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ABSTRACT Recently, drone small cells (DSCs) has been brought into significant focus, which is the one
key enabler for potentially facilitating terrestrial wireless communication systems. Meanwhile, in ultra-
dense unmanned networks, artificial intelligence (AI) has been a useful and efficient tool for control
and management of the multi-agents. This paper investigates a downlink interference control problem in
ultra-dense unmanned networks with AI-aided approach, that each DSC can adjust its altitude to increase the
data-rate. This problem is formulated as a mean field game (MFG) framework, an AI-aided method to make
decisions. In this framework, eachDSC controls its velocity tominimize the cost over a period, where the cost
function is composed by the data-rate and height adjusting consumption. Meanwhile, in this model, we adopt
the mean-field approximation (MFA) approach to derive the interference introduced from a large number of
DSCs. Besides, the control strategy is described and explained by using the related Hamilton-Jacobi-Bellman
(HJB) and Fokker-Planck-Kolmogorov (FPK) equations, respectively. Thus, a finite difference algorithm is
proposed to solve the coupled partial differential equations, which can obtain the optimal altitude control
strategy. The algorithm outputs show the optimal behaviors of DSCs in different environment scenarios.
In additon, the simulation results verify that the proposed control strategy has better average signal to
interference plus noise ratio (SINR) compared with the baseline method.

INDEX TERMS Artificial intelligence, drone small cell, downlink interference control, mean field game,
ultra-dense unmanned networks.

I. INTRODUCTION
Recently, unmanned aerial vehicles (UAVs), which have
many advantages such as flight flexibly as well as excel-
lent volume and mass have became an available emerging
choice for air-to-ground wireless links. Specially, it plays
an essential role in extensive application scenarios such
as military damage assessments, environmental monitoring,
and so far [2]–[6]. Although UAVs have been tradition-
ally developed by the government and military to carry on
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mission-critical supervision and monitoring works, they are
also getting more applicable to many civilian applications.
A representative UAV, equipped with wireless transmitters,
has the abilities to communicate with other aerial or ground
wireless equipments (referred to ‘‘users’’ in this paper). The
authors in [7] proposed an aerial-ground cooperative vehic-
ular networking architecture, consisting of an aerial subnet-
work and a ground vehicular subnetwork. And the authors
in [8] also considered a multi-UAV enabled wireless com-
munication system. In [9], the drone small cells (DSCs) are
proposed to be applied as the aerial base stations (BSs) to pro-
vide the air-to-ground cellular link services in some crucial
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environments or marginal demands. The primary advantage
of employing DSCs is that they can operate without pilots,
and hence they are able to be autonomously deployed in
any scenarios for different applications such as monitoring,
rescue, and communication.

What’s more, DSCs can be relocated easily and rapidly
based on demand, and the adjustable height makes the drones
can meet different requirements based on user densities,
desired data rate and interference effects. Meanwhile, DSCs
have the potential to complement even substitute the terres-
trial cellular networks by serving users in severe shadowing
conditions, serving the overloaded or damaged terrestrial
BSs, serving users around overloaded BSs (such as mobile
data offloading) in ultra-dense networks. Captive UAVs
have been employed in these drones-aided cellular networks
recently. Due to the highly flexible and energy-constrained
coexisting in DSCs, there are many issues on them such as
their management and charging. Particularly, the placement
as well as deployment of DSCs has gained significant inter-
ests [10]–[13]. For example, a DSCs 3-D placement problem
was modeled in [10] with the target of maximizing the utility
of the network. Therefore, as a kind of stationary captive
platform, tethered buoyant DSCs, powered by ground vehi-
cles with cable, can maintain a long time operation, which
quite solve the energy constraints on DSCs. Therefore, this
kind of DSCs have drawn increasing attentions in recent
years.

In order to adapt the evolving cellular networks which
are ultra-dense and heterogeneous, the number of DSCs
have to increase incessantly. Meanwhile, the distributed and
mass deployments of DSCs cause the decisions of DSCs’
resource allocation anticipated to be taken individually (i.e.,
distributed static policies or dynamic strategies). Some of the
existing strategies or policies on cellular networks are not
suitable in the context of DSCs as they mostly depend on
central managers to make strategic decisions. For instance,
the placement algorithm of DSCs in [13] could calculate the
optimal altitudes and transmit power for each DSC, while
it worked with the given global information. What’s more,
for the dense networks, shortening the information exchanges
among DSCs is preferred as a result of the limited energy of
DSCs. And there are some works that focus on the resource
allocation via distributed algorithms in the context of cellu-
lar networks. The authors in [14] described a cell coloring
based distributed frequency allocation approach for all kinds
of cellular networks. And in [15], the distributed resource
allocation for D2D communications underlying cellular net-
works was considered. Different from the existing centralized
algorithms for coordinated multi-cell interference alignment
(IA), [16] proposed a low-complexity distributed algorithm
that was easy to implement on large networks. For the existing
dense DSCs networks, it tends that the DSCs mostly depend
on the central managers to make strategic decisions. There-
fore, investigating the effective strategies or policies schemes
for dense DSCs networks is still a challenging and open
problem.

In addition, artificial intelligence (AI), such as the machine
learning and deep learning, has been extensive used in wire-
less communications [17]–[23]. These works have used deep
learning to realize automatic modulation recognition, hybrid
precoding in millimeter-wave massive MIMO, and predica-
tion of channel state information, etc. However, it is still
difficult to deal with the issue brought from the multi-agents,
especially in ultra-dense unmanned networks. In these cases,
game theory has been proven to be an efficient tool to obtain
the effective distributed strategies as well as optimal control
policies [24], [25]. Since classical games need to model the
interactions of the considered agent with each other agents,
the analyses of those systems with a large amount of agents
is tedious and hard to tackle. Therefore, when faced with a
network of densely deployed DSCs, classical game theory is
too difficult to solve the placement control problem because
of the huge number of players. For this condition, the mean
field game (MFG) [27], [28] become an ideal tool for this
sort of dense networks because MFG can be used to model
the interactions between a subjective player and the average
effect of other players [4], [29]–[35], [37]–[42]. For instance,
in [30], the authors have designed a theoretical framework for
the MFG by using mean field approximation (MFA) to deal
with the interference among large number of players. The
authors of [31] have obtained the distributed power control
strategy for the dense deployment small BSs through the
MFGmethod. The authors of [4] have investigatedmean field
models for cognitive radio networks with energy andmobility
constraints. The authors in [37] have considered the last-level
cache sharing problems in large-scale cloud networks, where
they provided the closed-form expression of the optimal
pricing that gives an efficient resource-sharing policy. Here,
the behavior of mass can be expressed as the mean field.
The Hamilton-Jacobi-Bellman (HJB) equation in MFGs is
formulated to model the individual player’s interactions with
the mean field. While the evolution of the mean field in terms
of the actions of players is described by a Fokker-Planck-
Kolmogorov (FPK) equation. Therefore, the solution ofMFG
can be obtained by solving these two coupled equations.
To use the MFGs, one of the advantages is that the solutions
of the MFGs are able to be obtained separately if some of
the boundary conditions are given. And in the MFGs, all
the behaviors of players can be traced by one policy. What’s
more, MFGs are able to consider the stochastic of system.
All the properties mentioned above make MFGs suitable for
solving the DSCs placement control problem for dense DSCs
downlink networks.

In this paper, we consider an interference management
problem with the dense DSCs downlink networks, which is
modeled as a MFG. We regard all DSCs which are utilizing
the same downlink channel as the players of the MFG, that
each DSC compete with all the others. As the deployment
of DSCs is a critical part in air-to-ground downlinks, each
DSC can improve its downlink’s performance by adjusting
its position. Thus, we have to considered the competition
resulting from the cross-tier interference, i.e., while each
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DSC flies to more suitable position to improve the quality of
its own downlink, it probably cause higher interference to all
other users served by other DSCs. We assume that there are
no distinct horizontal displacements for all DSCs in the game
during the control period due to the employed captive UAVs.
Hence, DSCs can control their vertical velocity to decrease
the cost during the preset control interval. The cost function
of a DSC is derived by using the MFA approach, which
contains the signal-to-interference-plus-noise ratio (SINR)
at its user and the cost for rising and falling. Moreover,
we develop a finite difference method to derive the HJB and
FPK equations for the formulated MFG framework. There
are two main advantages of the proposed algorithm. One is
that it don’t need real-time information from others, which
can be performed offline. Each DSC can attain an optimal
velocity control strategy with the proposed algorithm, which
is influenced by the initial altitude distribution among the
DSCs. Then the velocity control strategy can be used to
implement downlink communication within a pre-defined
interval of time. The other is that it would minimize the cost
during a certain period of time rather than making decisions
only on the basis of cost at a moment. The contributions of
this work can be summarized as follows:

• We consider the co-channel interference circumstance
in downlink dense DSCs networks with AI-aided
approach. In this network, each DSC’s altitude is related
to the distance and the elevation angle between it to
user, which can directly effect the transmission quality
of downlink signals. Therefore, each DSC can control its
vertical flight velocity to achieve better quality of com-
munication by considering the influence from others.

• The altitude adjusting problem is modeled as stochastic
differential game. Meanwhile, the existence of the Nash
Equilibrium (NE) is proved. Faced with the difficulties
in solving the differential game when the number of
DSCs becomes large, we formulate a MFG framework,
which can simplify the mutual interference among a
large number of DSCs. In this framework, the altitude of
DSCs is regard as the state, and cost function is designed
to be the combination of energy consumption and SINR.

• The interference caused by the mass of DSCs (the mean
field term) is describe by the MFA method. Moreover,
we derive the HJB and FPK equations with regard to the
proposed MFG framework, where these two equations
represent the forward and backward equations, respec-
tively. In addition, we propose a finite difference method
to solve these two differential equations to obtain the
solution of MFG.

• Simulation results show the behavior characteristics
of DSCs in different DSCs densities and environment
scenarios. Meanwhile, it also validate the SINR perfor-
mance of proposed algorithm. Particularly, this algo-
rithm can perform offline, which is valuable in practice.

Compared to the existing works as [30]–[35], which con-
centrated on power control with linear remaining energy state

into consideration, our paper proposes the state dynamics
about altitudes control and applies MFG to obtain the optimal
altitude control strategies for distributed DSCs. Then, com-
pared to MFG in existing works [30]–[35], it is intractable
for distributed players to obtain the instantaneous interac-
tions from other players. We propose a MFA method for
DSCs to obtain the interactions with the mean field. And
compared to the existing works [30]–[35], which mostly used
a finite difference method with Lax-Friedrichs scheme and
Lagrange relaxation, we propose a finite difference method
with upwind scheme, and updating the optimal control by
applying the first order necessary condition on the Hamilto-
nian.

The rest of this paper is organized as follows. In Section II,
we introduce the system model containing spectrum sharing
dense DSCs and assumptions. In Section III, the altitude
adjusting problem is converted into a differential game. Then
the theoretical analysis on the optimal control of DSCs at the
NE are given. We then extend the differential game to the
MFG. Also two couple of different equations of proposed
MFG framework is deduced in Section IV. In Section V,
we adopt a finite differential method to obtain the solutions.
Numerical results are analyzed in Section VI. Finally, con-
clusions are drawn in Section VII.

II. SYSTEM MODEL
In this paper, we investigate a large number of DSCs act-
ing as the flight BSs providing the air-to-ground wireless
communication in a given area, where we adopt the tethered
buoyant platforms powered by ground vehicles with cables.
Therefore, these DSCs have able to maintain flight for a long
time, and we have the assumption that we do not consider
the distinct horizontal displacements during transient oper-
ation interval. The horizontal spatial distributions of DSCs
are decided by some central controllers considering some
security issues and coverage, which are not considered within
this paper.

The interference problem in downlink communications
is considered in this paper. As the different channels hav-
ing been used by the large number of DSCs in this
dense networks, we consider the interference among the
DSCs, which transmit on the same channel. Meanwhile,
we have the assumption that DSCs apply orthogonal multiple
access (OMA) technology, so that for a DSC there is only
one user can be served by one channel. In this paper, the dense
networks containN DSC-to-user downlinks sharing the same
channel, as shown in Fig. II. For example, there may be N
users occupying the k-th sub-channel to communicate with
their corresponding DSCs during the same period. We regard
them as the agents of the game. In comparison to common
BS, flexible DSCs can search the optimal altitude to real-
ize the optimal communication with users. However, this
behaviour probably has the increase interference to other
DSCs. Therefore, other DSCs wil intuitively change their
altitude. To maintain a stable downlink, for each DSC in
the network, an altitude control policy is decided aiming at
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FIGURE 1. System model of N spectrum sharing DSCs.

minimizing the average cost of it during a preset period T .
The control period T can be adjusted according to the actual
conditions. Even though each DSC has its individual initial
altitude at the beginning, the same flight space are deployed
on all DSCs, which means all DSCs may have the arbitrary
altitude in [hmin, hmax]. Different initial altitudes of DSCs is
considered in this case.

Different channel models will have a great impact on the
interference mitigation techniques. In our considered dense
DSCs networks, the distance among DSCs are long enough
that the interference from one DSC to another DSC is nearly
negligible, which is in the line with the MFG set. As the
distances are long, the major impact factor of the channel
gain is the None Line of Sight (NLoS) link. Specifically, there
are three kinds of signals can be received by users including
Line of Sight (LoS) links, NLoS links and multipath signals
[9]. Thus, we describe these three signals by using different
probabilities of occurrencec as proposed in [42] and [43].
We assume that the received signal is categorized in only
one of those groups. Each group has its own probability of
occurrence, which is a function of environment, user density,
altitude of buildings and the elevation angle. Meanwhile,
the probability of occurrence of multipath fading, which is
cased by the multipath signals can be ignored because its
lower than other two links.Therefore, the typical method is
used to model the path loss of the LoS and NLoS, where
the received power at k-th user from i-th DSC is given
by

Pr,i,k =

{
Pi
∣∣Xi,k ∣∣−α LoS link,

ηPi
∣∣Xi,k ∣∣−α NLoS link,

(1)

where Pi is the transmit power of i-th DSC. In our considered
DSCs network, we assume that the Pi is a constant because
the same transmit power is used by these N DSCs.

∣∣Xi,k ∣∣
represents the distance from i-th DSC to k-th user. α and
η are the path loss exponent of the air-to-ground links and
the attenuation coefficient over the NLoS links, respectively.
Then the probability of the LoS links is expressed as follows,

PLoS = (1+ c exp(−b[θ − c]))−1 , (2)

where c and b are parameter related to the environment
such as suburb, urban or dense urban. The θ represents the
elevation angle, which can be expressed as,

θ =
180
π
× sin−1(

h
|Xi|

), (3)

where |Xi| =
√
hi(t)2 + d2i,k and di,k is the horizontal distance

between DSC i and the user it serves. Therefore, the received
power of k-th user transmitted from i-th DSC is defined as

Pr,i,k = PLoSPi(t)
∣∣Xi,k ∣∣−α + PNLoSηPi(t)∣∣Xi,k ∣∣−α. (4)

Hence, the achieved SINRwith the considered interference
channel at k-th user is given by

λk (t) =
Pr,i,k

Iu,k (t)+ N0
, (5)

where N0 denotes the noise power. Iu,k (t) =
∑

j∈N,j 6=i Pr,j,k
represents the influence from other DSCs. Then, considering
the Iu,k (t), i-th DSC determine its optimal velocity v∗i (t).
Accordingly, a differential game is suitable to model the
velocity control problem, where the detail will be introduced
as follows.

III. DIFFERENTIAL GAME MODEL FOR ALTITUDE
CONTROL OF A COMMON DSC
In this section, the differential game model is formulated
to solve the velocity control problem in the dense DSC
networks, where each DSC decides its flight policy during
the control interval. In a differential game, players should
determine determine the optimal velocity to minimize the
proposed cost function.

A. STATE, ACTION AND STATE EQUATION OF THE
COMMON DSC
In this game, we define that the hi(t), which represents the
altitude of i-th DSC at time t , is regard as the state. For the
convenience of description, in this paper, the i-th DSC is used
to describe the state evolution, the cost function and so on
named common DSC because it is any and replaceable of the
mass. Here, as the consideration of flight safety and DSC’s
restrictions, the flight altitude of each DSC h(t) belongs to
[hmin, hmax]. Therefore, the evolution of state is defined as
follows:
Definition 1: The dynamic of state hi(t) ∈ [hmin, hmax]

can be expressed by a differential equation as,

dhi(t) = vi(t)dt + σtdWi(t), 0 ≤ t ≤ T , (6)

where the velocity vk (t) represents the drift function of the
different equation (6). The Wk (t) is the Wiener process with
the volatility σt . σtdWi(t) stands for the disturbance, and its
detail can be found in [32].

The control policy vi can be thought of the mapping from
a state to an action. Then, each DSC seeks for the optimal
control policy v∗i to minimize its average cost a∗i during the
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time interval [0,T ]. Thus, the long time average cost of
common DSC is given by,

a∗i = arg min
vi

E
[∫ T

0
ci(t)dt + ci(T )

]
, (7)

where ci(T ) is the terminal cost. E[·] denotes the expectation
operator.

B. COST FUNCTION OF THE COMMON DSC
In this paper, the goal of each agent (DSC) is the improve-
ment of transmission performance, which is determined by
the SINR. As we know, the SINR directly reflects the rate
of which information is successfully transmitted, while the
larger SINR induces the DSC to decrease its altitude, which
signifies the larger interference to other DSCs-to-users links.
This issue can be restricted by the energy constraint, which
not only contains the communication energy, but the energy
used for adjusting the altitude of DSCs. To simplify the
model, the flight energy consumption is proportional to the
quadratic form of the flight velocity vi(t). Therefore, the cost
function of common DSC i constituted by two parts including
SINR and flight energy consumption is designed as follows:

ci(t) = −ω1
Pr,i,k

Iu,k (t)+ N0
+ ω2vi2(t), (8)

where ω1, ω2 are the weight of SINR and flight energy
consumption.

C. DIFFERENTIAL GAME FORMULATION
On the basis of Bellman’s principle of optimality [44], one
attribute of optimal control strategy is that regardless of initial
state and initial decision, the residual decisions constitute the
optimal strategy for the state of the first decision necessarily.
Therefore, we define the optimal velocity control strategy
according to the value function, which can be expressed as

ui(t) = min
vi

E
[∫ T

t
ci(τ )dτ + ci(T )

]
, t ∈ [0,T ] , (9)

where the expectation operator present because the indepen-
dent Brownian motion (Wiener process) in (6). The optimal
accelerated velocity control policy for i-th DSC satisfies for
any t ∈ [0,T ]. Therefore, we can give the definition as
follows:
Definition 2: The velocity profile v∗i (0→ T ) is the opti-

mal altitude control policy of i-th DSC during the period
t ∈ [0,T ], the value function can be defined as

E
[∫ T

t
ci(v∗i (τ ))dτ + ci(T )

]
= ui(t). (10)

With the state equation and the value function, we can form
theHJB equation, a partial differential equations (PDEs) [45],
for this optimal control problem of a generic DSC as

∂ui(t)
∂t
+min

vi(t)
(ci(vi(t))−vi(t)

∂ui(t)
∂h

)+
σ 2

2
∂2ui(t)
∂2h

=0, (11)

where

H (hi(t),
∂ui(t)
∂h

) = min
vi(t)

(
ci(t)− vi(t)

∂ui(t)
∂h

)
, (12)

which is named the Hamiltonian. As the disturbance term
Wi(t) follow the rules of Ito calculus. Hence, the expectation
operator disappeared after the deduce for the HJB function.

Then, to achieve the NE of this game, we consider that
each DSC can not decrease the cost via unilaterally deviating
from current velocity control strategies. Thus, with the HJB
equation of this differential game, the NE can be obtained
depending the definition 3.
Definition 3: The velocity profile v∗ =

[
v∗1, v

∗

2, . . .

v∗i , . . . v
∗
N

]
during the time interval t ∈ [0,T ] represents the

NE of the proposed differential game when

v∗i = argmin
vi

E
[∫ T

0
ci(vi(t), v∗others)dt + ci(T )

]
. (13)

Here, v∗others denotes the velocity vector of other DSCs.
Noticing that states of all DSCs evolve with time based
on 6.
Theorem 1: At least oneNE exists in the differential game.
Proof 1: Proof of Theorem 1 is given in Appendix A.
Then, in this proposed game, the NE can be obtained by

solving at least N PDEs as shown in 11 because there are N
DSCs existing in this model [46]. It is unrealistic to solve such
large number of PDEs because the complexity grows expo-
nentially named the curse of dimensionality as the number of
PDEs is more than three, which means the differential game
used in dense networks can only obtain the theoretic solution.
Therefore, the MFG is used in this model on account of this
game converts the large number of individual behaviors into
the mass behavior, which can be simplified by two coupling
equations. The details can be found in the next section.

IV. MFG APPROACH FOR DENSE DSCs
A. MEAN FIELD AND MFA
As a special kind of differential game, MFG has a main fea-
ture named the similarity hypothesis. Specifically, all agents
are similar as well as interchangeable, and each of them
follows the same strategy [33]. In other words, all agents are
different merely in states, which leads to the affect of the indi-
vidual almost been neglected as the number of agents is large
enough (even tending to infinite). Therefore, in this paper,
when the number of DSC is large enough, the MFG approach
is considered to solve the velocity control problem. Then,
the new velocity control MFG for DSC downlink networks
can be formulated depending on the following properties each
DSC has:
• Rationality: Each DSC can make the rational velocity
control decision by itself to minimize its long time aver-
age cost over the presetting control period.

• The existence of the DSCs’ continuum: It can ensure the
continuity of the mean field. In our considered scenario,
the presence of a huge amount of DSCs guarantees the
existence of the DSCs continuum.
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• Interchangeability of the states of all DSCs: It should be
insured that permutation of the states would not influ-
ence the outcome. As we derive the cost function by a
MFA approach, the states among DSCs can maintain the
interchangeability.

• Interaction between a generic player with mean field: It
is the core idea of MFG. Each DSC only consider the
interaction with the mean field rather than that with all
the rest.

For our considered ultra-dense DSCs network, the first
condition can be meet [30]–[34]. And in our system,
we assume that all DSCs have the same spaces of the state and
the control, which is rational in practical as the DSCs should
obey the same flight rules. Hence their vector of states can be
exchangeable.

The mass is described by the mean field term mt (h), which
is composed by the states distribution of all DSCs defined as
follows:

mt (h) = lim
N→∞

1
N

∑
∀i∈N

1{hi(t)=h}, (14)

where 1{.} is the indicator function which will return 1 when
the condition is true. Otherwise, it will return 0. At each
given time, the mean field term mt (h) is the states probability
distribution of all agents. Here, the lager the number of agents
N is, the smoother the mean field term mt (h) becomes, until
N → ∞ causes mt (h) turning into a continuous distribution
function.

Similarly, in MFG framework, we adopt the common DSC
(agent) i to describe the velocity control problem, and the
altitude hi(t) still is the state of DSC i. The different is that
each DSC adjust its flight altitude influenced by the mass
rather than each individual to achieve its goal. Therefore,
all DSC make decision with the same grope of constraints
and equations, which means the complicated interaction can
be simplified as the interacting between the common DSC
and the mass. Specifically, the process of flight control pol-
icy acquiring is reduced to two couple of PDEs, describing
the dynamic decision and the mass evolution. In addition,
the interference of themass is simplified as the function of the
mean field term, which cases the SINR in cost is the function
ofmt (h). In other words, the interference Iu,k (t) of other DSCs
can convert into the average influence Īu,k (t) from the mass.
Besides, the average distance between other DSCs and the
user served by DSC i is necessary. Thus, this distance d̄j,k ,
j 6= i can be obtained by using the MFA [30], where the
process is shown as follows:

Īu,k (t) =
N∑

j=1,j 6=i

Pr,j,k

=

N∑
j=1,j 6=i

Pj(t)f
(
hj(t), dj,k

)
≈ NPtest (t)f̄

(
hj(t), dj,k

)
. (15)

In equation 15, the f (.) = PLoS
∣∣Xi,k ∣∣−α + PNLoSη

∣∣Xi,k ∣∣−α
represents the channel conditions, which is the function of
hj(t), j ∈ N , j 6= i and d̄j,k . The Ptest (t) is a test transmit
power, a preset constant, which is same for each DSC. Mean-
while, we assume that each DSC has the same initial state,
i.e. hi(0) = hj(0). Then, the previous part of the cost function
ĉ1i (t) for a generic DSC in this MFG can be expressed as

ĉ1i (t) =
Pr,i,k

Īu,k (t)+ N0

=
Pi(t)f

(
hi(t), di,k

)
NPtest (t)

∫
h
f
(
h, d̄j,k

)
mt (h)dh+ N0

, (16)

where

f (h, d̄j,k ) = PLoS
∣∣Xj,k ∣∣−α(1− η)+ η ∣∣Xj,k ∣∣−α . (17)

Accordingly, the mean distance d̄j,k can be estimated by
the above method in practice. Noticing that at the numerator,
Xj,k =

√
hj(t)2 + d2j,k and

PLoS =
(
1+ c exp

(
−b

[
sin−1

(
hj(t)
dj,k

)
− c

]))−1
, (18)

are functions of current altitude. According the altitude of
the common DSC i and the backward evolving of HJB equa-
tion, the control of each DSC is only related to its state.
Thus, the cost expressed in equation (8) can be redefined
as

ĉi(t, h)=
−ω1Pi(t)f

(
hi(t), di,k

)
NPtest (t)

∫
h
f
(
h, d̄j,k

)
mt (h)dh+N0

+ω2v2i (t, h).

(19)

The same like the cost function ck (t) proposed in
section III, the first portion of ĉk (t, h) represent the SINR on
the user served by the common DSC, and the latter portion
denotes the cost caused by rising and falling.

B. FORWARD-BACKWARD EQUATIONS OF MFG
As shown in equation (19), the cost only is the function of two
parameters, themean field term and the control, whichmeans,
in MFG frameworks, all agents (DSCs) have the similar con-
trol problem and different initial states. Thus, the differential
game’s HJB in (11) is modified as follows:

∂ut (h)
∂t
+
σ 2

2
∂2ut (h)
∂2h

+min
vt (h)

(
c(vt (h),mt (h))− vt (h) ·

∂ut (h)
∂h

)
= 0. (20)

Then, we formulate the forward (FPK) equation to describe
the evolving of the mass. The following theorem gives the
derivation of the FPK equation.
Theorem 2: The FPK equation in this MFG framework is

given by

∂mt (h)
∂t
+
∂

∂h
(mt (h)vt (h))+

σ 2

2
∂2mt (h)
∂2h

= 0. (21)
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Proof 2: Theorem 2 is proved in Appendix B.
Since the HJB equation in (20) iterating backward over

time determines the optimal path of the derivation for each
agent. Meanwhile, the FPK equation in (21) iterating forward
over time determines the evolving of the mean field term.
Therefore, these two coupled PEDs are solved necessarily to
achieve the NE of this MFG. During the period t ∈ [0,T ],
the value function ut (h) can be expressed as

ut (h) = E
∫ T

t

−ω1
PLoSPi

∣∣Xi,k ∣∣−α + PNLoSηPi∣∣Xi,k ∣∣−α
NPtest

∫
H
f
(
m(τ, h), d̄j,k

)
+ N0

+ω2v2i (τ )

 dτ. (22)

Thus, the solution of MFG can be regarded as the set
of [m, u].
Lemma 1: The average velocity v̄ ofDSC i is the derivative

of average height versus time, which is derived by

v̄ =
d
dt

∫ hmax

hmin

mt (h)dh. (23)

Proof 3: Lemma 1 is proved in Appendix C.
Lemma 2: If (U1,m1) and (U2,m2) are two solutions of

the forward-backward equations above and m1 = m2, then
U1 = U2.
Proof 4: With two value functions u1 and u2, we have two

FPK equations as

∂m1

∂t
+
∂

∂h
(m1v1)+

σ 2

2
∂2m1

∂2h
= 0, (24)

∂m2

∂t
+
∂

∂h
(m2v2)+

σ 2

2
∂2m2

∂2h
= 0. (25)

Since m1 = m2 = m, we subtract (24) from (25) to obtain
∂
∂h ((v1 − v2)m) = 0. From Lemma 1, if m1 = m2 is set up,
then v̄1 equals v̄2. Since v̄ =

∫ hmax
hmin

vmdh, we have∫ hmax

hmin

v1mdh =
∫ hmax

hmin

v2mdh

⇒

∫ hmax

hmin

(v1 − v2)mdh

= 0, ∀t. (26)

This means v1 = v2. Meanwhile, the ut (h) is related
to v̄ and v. Hence, the equivalences in v̄ and v lead to
u1 = u2. Therefore, the lemma 2 verifies that the control
of each agent only depends on the mean field term. In other
worlds, the similar mean field term accompanies the similar
behavior.

V. SOLUTION OF THE MFG BASED ON THE FINITE
DIFFERENCE METHOD
The goal of this MFG framework is to acquire the optimal
strategy for each agent. Two couple of equations, HJB and

Algorithm 1 NE of the MFG
Initialize:
T × (1+ hmax − hmin): Initial state space.
M :0: Initialization of the mean field.
V h
t : Initialization of the control space randomly.
U :tmax = 0
Repeat:
for t = 1 : tmax & h ∈ [hmin, hmax] do
M can be obtained by solving 30.

end for
for t = tmax : 2 & h ∈ [hmin, hmax] do
Iterating U by solving 32.

end for
V ∗ can be obtained by solving 31.
V = η1V + η2V ∗, η1 + η1 = 1.
End

FPK, can obtain the solution of the MFG mentioned above.
Thus, in this section, we adopt a finite different method,
which is an effective tool to solve the PDEs. By using this
method, the derivatives in PDEs are approximated as the form
of finite differences, where the HJB calculates the optimal
control strategy backwardly with the minimum cost, and the
FPK describes the behavior of the mass by using the strategy
obtained from HJB solving. Finally, the iteration in these two
equations can derive the solution (NE) of the MFG.

In this method, the state and solution are preprocessed by
discretization of their space. Specifically, the state space can
be discretized as the [hmin, . . . , h, h + dh, . . . , hmax], where
dh represents the step size, and h belongs to the [hmin, hmax].
Meanwhile, the time period [0,T ] of the control is discretized
as [0, . . . t, t + dt, . . . ,T ]. Similarly, dt is the time interval.
Therefore, the time and state in (20) and (21) can be defined
in the space of T × (1 + hmax − hmin). Then, according to
the Upwind scheme, which is a kind of. . . ., the differential
in (20) and (21), which is the continuous can be formulated
as follows:

∂uht
∂t
=

uht+1 − u
h
t

dt
, (27)

∂uht
∂h
=

uht−u
h−1
t

dh
, (28)

∂2uht
∂2h
=

uh+1t − 2uht + u
h−1
t

(dh)2
. (29)

Thus, the FPK in equation (21) is described as

Mh
t+1 = Mh

t

+
dt
dh

[
Mh−1
t V h−1

t −Mh
t V

h
t

]
+
σ 2
t dt

2(dh)2

[
2Mh

t −M
h+1
t −Mh−1

t

]
. (30)

Since the optimal value function can be obtained by solving
the HJB, we can derive the optimal control as

vh∗t =
∂uht

2ω2∂h
. (31)
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TABLE 1. Parameters in simulations.

Substituting optimal control v∗ into the HJB equation, and
after some deductions, the expression of the value equation
can be expressed as

Uh
t−1 = Uh

t +

dh
dt

(
Uh
t+1 − U

h
t
)
+ dhC

(
V h∗
t ,M

h
t
)

V h∗
t

+
σ 2
t dt

2(dh)2

[
2Uh

t − U
h+1
t − Uh−1

t

]
. (32)

Here, we consider some boundary conditions during the
iterations. For instance, the value Uh+1

t is inexistence when
the h equals to hmax . Thus, the Uhmax

t is used instead of
the Uhmax+1

t . And considering the altitude and velocity con-
strains, the velocity of each DSC at the maximum and mini-
mum altitude can not be positive and negative, respectively.

The convergent solution can be obtained by solving
the (30), (31) and (32), iteratively, which is detailed in
Algorithm 1.For our proposed algorithm, the space size s =
X × Y , where X , Y are the space size of time interval
and altitude interval, respectively. In each iteration, we go
through all the space two times, and there are finite computing
times in each traversal. So the computation complexity of
every iteration is O(s), which means the iteration is also
finite. Therefore the computational complexity is acceptable
in practical application. In Algorithm 1, all DSCs have the
distributions of initial mean field. Meanwhile, the MFA is
used to obtain the r̄j,k at the initial time. The iteration ends
when the iterative times exceed the threshold.

VI. NUMERICAL RESULTS AND ANALYZATION
In this section, we show the distributions of the mean field as
the time and state vary in various environments. The param-
eters in simulation are shown in Table 1.

The simulation gives the mean field distributions in Fig. 2.
At the initial time, we can see the same number of DSCs
at each altitude, because the initial altitude is an uniform
distribution. Then, as time varying, the DSCs in higher alti-
tude decrease until disappear at t = 10s. Most of them
choose the lower altitude because the lower altitude causes
the weaker path loss, which has the similar trend mentioned
above. However, there are still a part of DSCs hovering in
higher altitude because the effectiveness of control strategy.

For the convenience of analysis, we show the dynamic of
the mean field at some specific altitudes as time varies, which
is shown in Fig. 3. The DSCs at 1100m reduce sharply at

FIGURE 2. The distribution of mean field.

the initial stage. Meanwhile, the distribution of the DSCs at
1080m also decreases after a stable stage because the DSCs
at higher altitude become scarce. Conversely, the DSCs’ dis-
tributions at 1020m and 1000m increase in varying degrees.
Clearly, during the control period, most DSCs stay in lower
altitude instead of the higher environment because the better
communication conditions establish as the closer distance
between the DSCs and users. Besides, these curves flatten
out as the time varies. The reason of this is that the more
DSCs assemble at the same altitude, the lager interference
received by users. Therefore, the DSCs in this condition
should to increase their flight velocities to achieve their goals
(the SINR) reflected in the cost function, which corresponds
to more flight energy consumptions.

Fig. 4 proves the convergence of themean field represented
by four specified altitudes in Fig. 3. All mean field are at time
T . Simulation results illustrate that the equilibrium conver-
gence with a low iterations, which is acceptable in practical
application.

Fig. 5 shows the velocity control strategies of all DSCs.
The dynamical system of each DSC can be adjusted to catch
the velocity calculated at the beginning of every distributed
control time interval based on its current altitude at each time
instant. As shown in Fig. 5, the initial velocities at different
altitude assign randomly. The all of them decrease over time
until v = 0, which donates the DSCs hovering in their optimal
positions. The reason of this phenomenon is that the increase
interference at lower altitude causes the slowdown in a trend
of continued decline.
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FIGURE 3. Dynamic of the mean field at different altitudes.

FIGURE 4. Convergence of the value iteration.

FIGURE 5. The distribution of optimal control (velocity) strategies.

As the air-to-ground channels are affected by variational
factors, which are decided by different environment and the
number of the DSCs, we are interested in the distribution
of DSCs in those scenarios. Fig. 6 shows the mean fields
with different densities of DSCs. We can see that with the
increasing density of DSCs, the displacement distances of
them decrease, which lead to most DSCs converge to the
middle altitude of the range.

FIGURE 6. The distribution of mean field with (a) N = 100; (b) N = 200;
(c) N = 300, respectively.

And we illustrate some specific altitude distribution with
the DSCs density in Fig. 7. It also demonstrates the results
that, the distributions at different altitudes decrease with the
number of the players in this game. The reason is that the
increasing density of DSCs causes larger interference to each
DSC. Compared with improving the channel by dropping,
DSCs are inclined to save power used in dynamic.

In order to visualize the effect of various urban envi-
ronment on the mean field distributions of DSCs, we plot
the Fig. 8 with the following parameters (B, C) pairs
(0.06, 11.25), (0.05, 10.39), (0.04, 8.96) and (0.03, 7.37)
corresponding to various density of the urban environ-
ment [10]. As discussed above, we focus on the distribu-
tions when the altitude is lowest, which can demonstrate the
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FIGURE 7. Some specific altitudes distributions with the DSCs density.

FIGURE 8. The mean field distributions when Altitude=1000m with
different urban environment.

FIGURE 9. Average SINR of all users over time.

downtrend of DSCs. It can be seen that more DSCs con-
verge to the lower altitude when the urban environment gets
complex.

Finally, we discuss the performence of the algorithm,
the spectral efficiency, which is affected by the SINR. There-
fore, we show the average SINR of all users as the time
varies in Fig. 9. Meanwhile, for comparison, the uniform

decline scheme and hovering scheme are considered as the
baseline shown as the red and green curve, respectively.
Clearly, the average SINR of proposed method has the better
average SINR than these two scheme, which can prove the
effectiveness of algorithm.

VII. CONCLUSION
In this paper, we investigate an AI-aided interference man-
agement scheme by finding the optimal altitude strategy of
the DSC in ultra-dense DSCs downlink networks. In this
network, there is a large number of cross-tier interference
because the high-density deployed DSCs share same channel.
Each DSC reduces interference by adjusting its altitude to
improve communication quality, the average SINR and the
spectral efficiency. To obtain the optimal altitude control
policy, firstly, we model the altitude control problem as a
MFG theoretical framework, which is a method to assist AI
for making decisions. In this framework, the MFA method
is used to derive the large number of interference caused by
other DSCs.Meanwhile, the finite difference algorithm based
on the upwind scheme is proposed to solve the HJB and FPK
equations aiming to obtain the solution (NE) of MFG. Sim-
ulation results show that the proposed algorithm can obtain
better SINR by learning the optimal altitude policy comparing
with the benchmark algorithm. Finally, we believe that there
is a optimal joint strategy of power and velocity for those
DSCs, but is intractable based on the existing development
of MFG, which we will study in future.

APPENDIX
A. PROOF OF THEOREM 1
Since the HJB equation gives the optimal velocity choices for
the DSCs in the time space, which cause the evolution of the
DSCs’ altitudes. In this MFG, the number of the DSCs is very
large. Thus, we consider the normalized density function,
the mt (h) of the DSCs. With given initial distribution m0(h),
a FPK equation can be deduced to evolve the mean field
forward in time.

In this game, we have the continuum limit N → ∞.
To describe the evolution of the continuum, we introduce a
smooth and compactly supported function, φ(h). Therefore,∫ hmax
hmin

mt (h)φ(h)dh can be approximated as the continuum
limit of the 1

N

∑N
i=1 φ(hi), i.e.,∫ hmax

hmin

mt (h)φ(h)dh ≈
1
N

∑N

i=1
φ(hi). (33)

Our goal is to find how the mean field goes in time, differen-
tiate both sides with time we have∫ hmax

hmin

∂mt (h)
∂t

φ(h)dh ≈
1
N

∑N

i=1
v(hi)

∂φ(hi)
∂h

. (34)

In the continuum limit N →∞, we have∫ hmax

hmin

∂mt (h)
∂t

φ(h)dh =
∫ hmax

hmin

v(hi)mt (h)
∂φ(hi)
∂h

dh. (35)
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Integration by parts leads to∫ hmax

hmin

∂mt (h)
∂t
+ div(vt (h)mt (h))φ(h)dh = 0. (36)

This is valid for every test function φ(h), so we have
derived the advection equation

∂mt (h)
∂t
+
∂

∂h
(mt (h)vt (h)) = 0. (37)

B. PROOF OF THEOREM 2
To assure the existing of the NE under this differential game,
we should prove the solution of HJB equation existing. Based
on [38], the solution of HJB exists if the Hamiltonian is
proven to be smooth. As the Hamiltonian we derived, i.e.,

H (hi(t),
∂ui(t)
∂h

)

= min
vi(t)

(
ci(t)− vi(t)

∂ui(t)
∂h

)
= min

vi(t)

(
−ω1

pr,i,k
Iu,k (t)+ N0

+ ω2v2i (t)− vi(t)
∂ui(t)
∂h

)
. (38)

It’s evident that the derivatives of the Hamiltonian,

∂H
∂v(t)

= 2ω2v(t)−
∂ui(t)
∂h

, (39)

∂2H
∂v(t)

= 2ω2, (40)

∂3H
∂v(t)

= 0. (41)

Hence, the function is smooth because it has derivatives of
all orders. Thus, at least one NE existing in this differential
game can be proven.

C. PROOF OF LEMMA 1
We can derive the integral form of the state equation (6) as

h(t + dt)− h(t) =
∫ t+dt

t
vt (h)dt +

∫ t+dt

t
σdWt

= vt̃ (h)dt + σ (Wt+dt −Wt) , (42)

where t̃ ∈ (t, t+dt). It can be proved through the mean value
theorem for integrals. Since (41) is true for all DSCs, taking
expectation of this equality above for all DSCs and all current
height of DSCs, we have

E [h(t + dt)]−E [h(t)]=E
[
v(t̃, h)

]
dt+σE [Wt+dt−Wt ] ,

(43)∫ hmax

hmin

hm(t + dt, h)dh−
∫ hmax

hmin

hmt (h)dh = dtE
[
v(t̃, h)

]
,

(44)

where E [Wt+dt −Wt ] = 0 satisfies because the Wiener
process Wt+dt −Wt follow a normal distribution with mean
zero.

We assume dt is very small then t̃ → t . Hence, we have

d
∫ hmax
hmin

hmt (h)dh

dt
=

∫ hmax

hmin

vt (h)mt (h)dh = v̄(t). (45)

The proof is completed.
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