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ABSTRACT Use of cloud resources has increased with the increasing trend of organizations and govern-
ments towards cloud adaptation. This increase in cloud resource usage, leads to enormous amounts of energy
consumption by cloud data center servers. Energy can be conserved in a cloud server by demand-based
scaling of resources. But reactive scaling may lead to excessive scaling. That, in turn, results in enormous
energy consumption by useless scale up and scale down. The scaling granularity can also result in excessive
scaling of the resource. Without a proper mechanism for estimating cloud resource usage may lead to
significant scaling overheads. To overcome, such inefficiencies, we present Cartesian genetic programming
based neural network for resource estimation and a rule-based scaling system for IaaS cloud server. Our
system consists of a resource monitor, a resource estimator and a scaling mechanism. The resource monitor
takes resource utilizations and feeds to the estimator for efficient estimation of resources. The scaling system
uses the resource estimator’s output for scaling the resource with the granularity of a CPU core. The proposed
method has been trained and tested with real traces of Bitbrains data center, producing promising results in
real-time. It has shown better prediction accuracy and energy efficiency than predictive scaling systems from
literature.

INDEX TERMS Artificial neural networks, auto-scaling, cartesian genetic programming, energy efficiency,
evolutionary computation, green computing, infrastructure as service, workload prediction, cloud server.

I. INTRODUCTION
Cloud computing is a paradigm for providing access to a
shared pool of computing resources (e.g. servers, networks,
storage, and applications). Cloud delivers resources with
the least possible service provider management effort and
intervention [1], [2]. Since the inception of cloud com-
puting, the use of cloud computing services increases as
reported by Gartner’s chief information officers (CIOs)
survey.1 2018 (i.e. conducted from 3,160 CIOs across
98 countries). According to a survey.2 in 2018 (by
451 Research), sixty per cent of enterprise workloads will
run on cloud and infrastructure as a service (IaaS) demand
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1https://www.gartner.com/newsroom/id/3847965
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will have the highest growth. A survey.3 (released by North
Bridge Venture Partners on 19th June 2014), states that fifty-
six per cent of businesses are using IaaS technologies to har-
ness elastic computing resources. The survey further reports
that over eleven thousand cloud services and Application
Program Interfaces (APIs) are currently in use by the cloud
customers, and the tendency is towards everything as a service
in future. According to International Data Corporation (IDC)
report.4 published on 18th January 2018, the global spending
on public cloud services and infrastructure is estimated to
increase from $160 billion in 2018 to $277 billion in 2021 that
shows a compound annual growth rate (CAGR) of 21.9%.
It is expected that by 2020, internet traffic generated per sec-
ond will be 51,974 GigaByte [3]. The tendency towards

3http://www.northbridge.com/cloud-computing
4https://www.idc.com/getdoc.jsp?containerId=prUS43511618
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everything as a service, increase in demand for IaaS ser-
vices, the growing inclination of governments and enterprises
towards clouds, and an enormous increase in internet traffic
will result in the generation of gigantic volumes of data being
processed by data centers’ servers (hosts) [4].

This increase in the use of cloud services leads to increase
the energy consumption by cloud data centers [5]. The world-
wide increase in energy consumption by data centers was
reported 1.1-1.5 per cent, while for the US, it was from
1.7-2.2 per cent in 2010 [6]. A significant increase in the
average power (kW) and utilization of data center servers has
been reported in [7], from 2006 to 2020. With an increase in
the usage of a data center, it requires the cooling system to
consume more electricity, i.e. up to 30 per cent [8]. Research
has shown that the power consumed by a data center is
directly proportional to its resource utilization [9]. Energy
consumption is one of the main issues of cloud data cen-
ters [10]. With the increase in energy consumption, the cost
of cloud services increases for both cloud providers (in terms
of electricity bills) and customers (service purchase) [11].
Also, with an increase in energy consumption, more heat
is dissipated, and more carbon is emitted in the environ-
ment [12]. Compensating heat dissipation requires extra cool-
ing equipment installations that further increases the cost of
cloud services [13]. As cloud services, demand increases the
cloud owners/providers business increases, but the quality of
service (QoS) to users degrades [14]. Because with the same
limited infrastructure, a large number of workloads cannot
run properly. In such situations, the resource management
problemwill be the main issue to be adequately solved. With-
out optimized resourcemanagement, QoS cannot be provided
to users [9]. A large number of workloads on clouds will have
a challenging impact on the performance of the cloud data
center infrastructure [15].

In a data center, about 40% of total energy is consumed
by information technology (IT) equipment that includes com-
munication links, switching, and aggregation elements and
servers [16]. The energy consumed by data center servers is
about 27% of the total energy consumed by the data cen-
ter that becomes two-third of the energy consumed by IT
equipment [17]. A cloud data center server operates only at
about 20-30%, while 70-80% remains idle doing no useful
job [18].

Energy consumption at the cloud data center can be opti-
mized by estimating future cloud resource demand and then
scale the resources accordingly [19]. Data center’s resource
usage prediction is a challenging task due to diversity of
workloads as well as irregular arrival of client requests (i.e.
arriving at a different time and requesting for varying amounts
of resources) [19].

The CPU utilization is one of the critical metrics for
evaluating the cloud data center server’s performance and
is used by researchers for estimating server’s future per-
formance [20]–[22]. In cloud data center’s servers CPU
is the highly demanding resource and so the primary
cause of resource unavailability [4]. Several techniques

have been used for CPU usage prediction in the cloud.
These are multi-layer perceptron (MLP), auto-regressive
moving average (ARIMA), extreme learning machine
(ELM), auto-regression (AR), k-nearest neighbor (KNN),
feed-forward artificial neural network (FNN), autoregressive
neural network (AR-NN), and recurrent artificial neural net-
work (RNN) [4], [23]–[28], [36]. The CPU usage can be
seen as a function of time so it can be characterized as
time series problem. Thus, it becomes a regression problem
that can be solved by either conventional time series anal-
ysis methods or neural networks. In traditional time series
analysis, a mathematical formula defines the dynamics in
the series and instructions and rules are the core of the
study. In contrast, when a neural network is applied to data,
it trains, gains experience, learns the regularities of the past
and sets its own rules [29]. ANN has been proved better
performance than prediction methods like average, moving
average, last value, autoregressive moving average and expo-
nential smoothing when tested for resource usage predic-
tion [25], [30], [31]. As ANN has shown better results than
prediction methods like average, moving average, last value,
autoregressive moving average and exponential smoothing
when tested for resource usage prediction [25], [30], [31].
But conventional ANNs trains only their weights associ-
ated with their neuronal inputs and don’t evolve their num-
ber of neurons and number of synaptic connections to a
neuron [4], [32].

Modern multi-core CPUs can scale (up/down) fre-
quency by using dynamic voltage and frequency scal-
ing (DVFS) [33]. DVFS mechanisms are applied at the
micro-architecture level in most of today’s servers [34]. The
energy-saving efficiency of DVFS is decreasing because of
the following reasons in modern virtualized data centers.
First, the supply voltages are currently low for processor
chips and hence less space for further reduction. Second,
advanced processor chips are multi-cores and must operate
at the same supply voltage level and thus the same fre-
quency (e.g. Intel processors). Finally, in a virtualized sys-
tem (server), information collection (necessary for optimal
clock frequency and voltage level for the CPUs) about run-
ning applications is challenging because DVFS resides in a
privileged domain (hypervisor) while the application in user
domain (virtual machine) [35]. Thus, we use a rule-based
scaling approach that scale individual core(s) instead of
DVFS that varies voltage levels to operate CPU at different
frequencies. Therefore, we use a rule-based scaling mecha-
nism for enabling/disabling CPU logical core(s) according to
predicted CPU usage.

Authors in [19] report that energy consumption at the
cloud data center can be optimized by estimating future cloud
resource demand and then scale the resources accordingly.
Our methodology consists of resource estimation and then
scaling of resources. As CPU utilization is one of crucial
metrics for evaluating the cloud data center server’s perfor-
mance and is used by researchers for estimating server’s
future performance [20]–[22], thus we predict CPU usage
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of a cloud server and then scale CPU cores (logical cores)
accordingly. ANN is a right candidate for resource estimation
as discussed in [25], [30], [31], but conventional ANNs
have limited learning scope that is they learn only their
weights [4]. To enhance the learning capability of ANNs,
we use the recurrent Cartesian genetic programming-based
artificial neural network (RCGPANN). RCGPANN can learn
synaptic weights, the number of synaptic connections per
neuron and number of neurons during evolution.

The findings of this research will lead to the benefit of
society because cloud computing plays a vital role in science
and technology. The massive share of global electric power
consumed by cloud data centers justifies the need for more
effective techniques for energy efficiency in cloud servers.
Thus, cloud infrastructure owners that apply the recom-
mended approach derived from the results of this study will
be able to minimize their data center’s energy consumption
and heat dissipation. That will reduce the volume of carbon
gases emitted by data centers in the environment. Cloud
computing can be used by scientists to fulfil their large scale
computational needs. Minimizing the power consumed by
the cloud infrastructure lowers the cloud services cost. Thus,
scientists can have economic cloud services from an energy-
efficient cloud. Carbon gases have a terrible impact on human
life and the environment by changing water supplies, weather
patterns, the growing season for food crops and vulnerable
coastal communities with increasing sea levels. Asmentioned
earlier that with an increase in energy consumption by data
centers more heat is dissipated, and more carbon is emit-
ted in the environment [12]. Therefore the recommended
approach, when adopted by cloud data centers, will have a
significant reduction in energy consumption and carbon gases
emission. Besides cloud data centers, our designed system
can be used in cell phones, laptops, and computers used
in unmanned aerial vehicles (UAVs) where energy saving
is more necessary and critical. Pakistan is experiencing the
worst energy crises that have severely affected its economy.
Our developed system can reduce the power consumed by the
country’s workstations, servers, data centers, UAVs, laptops
and cell phones. Thus, it will have a significant impact on
minimizing the energy crisis and boosting the economy of the
country.

Our technical contributions are in resource monitor-
ing, resource utilization prediction, energy-efficient resource
management and autonomous resource provisioning in
cloud systems. We highlight our technical contributions
below:
• We propose a system information gatherer and
reporter (SIGAR) application programming inter-
face (API) based resource monitor that has the capability
to monitor resources both physical and virtual at any
frequency set by the cloud provider.

• We propose a recurrent, CGP artificial neural net-
work (RCGPANN) based prediction system.

• We propose a rule-based scaling system for elastic scal-
ing of cloud resources.

II. RELATED WORK
Resource usage prediction of IaaS cloud is one of the primary
technique used for predictive scaling that ensures energy effi-
ciency in the cloud. Prevost, John J., et al. in [23] used multi-
layer perceptron and auto-regression for predicting future
resource requests. They used back-propagation for training
their MLP model that consisted of three inputs, one output
and two hidden neurons [23]. Their work would be more
productive if they used actual resource usage instead of the
number of requests for a resource. Ismaeel, S. and Miri,
A. used ELM for predicting virtual machine (VM) usage
demand in [24]. ELM is a neural network where weights
are trained randomly in a single step. This property makes
it faster than other neural networks and SVMs, but single
step assignments of weights make it pronto significant pre-
diction errors. Calheiros, Rodrigo N., et al. in [25] used
ARIMA model for predicting the number of requests for
a cloud resource in future. Farahnakian, Fahimeh, et al.
in [26] used the K-NN algorithm for predicting the status
of host CPU, whether it is under-loaded or over-loaded.
Thus, to achieve energy efficiency and maintain service level
agreement (SLA) through VM consolidation. Ali Yadavar
Nikravesh, Samuel A Ajila, and Chung-Horng Lung in [27]
proposed a self-adaptive prediction suite that selects between
ANN and SVM algorithms by watching the workload pat-
terns. They categorized workload into periodic, growing and
unpredicted patterns. Their self-adaptive system selects SVM
in case of periodic and growing patterned workload while
ANN is chosen in case of unpredicted workloads. Sladescu,
Matthew, et al. in [28] used the event aware predictionmethod
for predicting auction-based workload burst. Their approach
outperformed ARIMA and SVR for workload bursts predic-
tion because bursts are innately uneven [28]. In our previous
work, we used an adaptive prediction system that selects
between AR-NN and ARIMA for predicting future CPU
usage of an IaaS cloud [36]. The adaptive system first checks
the normality of the workload; if it passes the normality
test, then the prediction is made by ARIMA. Otherwise,
AR-NN is used [36]. The AR-NN uses back-propagation
for training its weights so it can be improved by train-
ing through evolutionary methods, i.e. through crossover
and/or mutation [4]. Mason, Karl, et al. used RNN with
two input neurons, three hidden neurons, one output neu-
ron and 18 weights for predicting CPU usage demand.
They trained their network with particle swarm optimization
(PSO), covariance matrix adaptation evolutionary strategy
(CMA-ES) and differential evolution (DE), respectively [4].
Their results showed that CMA-ES has better prediction
accuracy than random walk (RW), moving average (MA),
linear regression (LR), back-propagation (BP), PSO and DE.
TheRNNused in [4] had the number of neurons, and the num-
ber of connections is fixed during evolution. To make RNN
more evolvable, we propose RCGPANN based CPU usage
prediction system. That has an evolvable number of neu-
rons, evolvable synaptic connections and evolvable synaptic
weights.
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Elasticity is one of the core features of cloud comput-
ing. That ensures the ability to add/remove structures with
minimal cloud provider/user intervention and with minimum
time, as per demand [37]. Researchers have classified elastic
scaling solutions based on the scope, policy, purpose, and
method as given in [38]. In this work, our scaling scope is IaaS
cloud and policy is automatic. While the goal is energy effi-
ciency and way is vertical scaling. Cloud providers have par-
tially infused elasticity in their clouds VMs, applications and
servers. Cloud providers like Amazon EC2, Rackspace and
GoGrid have horizontal auto-scaling mechanisms [39]–[41].
Dawoud et al. in [42] proposed an elastic VM for
ensuring service level objectives (SLOs) automatically.
Toffetti, Giovanni, et al. in [43] proposed elastic applications
for running on a VM. Arabnejad et al. used a rule-based
system for horizontal scaling of cloud resources. They used
five scaling states for a VM. They used fuzzy, reinforce-
ment learning strategies for the prediction of VM usage [44].
Ilyushkin, Alexey, et al. in [45] used several auto-scaling
policies for scaling resources used by workflow-based work-
loads in cloud environments. Zhang, Xinwen, et al. in [46]
introduced cloud and mobile device web lets for providing
transparency in the use of cloud resources by mobile devices.
Shahin, Ashraf A. proposed threshold-based auto-scaling
policies for enabling/disabling VMs of a cloud. The scaling
decisions were made on RNN predicted CPU usage [47]. The
most dynamic and vital resource that got more importance by
researchers is CPU [4].

Modern CPUs consist of several cores while individual
cores can be turned on/off when demanded by host load.
CPU also can follow the DVFS mechanism [33]. But the
DVFS mechanism has limitations in increasing/decreasing
frequency at core-level by increasing/reducing supply volt-
ages [35]. Thus we propose a rule-based auto-scaling mech-
anism for scaling CPU through enabling/disabling logical
core(s).

III. RESOURCE MONITOR
Our resource monitor uses SIGAR API for collecting CPU
usage of the host computer. Whereas SIGAR is an API
that offers an interface for collecting system information
conveniently. It has the capability to collect CPU, memory,
network, and disk usage information. Our resource monitor
computes CPU percentage usage by using the expression:
CPUpercentage = CPU total percentage − CPU idle percentage.

Where CPU total percentage has a fixed value of 100, and
CPU idle percentage varies with the variations of workload on
CPU. Our resource monitor stores CPU usage in a buffer and
the prediction system reads CPU usage from that buffer for
prediction purpose.

In the case of memory, it can collect percentages and actual
values of free memory and used memory. While in case of
hard disk, it can obtain the number of disk reads and writes
along with the amount of disk read and write bytes at any
timestamp in milliseconds. On the other hand, our resource
monitor can collect the amount of received and transmitted

bytes and the number of received and transmitted packets. It
can obtain information about the number of packets dropped
in transmission and reception. It can report the number of
errors during transmission and reception.

Our resource monitor can be used for monitoring resources
at any timestamp in milliseconds. Besides monitoring,
the collected resource usage can be used for the estimation of
each resource. The resource monitor data can be used to esti-
mate the host computer usage by applying a multi-objective
function. In the multi-objective function, each resource will
have a weight assigned based on its usage history.

We have validated our resourcemonitor for collecting CPU
usage data of a multicore server in sections VII.C and IX.

IV. CGP BASED RECURRENT NEURAL NETWORK
Cartesian genetic programming (CGP), is a graph-based
form of genetic programming developed by Julian Miller
in 1999 and 2000 with some contribution from join work
of Julian Miller and Peter Thomson in 1997 [48]. In CGP,
the genetic code of the program represents a network of nodes
placed in the Cartesian plane. RCGPANN is a neuroevolu-
tionary technique based on CGP for representation and evo-
lution of recurrent neural networks [49]. The parameters of
CGP are number of nodes in the chromosome, the maximum
number of inputs per node (i.e. arity), number of columns,
number of rows and levels-back. Different arrangements of
these parameters create different graphs (networks). That is a
fixed-length array of integers represents the CGP genotype.
The position of integers represents the type of genes. These
genes include input connections, weights, switch controls,
node function (activation function) and output genes. In case
of RCGPANN besides the above genes, some outputs are
fed-back as inputs which are called recurrent inputs. When
genotypes of CGP chromosomes are decoded to phenotypes,
all nodes are not connected in the path from inputs to out-
puts. The un-connected nodes are called non-coding nodes.
Through mutation operator, the status of a node or nodes
is/are randomly chosen between coding and non-coding. This
status change of nodes can result in an offspringwith different
characteristics than the parent. The CGP nodes are replaced
by artificial neurons to form RCGPANN. During evolution
RCGPANN topology, weights and activation functions expe-
rience changes through mutation [50]–[52].

A. RCGPANN NEURON
CGPANN neuron is similar to that of conventional ANN, but
in case of RCGPANN, it has recurrent inputs also along with
forwarding inputs. Forward inputs come from system inputs,
or outputs of other neurons belong to previous columns in
the Cartesian plane. Recurrent inputs are the system outputs
fed-back as input to the system. RCGPANN neuron is shown
in (1).

α =
(∑n

i=1
ωi × xi × τi

)
+

(∑p

i=n+1
ωi × ri × τi

)
(1)

where x1, x2, x3, · · · ,xn represent feed-forward inputs,
ω1, ω2, ω3, · · · ,ωn represent respective weights of
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FIGURE 1. RCGPANN chromosome architecture. inputs, outputs, feed-forward network genes and feed-back network
genes of neurons placement in the cartesian plane.

feed-forward inputs, τ1, τ2,τ3, · · · ,τn represent forward
pass transistor switch enable/gate/controller, rn+1, rn+2,rn+3,
· · · , rp represent recurrent inputs, ωn+1, ωn+2,

ωn+3, · · · , ωp represent recurrent inputs respective weights
and τn+1, τn+2, τn+3, · · · ,τp represent recurrent pass tran-
sistor switch enable/gate/controller. The switch con-
troller/enable is used to enable or disable an input connection
to neuron during evolution.

Our RCGPANN neuron use sigmoid function as an activa-
tion function as shown in (2).

σ (α) =
1

1+ e−α
(2)

B. RCGPANN CHROMOSOME
Genes of a neuron are placed in a specific order. The first
input is placed in the first position, followed by its weight
and a switch (enable), the second input followed by respective
weight and enable switch, and so on. At the last position,
function gene is placed. Both the feed-forward and feed-back
neurons of the RCGPANN follow the same mechanism.
Figure.1 presents chromosome architecture of RCGPANN
genotype. In RCGPANN chromosome, first system inputs
(neurons) are placed followed by feed-forward neurons. Then
feed-back neurons are placed, and at the end, system outputs
are placed.

C. TRAINING OF RCGPANN
Neurons of RCGPANN are placed in the order shown
in figure 1. Figure 2 presents the neuroevolutionary training

process for RCGPANN. All genes are mutated with ran-
dom values in the initialization stage of evolution to make
parent chromosome. Parent chromosome inherits further 9
(λ is 9) chromosomes in the first stage of evolution. Error
calculation metric used here is mean absolute error (MAE)
that is given by (3). The chromosome with the lowest MAE
of the nine chromosomes is selected for the next stage of
evolution. This process continues further until either the
lowest possible MAE is reached or the highest number of
generations/evolutions is reached.

MAE =

∑n
i=1 |yi − xi|

n
(3)

where yi represents the ith output generated by RCGPANN,
while xi represents the ith sample in the data set. Whereas, n
represents the number of samples in the data set.

D. TESTING OF RCGPANN
In the testing process, the trained RCGPANN is subjected to
testing data, and MAEs are calculated. The testing procedure
is that let the network has a total of eleven inputs (five forward
inputs and six feed-back inputs) and six system outputs. The
testing data set’s first five values are fed to the network that
generates six outputs; these six outputs, along with five data
set’s primary inputs are fed to the network to get six outputs.
These six outputs are compared with values in data set at
respective positions. The first output is compared with data
set value at sixth position, the second output is compared
with the value at seventh position and so on to get abso-
lute errors between data set values and RCGPANN outputs.
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Algorithm 1 Predictive Scaling Algorithm
1 : Begin

2 : Cp← predictied resource usage

3 : Cmax← maximum resource capacity

4 : C← current resource capacity

5 : c1← capacity of first core

6 : ∧ ifCp> C
(∣∣Cp − C

∣∣ ≥ c1
)
Cp < Cmax then

7 : Call Up ScalingAlgorithm 2

8 : ∧ elseifCp< C
∣∣Cp − C

∣∣ ≥ c1 then

9 : Call DownScalingAlgorithm 3

10 : else

11 : DoNothing

12 : endif

13 : End

After finding all absolute errors throughout the length of the
data set, then the whole MAE is calculated by accumulating
all MAEs between each point of test data and predicted
data.

V. THE SCALING SYSTEM
The scaling system scales the resources as per prediction
made by RCGPANN. In present work, our resource under-
study is CPU. Our resource monitor extracts CPU percentage
values, preprocess these values, apply to the RCGPANN
and then feed the averaged output value to the scaling sys-
tem. The scaling procedure is performed in the following
manner.

An IaaS server CPU consists of n cores with capacities
c1 = c2 = · · · = cn. The percentage contribution of each
core in total CPU is c1 = c2 = · · · = cn = 100

n . With m
active cores the current CPU usage C will be C = 100

n × m.
In a special case, let there are 4 cores in CPU and 3 of them
are active then current CPU percentage usage is 100

4 × 3.
The predicted CPU percentage usage is Cp and maximum

CPU percentage capacity is Cmax . The scaling decisions are
made according to algorithm 1, algorithm 2 and algorithm 3.

According to algorithm 1, when Cp is greater than C ,∣∣Cp − C∣∣ is greater than or equal to c1 and Cp < Cmax
then up scaling is called. If Cp is less than C by equal or
greater capacity value than c1 then down scaling is provoked.
In case the difference between Cp and C is less than c1 then
No-Scaling is done.

Algorithm 2 Up Scaling Algorithm
1 : Begin

2 : i← m

3 : while
(∣∣Cp − C

∣∣ ≥ c1
)
Cp ≤ Cmaxdo

4 : ONcore ci+1

5 : C = C+ci+1

6 : i = i+ 1

7 : endwhile

8 : Go toAlgorithm 1

12 : End

Algorithm 3 Down Scaling Algorithm
1 : Begin

2 : i← m

3 : while
∣∣Cp − C

∣∣ ≥ c1 do

4 : OFF core ci

5 : C = C−ci

6 : i = i− 1

7 : endwhile

8 : Go toAlgorithm 1

12 : End

Algorithm 2, lists the steps required for up scaling. The
up-scaling mechanism iteratively scales resource (CPU in
current case) when predicted resource capacity is greater than
current capacity by capacity of a single core (in homogeneous
CPU) and of the smallest core (in case of heterogeneous
CPU). In each iteration of the while loop a new core is
enabled and added to the current capacity of the CPU. Simi-
larly, the value of i is incremented in each iteration of while
loop for next iteration. The loop goes to next iteration when
the conditions of the while loop are satisfied otherwise the
loop terminates.

In algorithm 2, i represents number of cores, it is initialized
with current cores m. When the condition

∣∣Cp − C
∣∣≥c1 of

while loop is satisfied, the loop statements are executed, until
the condition gets false. In each iteration of the while loop a
new core is added to the active ON cores.

17970 VOLUME 8, 2020



Q. Z. Ullah et al.: Cloud Infrastructure Estimation and Auto-Scaling Using Recurrent CGP-Based ANN

FIGURE 2. Evolutionary training of RCGPANN chromosome.

When predicted usage is less than current CPU usage then
down-scaling algorithm is called from algorithm 1. Down-
scaling mechanism is presented in algorithm 3.

In contrast to up-scaling, in down-scaling on each iteration
of the while loop a core is made OFF, and current active ON
cores are updated.

Scaling with granularity of cores limits the scaling sys-
tem from wasting of time in up and down scaling of CPU.
Such scaling granularity reduces the time complexity of

the scaling algorithm. In case of 1000 cores the worst
case time complexity of up scaling will be O(999). Sim-
ilarly, the worst case time complexity for down scaling
will also be O(999). When both up scaling and down scal-
ing are in worst case then the predictive scaling algorithm
will have worst case complexity of O(1998). Let k rep-
resent the number of cores in CPU then the worst case
time complexity of the predictive scaling system can be
O(2k − 2).
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FIGURE 3. Training and testing system of RCGPANN.

FIGURE 4. Architecture of real-time implementation and validation system of RCGPANN based predictive scaling system.

VI. SYSTEM ARCHITECTURE AND EXPERIMENTAL
PLATFORM
The system architecture of the experimental platform is
divided into two parts. First is for training and testing of
RCGPANN and second is for real-time implementation and
validation of RCGPANN based prediction and scaling sys-
tem. The training and testing system consists of a phys-
ical layer, operating system layer, resource monitor layer,

preprocessing, and training/testing layers, as shown in
figure 3. The resource monitor extracts resource usage val-
ues from the physical layer with the help of the operat-
ing system layer. The resource usage values are stored in
buffers and preprocessed with 0-1 normalization, as shown
in (4).

N (i) = x(i)− min/max − min (4)
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where x (i) and N (i) represent ith samples actual and normal-
ized values of resource usage respectively. The minimum and
maximum values of the buffered resource usage are min, and
max respectively. The normalized values are used for training
and testing of RCGPANN.

The real-time implementation system architecture is com-
posed of a physical layer, operating system layer, resource
monitor layer, preprocessing, optimized RCGPANN layer
and the scaling system, as shown in figure 4. Resource moni-
tor collects resource usage that is normalized in preprocessing
block and passed through optimal RCGPANN for prediction.
The predicted usage is de-normalized by the formula given
in (5) and averaged to get a single value of prediction. The
scaling decision is taken based on this prediction value.

x(i) = N (i)(max − min)+ min (5)

The scaling system through operating system commands
instructs the physical layer to scale its resource (i.e. CPU)
according to predicted values.

VII. RESULTS AND DISCUSSION
The training and testing of RCGPNN were conducted on a
system with Intel R© CoreTM i7-6700 CPU 3.40GHz proces-
sor and 8GB RAM. The data set used was 29 days CPU
usage of a Bitbrains5 data center server. Training and testing
experiments were conducted on fifty-fifty per cent of data set
samples. For the real-time implementation, we used a system
with CPU @ 1.7 GHz, 4GB RAM and Ubuntu OS.

We trained RCGPANN using neuroevolutionary algorithm
shown in figure 2. Input for the evolutionary method is the
training data set, with random initialization of chromosome
genes. The mutation rate is set to 10% and followed the
1+9 evolutionary strategy. We conducted training experi-
ments for predicting one instance (next one sample), two
instances, three instances, four instances, five instances and
six instances. The resultant model of each experiment is
tested with test data.

A. ACCURACY AND COMPLEXITY TRADE-OFF WITH
NUMBER OF PREDICTION INSTANCES
Figure 5 presents the space and time complexities of
RCGPANN models achieved in experiments for predicting
1-6 instances (samples). We have computed the space com-
plexity of a model by counting the number of neurons in
the model. While for the time complexity, we have cal-
culated the number of logistic sigmoid functions and the
number of multiplier units of the critical path (the longest
track of the parallel network architecture) of the model. The
space complexities of the RCGPANN models trained for one
instance (sample) prediction, two instances prediction, three
instances prediction, four instances prediction, five instances
prediction, and six instances prediction are O(5), O(11),
O(18), O(15), O(14), and O(12), respectively. The time com-
plexities of the model achieved for one instance (sample)

5http://gwa.ewi.tudelf.nl/datasets/gwa-t-12-bitbrains

prediction, two instances prediction, three instances pre-
diction, four instances prediction, five instances prediction,
and six instances prediction are O(5), O(10), O(18), O(20),
O(18), and O(14), respectively. Results show that space
and time complexities have a linearly increasing trend for
1-3 instances prediction while from 3-6 instances, there is a
gradually decreasing trend in complexities. The most critical
parameter of the prediction model is its prediction accuracy.
Figure 6 presents prediction errors (MAE) of 1-6 instances
predictions. PredictionMAE increases with an increase in the
number of prediction instances approximately in a linear fash-
ion. Thus a prediction model with few prediction instances
may have better accuracy than a model with more prediction
instances.

B. ACCURACY AND COMPLEXITY TRADE-OFF WITH
NUMBER OF NEURONS
Further, we discuss prediction results for one instance pre-
diction in detail by conducting fifteen different experiments.
In first, fourth, seventh, tenth and thirteenth experiments,
we initialize chromosome with fifty neurons. In second, fifth,
eighth, eleventh and fourteenth experiments, we initialize
chromosome with hundred neurons. In third, sixth, ninth,
twelfth and fifteenth experiments, the initial chromosome
size is five hundred neurons. Figure 7 presents space and
time complexities of RCGPANN models obtained in exper-
iments for one instance prediction. We have computed the
space complexity of a model by counting the number of
neurons in the model. While for the time complexity, we have
calculated the number of logistic sigmoid functions and the
number of multiplier units of the critical path (the longest
track of the parallel network architecture) of the model. The
model achieved in the first experiment has space complexity
of O(9) and the time complexity of O(8). The RCGPANN
model of the second experiment has space complexity of
O(10) and the time complexity of O(12). Space and time
complexities of the model in the third experiment are O(9)
and O(10), respectively. In the fourth experiment, the model
has space complexity of O(8) and time complexity of O(12).
In fifth experiment, the model has space complexity of O(5)
and time complexity of O(8). The models of sixth, seventh,
eighth, ninth, and tenth experiments have time complexities
of O(16), O(14), O(10), O(48), and O(8), respectively. The
models of sixth, seventh, eighth, ninth, and tenth experiments
have their respective space complexities of O(11), O(10),
O(10), O(40), and O(8). Similarly, the RCGPANN models
achieved in eleventh, twelfth, thirteenth, fourteenth, and fif-
teenth experiments have space complexities of O(9), O(22),
O(7), O(9), and O(5), respectively. The models of eleventh,
twelfth, thirteenth, fourteenth, and fifteenth experiments have
their respective time complexities of O(12), O(28), O(8),
O(10), and O(6). Results show that space and time com-
plexities have nonlinear behavior from first experiment to
fifteenth experiment. Figure 8 presents the MAE of each
model obtained in experiments. From experiment two to five,
MAEs have increasing trend while from five to six, MAE
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FIGURE 5. Space and time complexities of RCGPANNs with different instances prediction.

FIGURE 6. Accuracy of RCGPANNs with different instances prediction.

decreases. Throughout the experiments, MAE has a zigzag
form; thus, a generalized rule cannot be formed. Although,
a model with least MAE is selected for further investigation
of predictive scaling system.

Further, we discuss the real-time implementation of the
RCGPANNmodel that has the best prediction accuracy along
with the scaling system.

C. REAL-TIME IMPLEMENTATION AND VALIDATION ON
MULTI-CORE SERVER
We implemented our real-time system on a computer with
CPU @ 1.7 GHz, 4GB RAM and Ubuntu OS. Our system

includes a Java-based API for resource monitoring, java-
based preprocessor, java-based optimized RCGPANN, java-
based de-normalizer and a mean finder of six RCGPANN
outputs for getting single output. The scaling system includes
nested if-else statements and while loops. Within the while
loops, Ubuntu shell commands6 are called for enabling and
disabling of CPU logical core(s) [54]. The instantaneous
power consumption profile of CPU with one core, two cores,
three cores and four cores is shown in figure 9. The power

6https://github.com/spotify/linux/blob/master/Documentation/cpu-
hotplug.txt
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FIGURE 7. Space and time complexities of RCGPANN models.

FIGURE 8. Prediction errors of RCGPANN models.

consumption for four cores reaches 16 watts at maximum
and 14 watts at minimum, for three cores the power con-
sumption floats between 12 watts and 15 watts, for two cores
it is between 13 watts and 14 watts, and for one core it is
between 12 watts and 13 watts. Thus CPU with more cores
in ON state has more power consumption than with few
cores, as shown in figure 10. The average power consumed by
4-cores is 15.22 watts, by 3-cores is 14.16 watts, by 2-cores is
13.28 watts and by 1-core is 12.74 watts. Thus by increasing
and decreasing the CPU cores, energy consumption increases
and decreases respectively.

Figure 11 shows the logical cores usage. In figure 11,
the core-1 (CPU1) is 48.5% used, core-2 (CPU2) is 57.4%,
core-3 (CPU3) is 40.8% and core-4 (CPU4) is 59.8% in use.
Thus it will reduce energy consumption if suitable scaling is
made with few numbers of cores. At this stage, our prediction
system predicted future CPU percentage usage as shown
in figure 12, as 71.38% so this percentage usage requires
only 3-cores, so our scaling system scales the CPU cores to
3 and thus saves extra power consumption (that was in case
of 4-cores). The core-wise usage of CPU cores shown
in figure 13, validates our prediction and scaling system.
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FIGURE 9. Core-wise instantaneous power consumption of Intel R CoreTM i3-4010U CPU @ 1.7 GHz, 4GB RAM and Ubuntu OS.

FIGURE 10. Average power consumption of Intel R©CoreTMi3-4010U CPU @ 1.7 GHz, 4GB RAM and Ubuntu OS.

Now the core-1 is 72.4% in use, core-2 is 74.7%, core-3
is 89.2% used and core-4 is 0.0% (i.e. OFF). Thus now
CPU is using 3-cores for the current load that ensures

minimization of power consumption, heat dissipation and
indirectly carbon dioxide emission (in case of carbon fuel
usage).
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TABLE 1. Comparison of prediction models on test data.

FIGURE 11. CPU usage of each core before prediction and scaling (4 cores active).

FIGURE 12. CPU usage is sampled at each 5 second time span. Samples taken at 5 seconds to 60 seconds are the actual CPU % usage values, while
the sample shown at time 65 seconds is the RCGPANN network based predicted usage.

In the same way, the prediction system predicts future CPU
demand with 3-core in ON state, as shown in figure 14.
The predicted value is 45.62%, so this load can be handled
efficiently by 2-cores. Thus our scaling system scales CPU to

2-cores, as shown in figure 15. CPU core-1 and core-2 are in
ON state while core-3 and core-4 are in OFF state, this further
validates our prediction and scaling system while minimizing
energy consumption.
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FIGURE 13. CPU usage of each core after prediction and scaling (CPU scaled to 3 cores).

FIGURE 14. CPU usage of 3-cores is sampled at each 5 second time span. Samples taken at 5 seconds to 60 seconds are the actual CPU % usage
values, while the sample shown at time 65 seconds is the RCGPANN network based predicted usage.

FIGURE 15. CPU usage of each core after prediction and scaling (CPU scaled to 2 cores).

As shown in figure 10, the average power consumption in
a duration of 5 minutes by 4-cores is 15.22 watts, by 3-cores
is 14.16 watts, by 2-cores is 13.28 watts and by one core is
12.74 watts. Thus, the average power varies with a varying
number of cores. Further, the energy consumption in kilo-
watt-hour can be calculated by the formula given in (5)

Energy(kWh) =
power(W)× time(hour)

1000
(6)

The energy consumed by a CPU with 4-cores ON for a
day, a month and a year will be 0.36528 kWh, 10.9584 kWh
and 131.5008 kWh respectively. If there are a hundred CPUs
(each with 4-cores ON) in an IaaS server, then yearly energy
consumption will be 13150.08 kWh. If the same server
has 1-core ON, then yearly energy consumption will be
11016 kWh. Thus yearly maximum energy saving will be
2134.08 kWh if CPUs are scaled from 4-cores to 1-core at low
loads.
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FIGURE 16. Comparison of proposed system with AR based predictive scaling system.

FIGURE 17. Comparison of proposed system with ARIMA based predictive scaling system.

VIII. COMPARISON WITH PREDICTION MODELS FROM
LITERATURE
In the literature, several methods have been used for IaaS
resource estimation. The notable methods are MLP, ARIMA,
ELM, AR, KNN, SVM, AR-NN and RNN [23]–[28] [4].
We have trained and tested prediction models from literature
with the same procedure that we used for RCGPANNmodels
training and testing. Table 1 presents a comparison of pre-
diction models under study. Mean absolute error (MAE) of
MLP [45] is 0.0761. While for ELM [46], MAE is 0.14041.
For ARIMA [47], MAE is 0.13931. Similarly, for AR [45],
the prediction error is 0.14031. AR-NN [48] based prediction

has MAE value of 0.06112. Prediction error for KNN [57] is
0.08421. SVM [58] has test error value 0.0571. For RNN [4],
MAE value is 0.0515. Our proposed RCGPANNhas test error
value of 0.0461. It is clear from the table that time complex-
ities of KNN and SVM are dependent on the size of data set
while other models have constant time complexities. Thus,
due to large time complexities, for further study, we consider
prediction models other than KNN and SVM.

Further, we discuss the comparison of predictive scaling
systems based on MLP, ARIMA, ELM, AR, AR-NN, RNN
and No-Scaling system with our proposed predictive scaling
system.
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FIGURE 18. Comparison of proposed system with AR-NN based predictive scaling system.

FIGURE 19. Comparison of proposed system with ELM based predictive scaling system.

IX. COMPARISON WITH PREDICTIVE SCALING BASED
ON MODELS FROM LITERATURE
In the previous section, we conducted real-time experiments
for validation of our predictive scaling system. After valida-
tion in real-time, we compare our predictive scaling system
with other predictive scaling methods and the no-scaling by
executing the same workloads. For performance comparison
with the same computation load, a benchmark is required.
For this purpose, we used the CPU benchmark of Geek-
bench.7 In this section, we first discuss the CPUbenchmark of

7https://www.geekbench.com/

Geekbench, second, we discuss experimental setup, and third,
we discuss results of our comparison with related work.

A. GEEKBENCH
We used CPU benchmark of Geekbench for energy com-
parison of our predictive system with methods from related
work and the baseline No-Scaling method. CPU bench-
mark has four types of workloads (i.e. Cryptography Work-
loads, Integer Workloads, Floating-Point Workloads and
Memory Workloads). Every kind of workload consists
of different numbers of workloads each model a real-
world task/application. During running the benchmark, each

17980 VOLUME 8, 2020



Q. Z. Ullah et al.: Cloud Infrastructure Estimation and Auto-Scaling Using Recurrent CGP-Based ANN

FIGURE 20. Comparison of proposed system with MLP based predictive scaling system.

FIGURE 21. Comparison of proposed system with RNN based predictive scaling system.

workload starts after another with a gap of two seconds. This
gapminimizes the effect of thermal issues on the performance
of workloads.

B. EXPERIMENTAL SETUP
Our experimental setup consists of a computer with CPU @
1.7 GHz, 4GB RAM and Ubuntu OS. Ubuntu kernel provides
a DVFS mechanism with its CPUFreq8 core. The CPUFreq
core provides different frequency scaling governors and fre-
quency scaling policies. We set each CPU core governor to

8https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

‘‘performance’’ and policy to ‘‘maximum scaling limit’’. For
power measurement, we use the powerstat tool9 that is used
to measure the power consumption of a computer CPU with
the battery as a power source. Then, we deploy predictive
scaling system (i.e. either our system or from related work)
on the system. In this setting, each CPU core runs at a
maximum frequency, and total dependence is on the deployed
predictive scaling system. For each predictive system and the
No-Scaling system, we run CPU benchmark ten times with

9http://manpages.ubuntu.com/manpages/xenial/man8/powerstat.8.html
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FIGURE 22. Comparison of proposed system with No-Scaling system.

a gap of 96.9 seconds (i.e. average setup time for Amazon
EC2 VM with Linux based OS) after each run [53].

C. COMPARISON
In comparison experiments, we start by the deployment of
AR-based prediction system and run the benchmark for ten
times with a delay of 96.6 seconds. We take execution time
of two successive runs of AR as a baseline for the remaining
predictive system. The break between two consecutive runs
is different for each predictive scaling system. This differ-
ence shows the execution time capability of each predic-
tive scaling system for the benchmark. Figure 16 presents
the energy consumption comparison between proposed and
AR predictive scaling systems. The AR-based system con-
sumes a large amount of energy due to its erroneous scaling
decisions. It also takes more time in executing benchmark
workloads due to scaling CPU to few cores when work-
load requires more cores to execute. The time taken by
the AR system for executing benchmark two times is the
baseline time for proposed and other scaling systems under
discussion.

Figure 17 presents a comparison of the proposed system
with ARIMA based system for energy consumption. ARIMA
based system has large scaling overheads due to large predic-
tion errors. The large scaling overheads of ARIMA make the
system to consume more energy than the proposed system.

Figure 18 presents a comparison between the proposed
and AR-NN based prediction systems. AR-NN has smaller
scaling errors than AR, ELM and ARIMA based system. But
it has large scaling errors than the proposed system. It takes
more time in executing two consecutive benchmark runs than
the proposed system. Thus it consumes more energy than the
proposed system.

ELM based predictive scaling system takes more time in
executing benchmark due to erroneous scaling decisions than

the proposed system. Comparison of energy consumption and
execution time of benchmark between proposed and ELM
based system is shown in figure 19.

Comparison betweenMLP and proposed predictive scaling
systems is shown in figure 20. MLP based system consumes
more energy and spends more time than the proposed system
due to large prediction and scaling errors.

Figure 21 presents the energy and execution time compari-
son betweenRNNand proposed systems. RNNhas better pre-
diction accuracy than ELM, MLP, AR, ARIMA and AR-NN
based systems. Thus it has performed better in execution time
and energy consumption than ELM, MLP, AR, ARIMA and
AR-NN based systems. But it consumes more energy than the
proposed system due to larger prediction and scaling errors
than the proposed system.

Figure 22 presents a comparison of the proposed predic-
tive scaling system with No-Scaling system. In No-Scaling
CPU use all cores with maximum capacity. Results show
that in the case of high loads, both systems have nearly
the same energy consumption. While is a case of low
loads proposed system has better energy efficiency due
to downscaling of CPU cores. The no-scaling mechanism
has better performance than predictive scaling systems with
large scaling errors when there are few occurrences of low
loads.

Figure 23 presents a summary of energy consumption pro-
files of all predictive scaling systems and No-Scaling system.
The No-Scaling system consumes 15% of the total energy
consumed by all systems. Each of the ARIMA, ELM and
AR-based predictive scaling systems consumes 13% of the
total energy consumption. Each of the MLP and AR-NN
based systems consumes 12% of total energy consumption.
Predictive scaling system based on RNN consumed 11% of
total energy while our proposed system consumes 10% of the
total energy.
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FIGURE 23. Percentage of total energy consumption by each system.

X. CONCLUSION
Our prediction model has shown the best prediction accuracy
of prediction models consisting of MLP, ARIMA, ELM, AR,
KNN, SVM, AR-NN and RNN. We integrated our prediction
model with the scaling system and validated in a real-time
environment.We further compared our predictive scaling sys-
tem with predictive scaling systems based on MLP, ARIMA,
ELM, AR, AR-NN and RNN by running CPU benchmark
of Geekbench for execution time and energy efficiency. Our
predictive scaling system has shown better performance and
energy efficiency than predictive scaling systems based on
models from literature and the system without the CPU scal-
ing mechanism. Our predictive scaling system has minimized
energy by 5% than the no-scaling system, 3% than ARIMA,
ELM and AR. It has provided better energy efficiency by 2%
than MLP and AR-NN and 1% than RNN.

XI. FUTURE DIRECTIONS
Our directions and recommendations for future studies in
solving cloud server resource prediction and scaling prob-
lems include enhancement in evolvability and development
of predictive scaling system and suitable orientation of the
prediction system in a real-time environment. Our current
predictive scaling system undergoes offline evolvability and
development for prediction and coarse-grained scaling for
scaling system (cores or group of cores based scaling). It can
be extended to experience online evolvability and growthwith
fine granularity in scaling (i.e. hardware architecture and OS-
dependent).

We recommend virtualization layer level implementation
on IaaS server for infusing online evolvability, development
and fine granularity in the architecture of predictive scal-
ing system. Physical resources have limited granularity as
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compared to virtual resources. Also, most types of virtual
resources have granular instances (of memory, CPU, storage,
etc.) while few physical resources offer (like CPU core and
hardware thread level) granularity.

Recommendation for suitable orientation of prediction sys-
tem includes orientation along with our current scaling sys-
tem (core wise or node wise) and adjustment along with
DVFS system of OS. We recommend, take CPU load directly
from CPU scheduler as input for our prediction system
instead of resource monitor for faster predictions. Then con-
duct core-wise scaling decisions according to our scaling
system. In case of orientation along with DVFS, feed the pre-
dicted CPU load toDVFS system for providing predicted load
based DVFS mechanism. These two orientations discussed
for OS-layer implementations can also be implemented in
the virtualization layer of an IaaS server. In the virtualization
layer, due to more granular resources, our predictive scaling
system can be applied in the resource level to federated level.
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