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ABSTRACT Modulation recognition plays an indispensable role in the field of wireless communications.
In this paper, a novel attention cooperative framework based on deep learning is proposed to improve
the accuracy of the automatic modulation recognition (AMR). Within this framework, a convolutional
neural network (CNN), a recurrent neural network (RNN), and a generative adversarial network (GAN) are
constructed to cooperate in AMR. A cyclic connected CNN (CCNN) is designed to extract spatial features
of the received signal, and a bidirectional RNN (BRNN) is constructed for obtaining temporal features.
To take full advantage of the complementarity and relevance between the spatial and temporal features,
a fusion strategy based on global average and max pooling (GAMP) is proposed. To deal with different
influence levels of the signal feature maps, we present the attention mechanism in this framework to realize
recalibration. Besides, modulation recognition based on deep learning requires numerous data for training
purposes, which is difficult to achieve in practical AMR applications. Therefore, an auxiliary classification
GAN (ACGAN) is developed as a generator to expand the training set, and we modify the loss function of
ACGAN to accommodate the processing of the actual in-phase and quadrature (I/Q) signal data. Considering
the difference in distribution between generated data and real data, we propose a novel auxiliary weighing
loss function to achieve higher recognition accuracy. Experimental results on the dataset RML2016.10a
show that the proposed framework outperforms existing deep learning-based approaches and achieves 94%
accuracy at high signal to noise ratio (SNR).

INDEX TERMS Automatic modulation recognition (AMR), attention mechanism, convolutional neural
network (CNN), generative adversarial network (GAN), recurrent neural network (RNN).

I. INTRODUCTION
Automatic modulation recognition (AMR), referring to the
identification of the modulation type of the received signal,
is essential for reducing the protocol overhead and ensuring
the reliable performance of the communication system in
non-cooperative scenarios. On the one hand, it is of con-
siderable significance to achieve AMR to promote spectrum
efficiency and transmission reliability for the link adaptation
in next-generation communications [1]. On the other hand,
obtaining the modulation types of hostile signals to develop
the interfering or anti-interfering strategy is an essential appli-
cation in the field of military communications.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guan Gui .

Maximum likelihood (ML) hypothesis testing methods
based on decision theory and statistical pattern recogni-
tion (PR) methods based on feature extraction are two pri-
mary categories of AMR solutions [2]. The former is based on
the likelihood function, and AMR is completed by comparing
the likelihood ratio with an appropriate threshold theoreti-
cally. ML methods have the best performance according to
the Bayesian minimum misjudgment cost criterion and are
applied in [3]–[5]. However, the calculation of the statis-
tics is complex, and some prior probability information is
required. In most information interception scenarios, modu-
lation recognition has to be completed in a blind manner [2],
i.e., there is no prior information that can be utilized. In con-
trast, the latter is less subject to prior information and has
a lower complexity. These PR methods based on feature
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extraction can achieve sub-optimal performance and broad
applicability when adequately designed.

For PR methods, AMR can be regarded as a multi-pattern
classification problem with multiple parameters. The pro-
cess can be divided into two stages, extracting fea-
tures and training classifiers. A variety of features were
extracted and employed in [6]–[18], containing amplitude
with phase and carrier frequency [6], instantaneous fea-
tures [7], high-order statistical features [8], [9], cyclic spec-
trum parameters [10], [11], bispectrum features [12], wavelet
features [13], [14] and constellation diagram [15], [16]. For
the choice of the training classifier, the classifiers based on
machine learning like support vector machine (SVM) in [6],
[13], [17], [18], decision tree in [7], [8], [14], k nearest
neighbor (KNN) in [10], compressive sensing in [12], genetic
algorithm in [15], and neural network (NN) in [9], [11], [16],
were widely used due to their robustness, self-adaption, and
nonlinear processing ability [19]. However, the performance
of these PR methods largely depends on empirical feature
extraction due to the limited capacity of classifiers [19]. For
PR methods, feature design relies on an empirical judgment.
For specific signals, if the empirical feature design is inap-
propriate, the performance of classification will be greatly
degraded.

In recent years, deep learning has performed well in
various tasks due to its outstanding deep feature extrac-
tion capabilities. In the field of wireless communications,
Gui et al. proposed a novel and effective deep-learning-aided
non-orthogonal multiple-access (NOMA) system, in which
several NOMA users with random deployment are served
by one base station [20]. Authors in [21] focused on
channel estimation and direction-of-arrival (DOA) estima-
tion, and a novel framework that integrates the massive
multiple-input multiple-output (MIMO) into deep learning
was proposed. To avoid the limitations of empirical feature
selection engineering, many researchers also have applied
deep learning to AMR. O’Shea et al. used convolutional neu-
ral network (CNN) to extract features from in-phase and
quadrature (I/Q) data and identified modulation schemes
in [22]. The result showed that CNN outperformed the
traditional machine-learning-based classifiers. Inspired by
the excellent performance of CNN in image processing,
the authors in [23]–[28] characterized the signal in the form of
an image to achieve AMR. CNN-based methods mentioned
above only considered the spatial features of the signal, and
the temporal features were ignored. In [29], the authors uti-
lized the signal temporal features extracted from the uni-
directional recurrent neural network (RNN). This method
only considered the forward temporal features of the sig-
nal. However, the temporal features of the signal should
be contextually bidirectionally correlated. Authors in [30]
and [31] applied convolutional long short-term deep neural
networks (CLDNN) as the optimal architecture and achieved
an accuracy approximately 88.5% at high signal to noise ratio
(SNR). Nevertheless, the accurate and complete feature set
is still needed, and the rate of recognition accuracy still has

room for improvement. In addition, the performance of deep
learning-based methods relies heavily on a large amount of
data, which are difficult to collect due to the cost and time
consumption. It is crucial to utilize the collected samples
efficiently to improve recognition accuracy.

In this paper, we propose a novel attention cooperation
framework from the perspective of feature completeness and
sample sufficiency to effectively realize AMR. For feature
completeness, the spatial and temporal features of signals
are extracted by CNN and RNN, respectively. Then, these
features are fused by the global average and max pool-
ing (GAMP) strategy to achieve final classification. For sam-
ple sufficiency, a generative adversarial network (GAN) is
designed for data augmentation to provide adequate sample
support.

The main contributions of this paper are summarized as
follows:

(1) A novel framework that combines CNN, RNN, and
GAN is proposed to realize AMR cooperatively. The atten-
tion mechanism is employed in this framework to improve
the efficiency of the features. Based on the data set
RML2016.10a, it is shown that the proposed framework is
superior to the existing deep learning-based methods.

(2) Considering the spatial and temporal features of the
signal to achieve feature completeness. For the spatial fea-
tures, a cyclic CNN (CCNN) is designed to achieve the fusion
of different levels of abstract features in different update
stages. For the temporal features, a one-layer bidirectional
RNN (BRNN) is designed to perform full mining of the signal
context temporal information. The performance of AMR is
promoted by adequate extraction and efficient reuse of the
signal spatial-temporal features.

(3) We propose the GAMP strategy to capture the intrinsic
correlation between temporal and spatial features and achieve
feature fusion, and proved by experiments that this mecha-
nism is better than the simple concatenation on recognition
accuracy. In order to expand training data, an auxiliary classi-
fication GAN (ACGAN) is introduced to this framework, and
we modify the loss function to accommodate the processing
of the actual I/Q signal data.

(4) A new auxiliary weighing loss function is proposed to
measure the influence of the generated data on the classifica-
tion model. The auxiliary classification accuracy of ACGAN
is exploited to automatically score the weight of the generated
data so that the recognition performance is optimized by
indirectly changing the distribution of the training data.

The remainder of this paper is organized as follows.
In Section II, details of the proposed attention cooperative
framework are described. In Section III, the experimental
setting is introduced. The results are shown in Section IV.
Section V concludes this paper.

II. ATTENTION COOPERATIVE FRAMEWORK
In this section, we introduce the operating mechanism of
the attention cooperative framework, which is illustrated
in Figure 1. The data flow in the direction of the arrows,
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FIGURE 1. Architecture of attention cooperative framework.

it and qt represent the in-phase component and quadrature
component of the tth sampled point, respectively. The orig-
inal dataset only contains the actual collected data. GAN is
first trained to complete data augmentation. The hybrid data
in the extended dataset, which consists of the actual collected
data and generated data, is delivered to the BRNN containing
one layer on time dimension to capture the global temporal
features. The spatial features are extracted by the CCNN,
which contains three cyclic blocks. The attention mechanism
is employed with diverse forms to facilitate the effectiveness
of the features. Then, GAMP incorporates the feature maps
to realize the fusion. The reconstructed feature maps are
transmitted to the fully connected layer to make the final
classification. The detailed descriptions of the framework are
introduced as follows.

A. I/Q DATA AUGMENTATION BASED ON THE ACGAN
For modulation recognition, the insufficiency of signal data
has a negative influence on the signal feature analysis.
Notably, the deep learning method requires a large amount
of training data as support. Adequate training data is ben-
eficial to enhance the generalization performance of the
classification model to further improve the classification
accuracy. Therefore, a GAN is designed to complement the

training data. For actual collected data, the process of data
augmentation can be regarded as the expansion of data
scale by the samples. When the generator can approach
the real sample distribution infinitely, the generated data
has a significant probability of containing the useful fea-
tures required for the classification so that the samples
provided by GAN can be used to expand the scale of
the training set. GAN is composed of a generator and a
discriminator. The generator maps the vectors in the ran-
domly distributed noise space to the target space to establish
a distribution model. The goal of the discriminator is to
distinguish between the real sample obeying the actual spatial
distribution and the fake sample produced by the generator.
The two networks are iteratively optimized with minimax
countermeasures.

Fundamentally, the purpose of the data augmentation is
to assist in classification tasks to improve accuracy. For
generated data, it is necessary to add label restrictions to
highlight their specific attributes. Therefore, we exploit an
ACGAN to achieve data augmentation. The ACGAN intro-
duces conditional information into the input of the generator.
Besides judging the real or fake, an auxiliary classifier is
added to the discriminator to give the category estimation.
The ability to generate specific data based on labels makes
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FIGURE 2. Signal data augmentation with the ACGAN.

ACGAN suitable for data augmentation of the modulation
classification problem.

The process of data augmentation is illustrated in Figure 2.
First, the label and the data initialized with the standard
Gaussian distribution are submitted to the generation net-
work, and the generated signal data are obtained through a
series of deconvolution operations. The generated data are
delivered to the discriminating network, and the discrim-
inating network ultimately gives a prediction of the data
source and the modulation type probability. After iterative
training, the network reaches the Nash equilibrium point. The
discriminator cannot distinguish the source of the data, and
the auxiliary classification accuracy tends to be stable. Then,
we hybrid the generated data labeled with class and auxiliary
weight to the original dataset. Finally, the extended dataset
will be utilized to train the classification model in subsequent
procedures.

However, the network is prone to gradient disappearance
when the actual collected signal data are used to train the
ACGAN. On one hand, compared with image data, the dis-
tribution of the two-dimensional signal data labeled with
modulation is more stochastic. On the other hand, from the
perspective of the model, for the real data distribution and
the generator distribution, an optimal segmentation surface
can separate them in the high-dimensional space. If the neural
network corresponding to discriminator can fit the segmenta-
tion surface infinitely, there is an optimal discriminator which
gives a constant probability (1 or 0) on the support set of
the real data distribution and the generated data distribution,
causing the gradient of the generator to disappear. In response
to this problem, we improve the adaptability of the loss
function of the ACGAN.

The objective function of the original ACGAN has
two parts: the log-likelihood of the correct source, LS ,
and the log-likelihood of the correct class, LC [32]. The
log-likelihood of the correct source can be expressed as

LS = E
x∼Pr

[log(DS (x))]+ E
x̃∼Pg

[log(1− DS (x̃))] (1)

where Pr is the real data distribution and x ∼ Pr . Pg is the
model distribution implicitly defined by x̃ = G(z), z ∼ Pz.
The input z to the generator is sampled from noise distribution
Pz [33]. DS (x) represents the source probability of sample x
given by discriminator. E [·] denotes the expectation operator.
It is obvious that the objective function is presented in the
form of binary cross-entropy which easily leads to discrim-
inator sensitivity. Inspired by [33] and [34], we replace the
binary cross-entropy with Wasserstein entropy with gradient
penalty as the loss function of discriminator to predict real or
fake. Therefore, the optimization problem can be redefined as

L ′S = E
x̃∼Pg

[
DS (x̃)

]
− E

x∼Pr
[DS (x)]

+λ E
x̂∼Px̂

[(∥∥∇x̂DS (x̂)∥∥2 − 1
)2] (2)

where Px̂ is implicitly defined as sampling uniformly along
straight lines between pairs of points sampled from the
real data distribution Pr and the generated data distribution
Pg [34], and x̂ ∼ Px̂ , x ∼ Pr , x̃ ∼ Pg. ‖∇ [·]‖2 denotes
the l2 − norm of the calculated gradient vector and λ is the
penalty factor. Different from the original ACGAN, discrim-
inator is limited in the set of 1-Lipschitz functions, which is
implemented by gradient clipping in the model. Wasserstein
entropy reduces the discriminator sensitivity to distribution
differences by limiting the bounds of the network parameters
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so that the training stability can be enhanced. On this basis,
the gradient penalty with factor λ is added to further improve
the convergence of the model by solving the centralized
problem of parameter distribution caused by weight clipping.
For the modulated signal data, we employ the improved loss
function for the ACGAN, which finally solves the problem
that the gradient disappears in the process of training.

B. AUXILIARY WEIGHING LOSS FUNCTION
In this proposed framework, an ACGAN is designed to
achieve data augmentation. While exploiting the commonal-
ity of generated data with real data, inherent differences in
support of classification should also be taken into account.
In the case that the amount of data is limited since the
generated data cannot fully represent the real data for the
classification task, we propose an auxiliary weighing loss
function to balance the influence of the generated data to
improve the performance of the classification model.

When a GAN is trained to converge, the discriminator is
considered to be indistinguishable from the original signals
and the generated signals. However, as the training data with
category labels, in addition to the commonality to be distin-
guished from noise, features derived by classification should
be paid more attention. Therefore, ACGAN is designed to
indirectly increase the inter-class difference of the generated
data by adding an auxiliary classification function to the
discriminator, which can be used as a quantitative indicator.

As is shown in Figure 2, we labeled the generated data with
auxiliary weight besides the class label. As the optimization
target of the classification problem, the inter-class difference
directly reflects the influence of training data. Therefore,
a new auxiliary weighing loss function is proposed to balance
the effect of the real data and the generated data.

The traditional cross-entropy function can be expressed as

F(p, q) = −
∑
c

p(c) log q(c), (3)

where p and q stand for the actual and predicted probability
value, respectively. c represents the class. Cross-entropy cal-
culates the distance between the two probability distributions,
which describes the difficulty of expressing the probability
distribution p through the probability distribution q. In order
to weigh different sources of data, the auxiliary classifica-
tion accuracy of ACGAN is utilized as the quantification
of the influence factor. The proposed loss function can be
expressed as

F(p, q) = −α
∑
c

p(c) log q(c),

α =

{
1 p(c) ∈ preal(c)

m p(c) ∈ pgenerated(c)
(4)

where α is the influence factor, and m denotes the auxiliary
classification accuracy of the discriminator. This proposed
loss function is actually designed to realize the data-level
attention mechanism to facilitate AMR.

C. TEMPORAL FEATURE EXTRACTION
BASED ON THE BRNN
The modulated signal can be viewed as the time-series
data, and thus its global temporal features are indispens-
able for AMR. Therefore, we design a BRNN to perform
time-series analysis on modulated signals to extract effective
features for classification. Different from the previous work
using the simple classical RNN to extract and classify time
series [29], the proposed framework simultaneously performs
forward and reverse processing on the signal, which is shown
in Figure 3. Each hidden node containing two units outputs
a two-dimensional data, which represents the information
captured from the previous and subsequent sampling points
of the current timestamp. The computing unit is expressed
as un. For the observation of themodulation type of the signal,
the context information before and after the observation point
is valid and worthy to be comprehensively analyzed. A one-
layer BRNNmodel is designed in the proposed framework to
capture the overall temporal features of the modulated signal
adequately.

The signal vector at timestamp t can be denoted as

st = [it , qt ], {t = 1, ...,N } (5)

where the it and qt are the in-phase (I) and quadrature (Q)
components. For the first layer, the computing process of unt

is defined as
−→
h (1)
t = σ (

−→
U st +

−→
V

(1)−→
h (1)
t−1 +

−→
b

(1)
) (6)

←−
h (1)
t = σ (

←−
U st +

←−
V

(1)←−
h (1)
t+1 +

←−
b

(1)
) (7)

The arrow indicates the direction of the process.
−→
h (1)
t and

←−
h (1)
t denote the calculation result of forward and backward

processes of the tth hidden node of the first layer. In particu-
lar,
−→
h (1)

0 and
←−
h (1)
N+1 are generated by random initialization.

U and V denote the linear parameters of the input signal sam-
ple point and the output of the previous node, respectively. b is
the bias and σ denotes the non-linear transformation which is
performed by an activation function such as ReLU, sigmoid
and tanh. For the BRNN in this proposed framework, the tanh
function is chosen. The output value range is -1 to 1 and the
average value is fixed at 0, which facilitates the management
of the subsequent layers. The state value of the hidden node
h(a)t in the ath layer at timestamp t can be expressed as

h(a)t = [
−→
h (a)
t ,
←−
h (a)
t ] (8)

where
−→
h (a)
t and

←−
h (a)
t denote the calculation result of for-

ward and backward proceses of the tth hidden node of the
ath layer, respectively. The concatenate method is chosen
here instead of simply summing, which ensures a non-linear
interaction between the forward and backward information
of the sequence modulated signal in subsequent process. The
computing process of unt in ath (a > 1) layer can be
defined as

−→
h (a)
t = σ (

−→
W

(a)
h(a-1)t +

−→
V

(a)−→
h (a)
t−1 +

−→
b

(a)
) (9)
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FIGURE 3. The comparison of the original RNN and the BRNN.

←−
h (a)
t = σ (

←−
W

(a)
h(a-1)t +

←−
V

(a)←−
h (a)
t+1 +

←−
b

(a)
) (10)

whereW is the matrices representing the linear relation of the
hidden nodes of previous layer at current time. The parame-
ters represented by W, V , b are shared throughout the cor-
responding layer to realize the recurrent. In particular,

−→
h (a)

0
and
←−
h (a)
N+1 are generated by random initialization. Processed

by a one-layer BRNN, the overall temporal features of the
modulated signal data are extracted.

Nevertheless, the influences of the vectors in the out-
put feature map on the modulation type discrimination are
actually different. Therefore, we introduce the self-attention
mechanism to recalibrate the features to extract valid infor-
mation. The soft attention is chosen due to the global recep-
tive field and continuous differentiability, which benefits the
gradient computation. The process of self-attention is illus-
trated in Figure 4. The attention map is obtained by a linear
transformation of the processed feature sequence, and non-
linear transformation and normalization are performed by the
softmax function. The calculated attention map is multiplied
by the feature sequence to achieve temporal self-attention.

D. SPECIAL LOGICAL FEATURE EXTRACTION
BASED ON THE CCNN
Similar to the image data, a logic relationship exists in spatial
points of the two-dimensional matrix formed by the I/Q sig-
nal. In order to obtain the information contained in the local
spatial features which are useful for identifying the modula-
tion types, we design a CNN based on the cyclic structure to
make full use of the abstract features of different layers. The
basic structure of the cyclic block is shown in Figure 5.
In the first stage, the transmission process of the feature

maps is similar to the residual structure. The output features
calculated by convolution, pooling, and batch normalization

FIGURE 4. Soft self-attention mechanism.

FIGURE 5. Basic structure of the the cyclic block.

are concatenated with the input features to improve the effi-
ciency of information dissemination between different layers
and to enhance the feature reuse. The process of the first stage
can be expressed as

ol = g[Hl(ol−1), ol−1] (11)

where ol denotes the output of the lth (0 < l ≤ 3) layer in the
first stage. Especially, if l = 1, o0 denotes the inputs of the
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first layer. Hl and g represent the calculation of the lth layer
and the nonlinear operation, respectively. Considering the
features of higher-level output are more abstract and refined,
we design a cyclic structure for the network, which intro-
duces the second stage of feature propagation. This process
is to propagate the features of the high-level output forward.
In the second stage, the original map geometry is preserved
while merging the feature maps by concatenation and pooling
operations which can be expressed as

o
′

l = g
′

[Hl(o
′

l−1), ol+1] (12)

where o
′

l refers to the output of the lth (0 < l ≤ 2) layer
and g

′

represents the nonlinear operation in the second stage.
Especially, if l = 0, o

′

0 denotes the inputs of the first layer in
the second stage which can be denoted as

o
′

0 = g
′

[o1] (13)

The cyclic feedback structure in the second stage refines
the convolution kernel of the previous layer with higher-level
abstract information, which influences the spatial attention.
The result calculated by the last layer of the second stage
will be delivered to the attention block for further processing.
We design this cyclic structure so that the features of the
hierarchy can be fully interacted to extract information which
contributes to classification effectively.

FIGURE 6. The procedure of SE mechanism in attention block.

As for the attention block, because the influence ranks
are different between the channels inside each feature map,
we exploit squeeze and excitation (SE) attention mechanism,
which is shown in Figure 6 to achieve recalibration. First,
performing global average pooling on the feature maps which
can be expressed as

zc =
1

K × J

K∑
k=1

J∑
j=1

uc(k, j) (14)

where zc denotes the initialization weight value of cth chan-
nel uc, and K and J represent the width and height of the
feature map, respectively. Then, the feature weight vector
is generated after operating scaling and nonlinear transfor-
mation defined as the activation function sigmoid in the
channel dimension, which controls the weight parameters
value between 0 and 1. In brief, the global average pooling
performs initial extraction of the feature weight parameters,

and the scaling operation models the correlation between
channels. The corresponding channel feature is multiplied by
the weight vector to complete SE attention mechanism.

Then, the recalibrated features will be transferred to the
transition block, which is illustrated in Figure 7. We employ
a 1 × 1 convolution to construct the bottleneck structure for
channel dimensionality reduction, combined with the pooling
operation to complete the feature map compression. The
transition module is used for parameter reduction to improve
the computational efficiency of the network.

FIGURE 7. The basic structure of the bottleneck in transition block.

Considering the computational complexity and network
performance, we build three cyclic modules. The overall
CCNN architecture is shown in Figure 8. The output of
each cyclic block is pooled to simplify the parameters. After
the concatenation is completed, the integrated features are
delivered to the attention module to obtain an output feature
map of the network. Therefore, each block can directly access
the gradient information to accelerate network convergence.
In the pre-training phase, the feature map will continue
through a fully connected layer, and the classification prob-
ability will be calculated by softmax. Actually, for a trained
CCNN in the framework, the feature map is the final output
of the spatial features.

E. SPATIAL-TEMPORAL FEATURE FUSION BASED
ON THE GAMP STRATEGY
To utilize the correlation between the temporal and the spatial
features, we propose the GAMP strategy for spatial-temporal
feature fusion, whose mechanism is illustrated in Figure 9.
First, the output of the BRNN is converted to structurally
consistent with the output feature map of the CCNN through
a fully connected layer. Then, based on simple concate-
nation, we first perform a global average pooling (GAP)
and a max-pooling (MP) operation in channel dimension
and get the integration feature map. Next, inspired by the
SE structure, the max-pooling and global average pooling
are operated along the channel dimension and acquire their
weight maps. Then, the attention map is calculated by aver-
aging the sum of the weight maps. The reconstructed feature
map is obtained by multiplying the attention map with the
integration feature map, which can provide adequate infor-
mation for AMR. As is shown in Figure 1, the output of
GAMP is delivered to the final classifier to get the recognition
results.
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FIGURE 8. The architecture of the CCNN.

FIGURE 9. The fusion mechanism of the GAMP strategy.

III. EXPERIMENTAL SETTING
In this section, we present the dataset description, the hyper-
parameter configuration, and the parameter learning. The
tricks of improving performance are also discussed.

A. DATASET DESCRIPTION
RadioML2016.10a dataset [22] is used as the basis for
model performance verification. This dataset contains eleven
different digital and analog modulation formats, including
BPSK, QPSK, 8PSK, QAM16, QAM64, CPFSK, GFSK,
4PAM, WBFM, AM-DSB and AM-SSB, corresponding
220K sequences for 128 complex-valued baseband I/Q sam-
ples, which are collected at a sampling rate 1 M/s and 4 sam-
ples per symbol from the signals that pass through a wireless
channel with the effects of multipath fading, sample rate
offset, and center frequency offset [17]. It is widely used in
evaluatingAMRperformance such as in [22], [27], [29]–[31].
The samples are taken with 2 dB interval within the range
from -20 dB to 18 dB [22], and are processed as a matrix
with the size of 2 × 128, where the in-phase and quadrature
parts of the signal samples are separated.

B. HYPERPARAMETER CONFIGURATION
AND PARAMETER LEARNING
For the optimizer configuration, the optimizer for the CCNN
is based on Nesterov momentum method. The momentum
parameter is set as 0.9, which corresponds to a maximum
gradient update speed of ten times that of the gradient

descent algorithm. The initial learning rate is set as 0.1.
The BRNN, the ACGAN, and the final classifier of the
whole framework employ Adam optimizer. For the BRNN,
the learning rate is set as 0.001. The first-order and
second-order moment parameters of the BRNN are set as
0.9 and 0.999, respectively. For the ACGAN, the learning rate
of the generator and discriminator is set as 0.0001, the first-
order moment parameter is set as 0.5, and the second-order
moment parameter is set as 0.9. For the final classifier,
the parameter setting is the same as BRNN.

For the parameter learning algorithms, the CCNN,
the ACGAN, and the final classifier are trained through
backpropagation (BP) algorithms. The BRNN is trained with
backpropagation through time (BPTT) algorithms.

As for iterations, the ACGAN is trained first and converges
after 20,000 training iterations. The extended training set is
delivered to the classification module containing the CCNN
and the BRNN. The CCNN and the BRNN are first trained
separately and converge after 200 and 50 training iterations,
respectively. According to the reconstructed feature map,
the final classifier after the GAMP fully converges, i.e., the
classification accuracy of testing data is no longer improved,
after 20 training iterations.

The proposed framework is built and trained with Tensor-
flow deep learning library on Ubuntu 16.04 with an Nvidia
GeForce GTX 1080 Ti GPU.

C. TRICKS OF IMPROVING PERFORMANCE
In the process of building the framework, we investigate some
tricks which can effectively facilitate the training process or
improve the classification accuracy.

1) ZERO PADDING
In consideration of the characteristics of CNN, zero padding
has the effect of maintaining boundary information. For I/Q
modulated signal, zero padding is performed in two dimen-
sions of the row and column in the CCNN. The operation
actually takes into account the retention of the head and the
tail specialties, and correlations of in-phase and quadrature
components.
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2) BATCH NORMALIZATION
Batch normalization (BN) normalizes the first and second
moments of the data so that the data still has zero mean
and unit variance after it is processed through the network
layers. In order to fully utilize the nonlinear expression ability
of activation functions, the result of BN is multiplied by a
scaling factor and added with bias before being passed to the
nonlinear units. The scaling factor and bias are learned by
the network. BN is employed in the CCNN, the BRNN, and
the final classifier in the proposed framework to accelerate the
convergence speed of the network and improve the classifi-
cation accuracy.

3) DROPOUT
While the fitting ability is improved, the dropout is adopted to
take into account the generalization ability. According to the
different characteristics of the network structures, the dropout
rate is set as 0.8, 0.3, and 0.5 in the CCNN, the BRNN, and
the ACGAN of the proposed framework, respectively.

4) WEIGHT DECAY
To avoid over-fitting of the training data, a regularization
term, which can be expressed as the l2−norm of the network
weight vector, is added to the loss function. Intuitively, weight
decay makes the model prefer to learn the weight with a
smaller l2−norm, while the decay factor quantifies the degree
of preference. In the proposed framework, the decay factor is
set as 0.0001 to balance the fitting and generalization ability.

5) MSRA INITIALIZATION
In the proposed framework, the ReLU activation function
is introduced into the CCNN for nonlinear transformation.
Corresponding to the characteristics of the ReLU activa-
tion function, in order to avoid the gradient disappearing,
MSRA initialization is used for initializing the weight values
of the CCNN. The weight distribution after initialization is
a Gaussian distribution. The MSRA initialization method
effectively improves the classification accuracy in the pro-
posed framework.

6) LEAKY RELU
Unlike the classical ReLU function, leaky ReLU assigns a
non-zero slope to a negative region. We use leaky ReLU as
an activation function in the ACGAN to avoid the instability
of the training process caused by gradient disappearance and
accelerate convergence.

IV. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed
framework from different perspectives.

A. SIMULATION RESULTS OF BRNN
In our framework, RNN is introduced to extract the temporal
characteristics of signals, and the bidirectional structure is
designed to fully obtain the context information. To evaluate

FIGURE 10. The comparison of the BRNN and the unidirectional RNN.

the performance of the BRNN separately, we temporarily
remove the ACGAN, the CCNN, and the final classifier from
this framework, and add the fully connected layer and the
softmax after the BRNN for the training and the testing.
In this section, BRNN is compared with the unidirectional
structure. The effect of the number of BRNN layers on clas-
sification accuracy is also studied.

As is shown in Figure 10, the recognition performance of
BRNN and unidirectional RNN below 0 dB is approximately
consistent. When SNR is above 0 dB, the average recognition
accuracy of BRNN is 0.6 higher than that of unidirectional
RNN. The reason is that the bidirectional transmission struc-
ture enables the contextual temporal information of the signal
to be fully extracted to obtain complete temporal features.

FIGURE 11. The comparison of the self-attention and the full connection.

Moreover, the self-attention mechanism is introduced in
BRNN as mentioned in Section II.B. Figure 11 illustrates the
performance comparison between the attention mechanism
and full connection.When SNR is above 0 dB, the recognition
accuracy of the attention mechanism is about 1.5% higher
than that of the full connection, because the self-attention
mechanism captures the internal correlation of features and
improves the precision of temporal feature representation.
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FIGURE 12. The comparison of the BRNN with different layers.

In Figure 12, we analyze the influence of the BRNN layer
number on recognition accuracy. As the number of BRNN
layer increases from one to three, the recognition accuracy is
not improved. For three-layer BRNN, the recognition accu-
racy even decreases, which is probably due to the over-fitting.
Increasing the layer number also brings additional computa-
tional overhead. Therefore, in the proposed framework, a one-
layer BRNN is constructed to extract temporal features.

B. SIMULATION RESULTS OF CCNN
CNN is introduced to extract the spatial features of the signal
in this framework. To evaluate the performance of the CCNN
separately, we temporarily remove the ACGAN, the BRNN,
and the final classifier from this framework, and add the fully
connected layer and the softmax after the CCNN for the train-
ing and the testing. The cyclic block structure is designed to
increase the information flows in the CCNN. In order to prove
the superiority of the cyclic structure, it is compared with the
residual structure and the densely connected structure.

FIGURE 13. The comparison of the cyclic block and the structures only
built with forward connections.

As is shown in Figure 13, when SNR is above 0 dB,
the cyclic structure outperforms the other two structures,

which are only built with forward connections. The reason is
that the feature reusability is improved since the cyclic struc-
ture establishes forward and backward connections between
every two layers. The two-stage data propagation implements
the loop feedback operation, which achieves the feature refin-
ing and spatial attention mechanism.

FIGURE 14. The comparison of the SE attention and simple concatenation.

We introduce the SE attention mechanism in CCNN to
achieve feature recalibration. Figure 14 illustrates the per-
formance comparison between SE attention mechanism and
the simple concatenation. Under the condition of high SNR,
the recognition accuracy of the attention mechanism is about
1% higher than that of simple concatenation. The reason is
that the feature recalibration completed by attention mech-
anism strengthens the discrimination of the output feature
maps.

C. SIMULATION RESULTS OF GAMP
GAMP is proposed to fully fuse and recalibrate the spatial and
temporal features of the signal. To evaluate the performance
of the GAMP, we temporarily remove the ACGAN, and take
the temporal and spatial features provided by the trained
BRNN and CCNN as the input for the training and the testing.
As a feature fusion strategy, we compare the GAMP strategy
with simple concatenation and apply the recognition accuracy
of the final classifier as the performance indicator.

As is shown in Figure 15, under the condition that the SNR
is −14 dB to −4 dB, the recognition accuracy of GAMP
is higher than that of simple concatenation. GAMP also
provides a 0.007 improvement when the SNR is above 6dB.
The reason is that the pooling operation, which is combined
with the attention mechanism, allows GAMP to facilitate
the interaction of spatial and temporal features to extract
sufficient information for AMR.

D. SIMULATION RESULTS OF IMPROVED ACGAN AND
AUXILIARY WEIGHING LOSS FUNCTION
To evaluate the performance of the ACGAN and the pro-
posed loss function, all the networks, including the CCNN,
the BRNN, and the final classifier, are trained with the
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FIGURE 15. The comparison of the GAMP strategy and simple
concatenation.

extended dataset and the auxiliary weighing loss function
again, and the accuracy of the final classifier is taken as the
performance indicator. Different proportions of training data
are studied to explore the effects of data augmentation. The
influence of auxiliary weighing loss function on the final
classification accuracy is also studied.

TABLE 1. Recognition accuracy improvement of the ACGAN at 6 dB.

As is illustrated in Table 1, when the SNR is 6 dB,
the expansion of generated data to the training set improves
the recognition accuracy. However, due to the existence of an
objective difference between the generated data and the actual
collected data. When the generated data volume exceeds 50%
of the actual collected data volume, the recognition accuracy
is no longer improved. On this basis, an auxiliary weighing
loss function is proposed to balance the influence of the two
kinds of data, and the recognition accuracy is improved to
93.66%. The reason is that the increase in the amount of train-
ing data can facilitate the generalization of the classification
model in a specific range to improve classification accuracy,
and the auxiliary weighing loss function modifies the data
influences to further enhance the performance of AMR.

E. PERFORMANCE COMPARISON WITH EXISTING WORKS
The proposed framework is compared with the existing
works, which represent AMR techniques based on deep
learning.

1) CNN based on VGG architecture. VGG architecture,
containing series of narrowing convolutional layers fol-
lowed by fully-connected layers and terminated with a
dense softmax layer, is leveraged in [22].

2) GoogleNet based on inception structure. The incep-
tion structure is used to extract multi-scale information
using convolution kernels of different scales in the
same layer, and the exported feature maps are concate-
nated in the channel dimension. Essentially, features
are extracted and retained in different receptive fields.
The 1 × 1 convolution kernel is used to reduce the
number of parameters. GoogleNet used for AMR is
studied in [30].

3) ResNet based on shortcut structure. The residual
module can be implemented by attaching a short-
cut connection to the forward neural network. The
shortcut connection is equivalent to simply performing
the equivalent mapping without generating additional
parameters. The residual structure solves the problem
of performance degradation due to the deepening of
the network layers. ResNet used for AMR is studied
in [31].

4) Classical RNN based on gated recurrent unit (GRU)
structure. RNN with GRU as the basic structure is
widely used in the field of natural language processing
(NLP). The time-series properties of modulated signals
make the application of RNN in AMR reasonable.
A two-layer classical RNN based on GRU is used for
AMR in [29].

5) CLDNN. CLDNN is originally used by Google for
natural machine translation models, and demonstrates
superior performance in the field of speech recogni-
tion. The basic structure of CLDNN is the cascade of
CNN and LSTM units. Some previous works like [30]
and [31] employ CLDNN to achieve AMR.

6) CNN-CSCD (CNN based on cyclic spectra (CS)
and constellation diagram (CD)). A two-branch CNN
model is developed in [27]. The features learned from
CS and CD are fused to achieve AMR.

At the same experimental condition, the recognition accu-
racy results of the proposed framework and other com-
parative techniques with well-tuned parameters are shown
in Figure 16.

The recognition accuracy of the proposed framework is
similar to other structures at low SNR stages. When the
SNR is above -8 dB, the recognition accuracy curve has a
significant upward trend. When the SNR is 0 dB, the recog-
nition accuracy of the proposed framework is up to 90.1%,
the GoogleNet is 68.1%, the VGG is 72.4%, the CNN-CSCD
is 78.2%, the RNN-GRU is 78.3%, the CLDNN is 80.2%,
and the ResNet is 82.4%. Moreover, the accuracy of the
proposed framework at 18 dB is 94.1%, which is 75.7%,
79.9%, 81.2%, 86.3%, 88,4%, and 88.5% of the VGG,
the GoogleNet, the RNN-GRU, the ResNet, the CNN-CSCD
and the CLDNN, respectively. When the SNR is above 0 dB,
the accuracy of attention cooperative framework outperforms
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FIGURE 16. Recognition performance comparison versus SNR.

the CLDNN by about 5.5%. The reason is that the spatial and
the temporal features of the signal are extracted by the CCNN
and the BRNN, and are fully fused by the GAMP strategy in
the proposed framework to guarantee feature completeness.
The training set is extended by the ACGAN, and is balanced
with auxiliary weighing loss function to realize sample suf-
ficiency. In addition, attention mechanism is employed in
the proposed framework to enhance the effectiveness of the
features so that the accuracy of AMR is further improved.

FIGURE 17. Confusion matrix of the proposed framework (SNR = 18 dB).

Figure 17 shows the confusion matrix of the proposed
framework when the SNR is 18 dB. The distinction between
AM-DSB and WBFM is difficult by the small observation
window and low information rate with frequent silence
between words of the data in RML2016.10a [22]. In [22], it is
noted that QAM16 and QAM64 are confused because they
share common points in constellations, which suffers from
short-time observations. However, as is shown in Figure 17,
the confusion severity of QAM16 and QAM64 are

prominently reduced. The reason is that the proposed frame-
work extracts the spatial and the temporal features together so
that the periodic inner trends corresponding to themodulation
types are captured more accurately.

V. CONCLUSION
A novel attention cooperative framework was proposed to
improve the modulation recognition accuracy. An improved
ACGAN was designed to achieve data augmentation, and an
auxiliary weighing loss function was proposed to balance the
influences of the training data. The CCNN and the BRNN
with attention mechanisms were constructed to extract the
spatial and temporal features of the signal. The GAMP strat-
egy was proposed to export the spatial-temporal correlation
feature map, which provided more effective information for
AMR. We utilized dataset RML2016.10a to demonstrate the
performance of the proposed framework. The BRNN with
the self-attention mechanism was compared with the original
RNN and showed the advantages in the temporal feature
extraction. The layer number of the BRNN was also studied
to present a trade-off between the accuracy and the network
complexity. The CCNN constructed with the cyclic structure
and the SE attentionmechanismwas demonstrated to be supe-
rior to the residual structure and the densely connected struc-
ture in the spatial feature extraction. For the spatial-temporal
feature fusion, the GAMP strategy was compared with the
simple concatenation and showed considerable superiority.
Moreover, we introduced the ACGAN and modified its loss
function to accommodate the I/Q data augmentation. Differ-
ent proportions of training data were studied, and an appropri-
ate data proportion was obtained. The auxiliary weighing loss
function brought a further improvement of the recognition
accuracy. In addition, we compared the attention coopera-
tive framework with several existing works based on deep
learning. The recognition accuracy showed that the developed
framework outperformed existing deep learning-based tech-
niques and showed significant potential for AMR.
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