011 are anticipated to be flipped. Similarly, the outputs for
entries corresponding to 101 will also be changed. Here,
in order to incorporate two-bit perturbation, an OR gate is
used to combine S1 and S2. Hence, the control sequence for
the 2-to-1 multiplexer with which the anticipated column
combination is to be perturbed can be obtained. Similarly, any
possible combination of two-bit perturbation can be easily
implemented. Moreover, a general stochastic model can be
constructed for a general function f , as illustrated in Fig. 4(b).
The simulation results are presented in Fig. 5 for two-bit per-
turbation (3rd and 5th) via stochastic analysis Here, for sim-
plicity, we also assume that the state of 1 for x2 is desirable.
According to the analysis in Section III, a one-bit perturbation
at the 4th, 6th, or 8th entry can increase the likelihood of
x2 being expressed. As we see in Fig. 5, two-bit perturba-
tions can have a greater effect than one-bit perturbations in
increasing the expressing or suppressing the output. Among
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FIGURE 4. (a) Stochastic model for performing perturbations at the 3rd
and 5th entries in f2; (b) a stochastic model for a general function f with
multibit perturbations.

FIGURE 5. Signal probabilities for two-bit perturbations at the 3rd and
5th entries through stochastic analysis (here, the sequence length is 10k).

the possible combinations in Fig. 5, the entry combinations
of (2,4), (2,6), (2,8), (4,6), (4,8), and (6,8) are options to be
perturbed. As in [24], we know that the pair of molecules with
a higher vulnerability usually includes a highly vulnerable
molecule identified by the single fault analysis. Here, we can
draw a similar conclusion that a desirable two-bit or multibit
perturbation is usually composed of combinations including
a desirable one-bit perturbation. Furthermore, the highest
probability is obtained by performing perturbations at the 4th
and 8th entries. Through comparison with the results in Fig. 3,

FIGURE 6. (a) A activates B directl; (b) scenario without inhibition;
(c) scenario with inhibition.

we can see that for multiple-bit perturbations, the incorpora-
tion of a desirable/undesirable one-bit perturbation will result
in a higher/lower output probability. For the entry combina-
tion of (3,7), an even lower probability is obtained compared
with that of the other strategies.

V. APPLICATION OF THE PROPOSED MODEL
A. CONSTRUCTION OF THE STOCHASTIC PATHWAY
For a signaling pathway, the complex relationships among
molecules can be represented by combinations of logic gates.
As in [17], the following assumptions are also adopted: if the
state of a molecule is affected by those of multiple inputs and
no inhibitors exist, then the molecule will be active if any
one of the inputs is active. Such relationship can be easily
modeled by an OR gate, as shown in Fig. 6(a). Moreover,
if at least one of those inputs is inhibited, then the investi-
gated molecule will be inactive as long as at least one of the
inhibitors is active, as indicated in Fig. 6(b).

Usually, an increased level of granularity indicated bymul-
tivalued variables is introduced for accurate representation of
the states. Without loss of generality, a ternary pathway is
analyzed in [15], where a molecule could be active, partially
active, or inactive, denoted by 2, 1, and 0, respectively. This
representation is biologically meaningful, as the activities or
protein levels of molecules are proved to be partially affected.
For a ternary signaling pathway, the corresponding input-
output relationships can also be represented with the adoption
of ternary logic gates, as shown in Fig. 6. For instance, for
a binary pathway, if B is directly activated by A, then the
relationship is indicated by B = buf (A). In contrast, for a
ternary pathway, the relationship is denoted B = BUF(A).
This relationship is also applicable to multistate pathways.
Hence, a stochastic model for multiple-valued scenarios with
function perturbations can be constructed with minor modifi-
cations (replacing the binary gates with multivalued ones).
To perform stochastic analysis for multivalued scenarios,
randomly permuted sequences consisting of fixed numbers
of multiple values can be adopted, as in [15].

B. ANALYSIS OF THE CASPASE3 NETWORK
Caspase3, which plays an important role in cell death and sur-
vival, is a well-characterized molecule. The widely utilized
signaling pathway shown in Fig. 7 is adopted here to regulate
the activity of caspase3. As we see in Fig. 7, the investigated
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FIGURE 7. Illustration of the caspase3 network. An arrow indicates a positive regulatory interaction or activation between two genes, while a blunt arrow
represents an inhibitory relationship [17].

FIGURE 8. Signal probabilities for molecules with 1 indegree subjected to
a one-bit perturbation.

caspase3 pathway typically originates from EGF , insulin,
and TNF , and the pathway is composed of 21 molecules
(including three input molecules, 17 intermediate molecules,
and one output molecule). Such a pathway for caspase3,
as shown in Fig. 10, was experimentally verified in [27], [28].
For an illustration, the input signal probabilities are set to
p (Insulin) = 0.5, p (EGF) = 0.5, and p (TNF) = 0.5.
Moreover, to investigate the relationship between the input
probability and desirable strategies, different input probabil-
ity distributions are also considered later.

First, a one-bit perturbation is applied to themoleculeswith
one indegree. According to the analysis in Section V, the cor-
responding stochastic architecture can be constructed for the
caspase3 pathway, as shown in Fig. 7. If a one-bit perturbation
is considered, the stochastic architecture in Fig. 2(b) can
be adopted. The results obtained through stochastic analysis
are presented in Fig. 8. With the incorporation of a one-bit
perturbation, the mean value of the probability for caspase3 is
determined to be 0.1250 through stochastic analysis. Here, for
each simulation, the result is probabilistic and approximate,
and inaccuracy occurs due to the inevitable stochastic fluctu-
ations, which can be reduced greatly with the adoption of a
reasonable sequence length.

Nevertheless, as shown in Fig. 8, regardless of whether
one-bit perturbations occur at the 1st or 2nd entry for IKK ,

NFkB and cFLIPL, the corresponding output probability is
not changed. This result occurs because in the investigated
pathway, if ComplexI is activated (i.e., 1), then the sub-
sequent molecules ComplexII , IKK and MEKK1ASK1 will
also be activated. Hence, caspase8 will be suppressed. Thus,
the resulting value of the expression OR(MK2, caspase8,
JNK1) is one. In such a case,MEKK1ASK1 remains activated
even if a one-bit perturbation occurs at the 2nd entry for
IKK . However, if ComplexI is inactivated (i.e., 0), then
the state of caspase8 is determined by that of ERK . The
updating function for AKT is the same as that for ERK ,
i.e., OR(Insulin,EGF). Thus, the value of the expression
OR(MK2, caspase8, JNK1) is the same as that of ERK .
The expression for caspase3 is represented asAND(not(AKT ),
OR(MK2, caspase8, JNK1)). Hence, caspase3 is suppressed
if ComplexI is inactivated. Even if the 1st entry for IKK
is perturbed, caspase3 remains suppressed. Similar analysis
can be performed for the one-bit perturbation of NFkB and
cFLIPL.
We see that the probability increases to approximately

0.25 when the one-bit perturbation occurs at the 1st
entry of a molecule from {IRS1,ComplexI , ERK , MKK3,
MKK7, JNK1, p38,MK2}, whereas the corresponding prob-
abilities remain the same for perturbations at the 2nd entry.
Moreover, if the probability of caspase3 is anticipated to be
small, the perturbation strategy of affecting the 1st entry of
EGFR or the 2nd entry of MEKK1ASK1 can be adopted.
According to the results presented in Fig. 8, strategies to
maximize/minimize the probability of caspase3 can be deter-
mined easily.

Moreover, we also consider the scenario of function per-
turbation occurring at molecules with an indegree of 2, e.g.,
AKT , ComplexII , and MEK . First, the effects of one-bit
perturbations are incorporated, with the corresponding prob-
abilities being presented in Fig. 9. If a one-bit perturba-
tion is applied to the 1st entry of ComplexII or MEK , the
probability increases to approximately 0.25; otherwise, the
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FIGURE 9. Signal probabilities for molecules with an indegree of 2
subjected to a one-bit perturbation.

FIGURE 10. Signal probabilities obtained when caspase8 is subjected to a
one-bit perturbation.

corresponding value remains the same. In contrast, for AKT ,

the probability equals approximately 0.375 if the 2nd, 3rd, or
4th entry is affected by a one-bit perturbation, whereas the
result decreases to zero if the 1st entry is perturbed. Thus,
we can conclude that molecules with an indegree of two are
usually better options than those with an indegree of one to
maximize the output probability. As indicated in Fig. 9, com-
pared to other molecules, AKT is the best candidate for the
purpose of minimizing the probability. This result is because
of the updating function for AKT , i.e., AKT = OR(Insulin,
EGFR). Given a one-bit perturbation on the 1st entry, AKT is
activated if (Insulin, EGFR) is 00. That is, caspase3 will be
suppressed in such a case.

For caspase8 and caspase3, the indegree values are 3 and 4,
respectively. Fig. 10 illustrates the results of applying a one-
bit perturbation at different entries of the updating function
for caspase8, and the corresponding results for caspase3 are
presented in Fig. 11. Similar to Fig. 10, the probability is
doubled if a one-bit perturbation is applied to the entry cor-
responding to 000; otherwise, the value remains unchanged.
Although caspase8 is also directly connected to caspase3,
the activation is less sensitive than the inhibition. Thus, deter-
mination of a good target to maximize the signal probability
is not only affected by the distance from the output molecule
but also by the corresponding relationship.

Compared with that for the scenario without perturbation,
the probability increases to 0.5 if the entry corresponding
to 1010 or 1101 is chosen for perturbation. If a one-bit
perturbation is applied to the entry corresponding to 0000,
the probability is 0.25, whereas the value decreases to zero
if the entry corresponding to 0101 is perturbed. Otherwise,
the probability remains the same. By comparison with the
previous results in Figs. 8-10, we can see that for a one-bit

FIGURE 11. Signal probabilities if caspase3 is subjected to a one-bit
perturbation.

FIGURE 12. Signal probabilities for caspase3 obtained if a two-bit
perturbation is applied to AKT.

perturbation, the output molecule itself is always the best
option (here, a maximum value of 0.5 is obtained). Overall,
by introducing a one-bit perturbation, several strategies can
be adopted, including perturbing 0101 for caspase3, 00 for
AKT , or 0 for EGFR, to derive an output probability of zero.

For molecules with an indegree greater than one, the effect
of multibit perturbation was further investigated. Other than
caspase3 itself, AKT is also a good option, as indicated
by Fig. 9, which was obtained according to the analyses
in [17]–[29]. Here, two-bit perturbation is conducted on AKT
for an illustration. The stochastic model in Fig. 6(b) can
be used for stochastic analysis, and the obtained results are
presented in Fig. 12.

As shown in Fig. 12, the output probability increases to
0.6250 if a one-bit perturbation is applied to 01&10, 01&11,
or 10&11 for AKT . In contrast, as indicated in Fig. 9, the cor-
responding probability is 0.375 if a one-bit perturbation is
applied to 01, 10, or 11. We see that the combination of any
two elements in {01, 10, 11} can yield a higher signal prob-
ability. This finding is consistent with our previous conclu-
sion that a desirable strategy for multibit perturbation always
includes the desirable strategy for the one-bit perturbation.

Furthermore, the effects of varying the input probability
distributions are also considered. The corresponding output
signal probabilities are presented in Fig. 13. For simplicity,
only a one-bit perturbation for molecules with an indegree
of one is incorporated. A similar analysis can be conducted
accordingly.

We can see that in Fig. 13, the corresponding output
probability is substantially affected by the initial input prob-
ability distributions. To minimize the output probability, a
one-bit perturbation at the 1st entry for EGFR or the 2nd
entry for MEKK1ASK1 is a good option. For EGFR, if the
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FIGURE 13. Signal probabilities of caspase3 for different input probability distributions given the occurrence of a one-bit
perturbation.

1st entry is perturbed, EGFR is always activated. Then,
AKT is also activated because of the updating function, i.e.,
AKT = OR(Insulin, EGFR). This result means that caspase3
is always inactive. Similarly, in response to a one-bit pertur-
bation at the 2nd entry of MEKK1ASK1, the corresponding
molecule will always be inactive, making caspase3 inactive.

If a one-bit perturbation is applied to a molecule in
{IRS1,ComplexI , ERK , MKK3, MKK7,JNK1, p38,MK2},
the obtained probability when perturbing the 1st entry
is always larger than that of affecting the 2nd one. The
effects of perturbing molecules from {MKK3,MKK7, JNK1,
p38,MK2} is similar; this result occurs because these
molecules originate directly from MEKK1ASK1.
For instance, because of the relationship betweenMKK7 and
JNK1, the effect of a one-bit perturbation onMKK7 is equiv-
alent to that on JNK1. Similar analyses can be performed for
MKK3, p38, andMK2.
Nevertheless, for different input probability distributions,

the same perturbation strategy is capable of yielding the max-
imum output probability. For example, for (0.25, 0.5, 0.75),
the maximum probability of 0.5626 is obtained in response
to the application of a one-bit perturbation at the 2nd entry
of EFGR, and the maximum probability is also obtained by
adopting same strategy for (0.75, 0.75, 0.75). However, this
strategy is unable to yield the maximum value for the other
input distributions here. Thus, we can conclude that the best
strategy is determined by the input probability distributions,
while the pathway topology also plays an important role in
determining the most desirable strategy.

For the sake of simplicity, only a binary pathway is inves-
tigated here; nevertheless, stochastic analysis can certainly
be performed if a multi-state scenario is considered. For
instance, similar to the situation in [24], a ternary signal-
ing pathway can be constructed according to the multistate

relationships between molecules. For more information,
please refer to [15]. That is, the proposed stochastic model for
a one-bit perturbation can be generalized with modifications
to the analysis of a multistate scenario to determine appropri-
ate perturbation strategies.

VI. CONCLUSION
Logical representation and analyses of biological systems
provide us with valuable insights. In this work, we focused
on efficient analysis of function perturbation in pathways.
We find that function perturbations of different molecules
contribute to the development of effective therapies. To per-
form effective analysis, stochastic architectures are proposed
to investigate the effects of function perturbations on long-
term behaviors in biological systems. Then, stochastic analy-
sis of aCaspase3 pathway subjected to function perturbations
is performed while the practicability and effectiveness of the
proposed stochastic approach are determined. Moreover, the
effects of multibit perturbation are also considered. We see
that the effects are largely determined by the relationships
among molecules or the network topology. The simulation
results show that in addition to directly affecting caspase3,
AKT is a better candidate than other molecules for maximiz-
ing the signal probability of caspase3. Furthermore, the effect
of applying a multibit perturbation is likely to be better than
that of adopting a one-bit perturbation. In contrast, we also
find that even for the same perturbation strategy, the corre-
sponding effect is largely affected by the input probability
distributions.
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