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ABSTRACT Iris center localization is the basis of iris biometrics, face recognition and gaze tracking.
However, individual differences, changes in facial expression, varying light conditions, occlusion, and so
on, all bring great challenges to accurately localize the iris center. In order to improve localization accuracy
in low-quality images and meet the need of efficiency in practical applications, a novel method of iris
center localization is proposed in this paper using energy map synthesis based on image gradient, image
inpaint technology, and post-processing correction. The image inpaint technology is firstly adopted to
inhibit the effect of some specular reflection. Then the energy maps based on image gradient and eye ROI
(Region Of Interest) midpoint are synthesized to significantly improve the localization accuracy. In the end,
post-processing correction is carried out to eliminate influence of the closed eye and other large derivations
to further improve the localization accuracy. The algorithm is verified on the challenging BioID database,
Talking Face Video database and the MUCT face database. The result shows the localization accuracy has
outperformed the state-of-the-art unsupervised methods on the three databases, and it is suitable for real-time
applications.

INDEX TERMS Iris center localization, image gradient, image inpaint, energy map synthesis,
post-processing correction.

I. INTRODUCTION
A. SIGNIFICANCE AND CHALLENGE OF IRIS CENTER
LOCALIZATION
Iris center localization is the basis of iris biometrics,
face recognition and gaze tracking, whose accuracy mainly
depends on that of iris center localization. However, individ-
ual differences, changes in facial expression, varying light
conditions, occlusions, and so on, have a significant impact
on accurate iris center localization, as follows.

The associate editor coordinating the review of this manuscript and
approving it for publication was P. K. Gupta.

1) People from different countries and races have different
iris colors and sizes; even for the people of the same
race, the iris of different individual is also different.

2) Facial expressions also have an effect on iris center
localization. For example, crying or laughing will lead
to different degrees of eye deformation. Especially
when the eyes are closed, it is difficult to locate the iris
center.

3) Different light intensities affect pupil sizes. When
exposed to strong light, the pupils become smaller,
whereas when the light is darker, the pupils become
larger. The most importance is that light has a great
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influence on the image quality. Too strong or too weak
light will make the image quality decline, thus affecting
the iris center localization. In addition, the specular
reflection of light often causes bright spots and even
covers the iris area, which seriously affects the local-
ization accuracy of the iris center.

4) The occlusion of the eye area by hair and glasses also
makes it difficult to locate the iris center. Moreover,
hair, eyebrows, and black glasses are darker, which also
bring challenges to the methods of iris center localiza-
tion based on image gray features.

However, most of the existing gaze tracking products are
wearable, usually with high-quality cameras and infrared
devices as active light sources to carry out iris center local-
ization and gaze tracking. Not only is the cost very high,
but also the interference to people is great. Therefore, iris
center localization in visible light with low-cost devices such
as webcams has attracted the interest of more and more
researchers. Then, how to accurately locate the iris center in
low-quality images with too strong or too weak illuminations,
specular reflection, and obscured iris region, is the main issue
to deal with in the literature.

B. IRIS CENTER LOCALIZATION METHODS
In view of the difficulties and challenges of iris center local-
ization, various localization methods are constantly stud-
ied, which are mainly divided into three categories: the
appearance-based method, the feature-based method and the
hybrid method.

1) In the appearance-based method, features do not be
extracted explicitly but implicitly, and images are
directly mapped to screen coordinates of iris centers.
The training model is used to represent the information
of eye region indirectly, and the localization is mainly
realized by supervised machine learning. Zhang et al.
proposed a fast local linear support vector machine
(LL-SVM) algorithm to locate the iris center [1].
Bolme et al. proposed the average synthetic precise
filter (ASEF) to achieve the location of iris center [2].
Ensemble of random forest is also used in pupil local-
ization [3]. Recently, fully convolutional network is
adopted in eye center localization, which has a good
localization accuracy for the frontal faces images on
BioID and GI4E databases [4], [5]. However, in the
appearance-based method, a large number of training
samples are often required, and training data under cer-
tain conditions are usually adopted. The collected train-
ing samples are often dependent on certain persons,
so the impact caused by appearance changes cannot be
well compensated, and the localization performance is
also accidental [6].

2) In the feature-based method, the specific local features
of the eye region are mainly identified to locate the
iris center. It can be further classified into the method
based on shape feature and that based on intensity
contrast feature. In the method based on shape feature,

geometric features of eyes are used to establish the
model of the eye region. In a simpler model, the iris
region is modelled as a circle or oval. In a more
complex model, not only is the iris fitted into a cir-
cle, but also the upper and lower eyelids are fitted
into parabolas. For example, a shape-based method is
adopted to fit the pupil into a circle, and then Hough
circle transformation is used to achieve pupil position
in [7]. Furthermore, two new features of Semi-Circular
Edge Shape and Semi-Ellipse Edge Shape are reported
in the literature, to make full use of the edge shape
features of iris and eyelid [8]. In the method based on
shape feature, a high-quality image is often needed.
Furthermore, Hough transformation is often used to
detect the iris edge in this method, which is very time-
consuming. In the method based on gray intensity
contrast feature, the gray difference between pupil, iris,
and sclera is often employed to locate the iris center.
This kind of method is widely used. Daugman proposes
a differential integral operator of circular boundary to
locate iris center [9]. In the method, the gradient only
at the iris boundary is used, while the gray value in
the iris center is ignored, so the localization accuracy
is low. Valenti et al. propose the localization method
based on isophote 8]. They employ the curvature of
isophote and curvedness to vote for localization, with
a low computational cost, but the accuracy is not too
high. Timm et al. propose an iris center locationmethod
based on image gradient, with a high localization accu-
racy in real time [10].

3) In the hybrid method, the feature-based method and
the appearance-based method are combined with
together to locate the iris center. For example,
in [11], gradient-based method and supervised descent
method (SDM) are adopted. Firstly, SDM method is
used to coarsely estimate the position of the iris cen-
ter. Then the estimated position is integrated into the
gradient-based objective function to get a more accu-
rate iris center location. However, there are also dis-
advantages of appearance-based method in the hybrid
method. Valenti et al. combines the method of isophote
with that of machine learning [12]. They adopt a
SIFT descriptor and the k-nearest neighbor algorithm
to achieve an accurate eye center location, however
leading to a high computationally cost. Moreover,
Laddi et al. integrate the supervised and unsupervised
algorithms, wherein the supervised regression method
is used to extract eye regions and the unsupervised
gradient method is adopted to localize iris center [13].

By comparing the above methods, in order to meet
the requirements of real-time and accurate localization in
applications, based on the gradient method proposed by
Timm and Barth [10], an iris center localization method
using the image inpaint technology, energy map syn-
thesis and post-processing correction is proposed in the
paper.
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C. MAIN CONTRIBUTIONS AND INNOVATIONS
In order to improve the accuracy in low-quality images,
the image inpaint technology is firstly adopted to inhibit the
effect of some specular reflection. Then energy maps based
on image gradient and eye ROI midpoint are synthesized to
enhance the localization accuracy. In the end, post-processing
correction is carried out to eliminate influence of the closed
eye and other large derivations to further improve the local-
ization accuracy. The main contributions are summarized as
follows.

1) The method of energy map synthesis based on the
image gradient and the eye ROImidpoint is proposed to
significantly improve the localization accuracy in real
time.

2) The image inpaint technology is adopted to inhibit the
effect caused by some specular reflection to further
improve the localization accuracy.

3) A post-processing correction method is proposed.
It makes up for the deficiency of the gradient-based
iris center localization method in which the closed eyes
cannot be effectively located. Furthermore, the other
large deviation of iris center localization caused by the
specular reflection, occlusion, black frame glasses, and
so on, is corrected to further refine the localization
accuracy.

The rest of the paper is organized as follows. First,
we introduce the flow chart of the proposed iris center
localization system in Section II, and detail the design
process of the proposed method mainly including image
inpaint, energy map synthesis and post-processing correction
in Section III. Then, evaluation method and experimental
results are described in Section IV and SectionV respectively.
Finally, we conclude the work and discuss potential future
work in Section VI.

II. FLOW CHART OF THE PROPOSED IRIS CENTER
LOCALIZATION SYSTEM
The flow chart of the proposed iris center localization is
shown in Fig. 1. First, the face is detected in the collected
image. Then the facial landmark points are detected to get the
landmarks around the eye, so that the eye ROI is extracted.
Then after the scale normalization transformation of the eye
ROI, for one thing, the energy map based on the gradi-
ent method is generated after some specular reflection is
inhibited by image inpaint; for another, the energy map
based on the eye ROI midpoint is generated. Then the two
energy maps are synthesized to acquire the final one. The
point with the largest gray intensity in the synthetic energy
map is found and converted into the position in the origi-
nal image through the scale inverse transformation, which
is the iris center obtained preliminarily. At last, the post-
processing correction for the closed eyes and for other large
deviations is carried out to achieve an accurate iris center
position.

FIGURE 1. Flow chart of proposed iris center localization system.

III. DETAILED DESIGN PROCESS OF LOCALIZATION
A. FACE DETECTION AND LANDMARKS DETECTION
There are two popular methods for face detection. One
is based on the haar-like feature and AdaBoost classifier
proposed by Viola and Jones [14], and the other is based
on HOG feature and SVM classifier proposed by Dalal
and Triggs [15]. In literature [16], the comparison of face
detection results is provided between the viola-jones algo-
rithm implemented by OpenCV [17] and the HOG algorithm
implemented by Dlib [18]. The results show that for frontal
face, the performance of face detection by Dlib exceeds by
OpenCV. For the side face, although their detection abilities
are limited and their performance is poor, the detection results
by Dlib are better than by OpenCV. According to the above
comparison, the Dlib algorithm based on HOG is adopted to
realize face detection.

The images in the BioID database [19] are tested (see
section IV), and two examples of face detection are shown
in Fig. 2. Among the 1521 images, the faces in 6 images (146,
485, 638, 949, 1174, 1415) could not be detected, and the
left 1515 images were detected successfully. The following
experimental results are all based on the 1515 images.

FIGURE 2. Two examples of face detection by Dlib.
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After face detection, facial landmarks detection is imple-
mented in order to obtain eye ROI. Current facial land-
marks detection methods mainly include active shape model
(ASM) [20], active appearance model (AAM) [21], restricted
local area model (CLM) [22], convolutional neural network
(CNN), and ensemble of regression trees (ERT) [23]. ASM,
proposed by T.F.Cootes et al, is a deformable model based
on statistics, gray and shape separation. AAM is devel-
oped based on ASM. Similar to AAM, CLM also combines
shape and texture models to produce a model. Unlike AAM,
in CLM, a series of local blocks are used. The probability
distribution of the landmarks localization is then determined
using themean-shift optimization technique within each local
block. The AAM and CNN methods on facial landmarks
detection are compared in literature [16]. The results show
that the performance of CNN is obviously better than AAM.
However, CNN often relies on a large number of input sam-
ples and is not appropriate to real-time application. While
in the ERT method, the positions of facial landmarks are
directly estimated from a sparse subset of pixel intensities,
with a better real-time performance and a high prediction
quality [23]. In addition, the ERT algorithm is implemented
by Dlib library, in which 68 facial landmarks are marked.
Therefore, Dlib library is used to realize facial landmarks
detection in the paper. Some examples of the detected six
landmarks around eyes are shown in Fig. 3. Through the dlib
library, we can detect 68 facial landmarks, including six land-
marks around one eye. In contrast, in the BioID dataset, only
the annotations of 20 facial landmarks are provided, and only
two landmarks around one eye are annotated. The localization
error of 68 facial landmarks by dlib library on HELEN and
LFPWdatasets can be found in the original paper [23]. For the
localization error of 20 facial landmarks by regression forest
on BioID dataset, please refer to Fig.6 in [24].

FIGURE 3. Examples of detection results of 6 landmarks around human
eyes.

B. EXTRACTION OF EYE ROI AND SCALE NORMALIZATION
TRANSFORMATION
According to the detected six landmarks around eyes,
the minimum rectangle surrounding them is obtained. Then
1.5 times region of the rectangle is selected as the eye ROI
to improve its robustness. The eye ROI hardly includes hair
and eyebrows, thus excluding their influence on iris center
localization. However, if the subjects wear glasses, especially
black-rimmed ones, they will be within the ROI, so their
influence on localization will also be taken into account.
Some examples of eye ROI are shown in Fig. 4.

FIGURE 4. Examples of eye ROI.

After the extraction of the eye ROI, in order to make the
algorithm universal, scale normalization transformation is
used. The ratio of transformation is

Ratio =Wconst/W, (1)

where W is the width of the original eye ROI, and Wconst is
the width after normalization, which is set to 50 pixels in the
paper. It also seems feasible to normalize the height of eye
ROI. However, for the closed-eye images, the height of eye
ROI is smaller than its width. Thus, if we normalize the height
of eye ROI rather than its width, these images would be larger
and the real-time performance would be worse. Moreover,
the larger the value of normalization width is, the higher
the localization accuracy will be, but the slower the system
response will be. However, when its value reaches a certain
level, the improvement of localization accuracywill decrease.
Therefore, the selection of its value is a trade-off between
accuracy and real-time. Under the premise of ensuring a
high accuracy, we try to improve the real-time performance.
In addition, if the eye ROI is not be set to a fixed size
(width or height), whichmeans the eye ROI is not normalized,
subsequent image processing and localization will not be
carried out on a uniform basis, and the algorithm will not
be universal. After the scale normalization transformation of
the eye ROI, the iris center will be located according to the
following process.

C. IMAGE INPAINT TO INHIBIT SPECULAR REFLECTION
Due to the specular reflection of light, bright spots will be
generated in the iris area, and the intensity in the iris center
will increase, leading to the localization deviation of the iris
center. In order to inhibit the effect caused by some specular
reflection, image inpaint technology is adopted. The image
inpaint algorithm of INPAINT_TELEA in OpenCV [25] is
used. The process of the image inpaint is shown in Fig. 5.

First, a color image is transformed to gray one after Step1.
Afterwards, Gaussian filter is used to eliminate the noise in
the image. Then the effects of eyelashes are inhibited by
morphological closed operation. Most of the bright spots
generated in iris area are similar to ellipse, so ellipse shape
structural element is selected. Furthermore, in order not to
affect the later localization, a small size of kernel, which is
set to 3 here, is used to process the image slightly. After that,
the image is segmented by binarization threshold, the results
of which directly affect the position and the quality of the
image inpaint. The step of binarization threshold segmenta-
tion mainly includes the following two processes.
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FIGURE 5. Flow chart of proposed image inpaint process.

1) THRESHOLD SEGMENTATION PROCESS 1
By using the upper limit of the gray threshold, those in
the image with higher gray intensity are removed to elim-
inate the possible eye white area. The binarization pro-
cessing function of ‘‘threshold’’ in the OpenCV is used,
and the binary type of ‘‘THRESH _ TOZERO _ INV’’
is selected to realize the function. The corresponding pro-
gram statement is: ‘‘threshold(eyeGrey, eyeThresh1, thresh1,
255, THRESH_TOZERO_INV);’’. The relationship between
input and output can be expressed as

eyeThresh1 =

{
0 if (eyeGrey > thresh1)
eyeThresh1 otherwise.

(2)

2) THRESHOLD SEGMENTATION PROCESS 2
In the image excluding the possible eye white area, those
where the intensity are less than lower limit of gray threshold
are set to 0. Others are set to 255 (namely the maximum
gray value) to be retained as the possible specular reflection
areas. The binary type of ‘‘THRESH_BINARY’’ is chosen
to realize the function. The corresponding program state-
ment is: ‘‘threshold(eyeThresh1, eyeThresh, thresh2, 255,
THRESH_BINARY);’’. The relationship between input and
output can be expressed as

eyeThresh =

{
0 if (eyeThresh1 < thresh2)
255 otherwise.

(3)

3) DESIGN OF THE THRESH
The upper limit ‘‘thresh1’’ and the lower limit ‘‘thresh2’’ of
the gray threshold are respectively set to

thresh1 = m+ (M − m) ∗ factor1, (4)

thresh2 = m+ (M − m) ∗ factor2, (5)

where factor1 and factor2 are coefficients, m and M are
the minimum and maximum gray values of the eye ROI

respectively, which have certain adaptability for images from
different databases.

The value of factor1 or factor2 ranges from 0 to 1, and
factor1 is larger than factor2. From (4) and (5), we can see
when factor1 or factor2 is 0, thresh1 or thresh2 equals to
m (minimum gray value), and when factor1 or factor2 is 1,
thresh1 or thresh2 equals to M (maximum gray value). The
value of thresh1 or thresh2 ranges from minimum gray value
to maximum one. The schematic diagram of image inpaint
area is shown in Fig. 6. The area with gray value greater than
thresh1 is eye white area, and the area with gray value less
than thresh2 is iris area without specular reflection, while
the remaining area is the image inpaint area. The value of
factor1 and factor2 is selected based on experience and on
experimental results. The value of factor1 is set to 0.8, and
that of factor2 is 0.65 in the paper. The formula (4) and (5)
ensure that the gray thresholds are in the range of image gray
intensities.

FIGURE 6. Schematic diagram of image inpaint area.

After the image binarization, the connected region is
extracted to obtain all contours. Then, only those with small
area are retained. After that, morphological dilation operation
is carried out to acquire a mask image (that is, the specular
reflection region). Finally, the image inpaint is conducted to
eliminate the influence of some specular reflection by using
the mask image. Table 1 shows some examples in the image
inpaint process, corresponding to each step in the flowchart
of Fig. 5. The leftmost column in Table 1 is the image number.
The second column gives the images of the eye ROI before
the image inpaint. Moreover, the rightmost column shows the
resulting images after the image inpaint. Their localization
errors before and after the image inpaint are shown in Table 2.
The results show that their localization accuracy has been
improved after the image inpaint.

D. ENERGY MAP AND IRIS CENTER ESTIMATION
After the effect of some specular reflection on the image is
inhibited by the image inpaint, the gradient-based energymap
will be generated.
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TABLE 1. Examples of image results in the image inpaint process.

TABLE 2. Comparison of localization errors before and after inpaint.

1) ENERGY MAP BASED ON IMPROVED GRADIENT
The formula of iris center localization based on the gradient
is given by [10]

ĉ = argmax
c

{
1
n

n∑
i=1

ωci(dTi gi)
2

}
di =

pi − c
‖pi − c‖2

, ∀i : ‖gi‖2 = 1,

(6)

where, ĉ is the estimated iris center, c is the possible iris
center, gi is the gray gradient vector at a point pi of the iris
edge, di is the displacement vector from c to pi, n is the total
number of pixels in the image. The weight value ωci of c is
given by

ωci = 255− Ii, (7)

where Ii is gray value at c. Under normal circumstances,
the image near the iris center is darker, with a smaller gray
intensity value, and the edge of the iris is just the opposite,
so the gray value can be inverted as the weight just as (7).
However, due to the influence of some specular reflection,
bright spots are often generated in the iris area, leading to
the increase of gray intensity near the iris center. Though the
effect of some specular reflection is inhibited by the image
inpaint, we cannot completely eliminate their effects. To this
end, the weight value can be redesigned as

ωci = (255− Ii)∗k + b, (8)

where k is a coefficient less than 1, and b is a small con-
stant. The value of k is set to 0.015, and b is 20, which are
determined by experiment results. The Comparison of weight
range is shown in Table 3. It can be seen that the range of
weights varies from 0-255 to 20-24. The redesigned weight
weakens the effect of image gray value, in order to suppress
the effect of some specular reflection.

TABLE 3. Comparison of weight range.

According to (8) and the curly brace portion in the first
line of (6), the gray value of each point in the eye ROI can be
acquired, whereby the energy map based on the gradient is
generated. The images in the BioID database are tested (see
section IV). Some examples of the energy map based on the
above gradient method are shown in the second column of
Table 4.

TABLE 4. Synthesis process of energy map.

2) PROPOSED ENERGY MAP BASED ON THE EYE ROI
MIDPOINT
Because the iris center is close to the eye ROI midpoint,
the energy map based on the eye ROI midpoint is generated
to correct that based on the gradient. This kind of energy map
is composed of a white circle with blurred edges. The eye
ROI midpoint is the center of the circle, and its gray value
is maximum with 255; the gray value decreases gradually
within a certain radius, and the gray value at the edge of
the circle is minimum with 0. Therefore, the energy map
can be represented by a two-dimensional Gaussian function.
However, the function value ranges from 0 to 1, while the gray
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value of an image ranges from 0 to 255. Thus, the energy map
based on the eye ROI midpoint can be given by

Em(x, y) = 255∗e−
(x−xm)2+(y−ym)2

σ2 , (9)

where (xm, ym) is the coordinate of the eye ROI midpoint,
σ is the radius of the circle in the energy map, which is
set to 6 here. If the value of σ is too small, the effect of
the eye ROI midpoint will be too large, and the localization
error will be increased. Moreover, if σ is too large, the effect
of the eye ROI midpoint will be weakened, its correctness
effect on the gradient-based energy map will become worse.
The value of σ is determined according to the experiment
results in the paper. Some examples of energy map base
on the eye ROI midpoint are shown in the third column of
Table 4.

3) PROPOSED ENERGY MAP SYNTHESIS AND IRIS CENTER
ESTIMATION
After the energy maps based on the gradient and the eye ROI
midpoint are generated, they will be synthesized to obtain the
final one. The image fusion method can be used for synthesis,
and the premise of which is that the two energy maps have the
same size. Since both energy maps are all based on the nor-
malized size of the eye ROI, the fusion condition is satisfied.
They can be synthesized according to a certain weight ratio,
in which the energy map based on the gradient occupies a
higher proportion, while that based on the eye ROI midpoint
takes up a smaller weight. For the images listed in the leftmost
of Table 4, the synthesized energy maps are shown in its
rightmost column. In the synthesized energy map, the point
with the maximum gray intensity is the estimated iris center.
The algorithm is shown in Algorithm 1 of Appendix. For
the images in Table 4, the localization results of the iris
center before and after the energy map synthesis are shown
in Table 5, and their localization errors are shown in Table 6.
The results show that their localization accuracy has been
greatly improved.

TABLE 5. Comparison of localization results before and after energy map
synthesis.

TABLE 6. Comparison of localization errors before and after energy map
synthesis.

E. PROPOSED POST-PROCESSING CORRECTION
ALGORITHM
When the eyes are closed, it is difficult to obtain accurate
iris center locations by using gradient-based method, so the
positions of the iris center will be corrected. Furthermore,
as we know, the iris center is close to the eye ROI midpoint
and far from the eye ROI boundary, and the interpupillary
distance is about two times of the eye width. Therefore,
when the estimated iris center is too close to the boundary
of the eye ROI, or interpupillary distance is too large or too
small, it is obvious that the localization error is large, and
the position of the iris center will also be corrected. The
proposed post-processing correction algorithm is shown in
Algorithm 2 of Appendix.

1) DETECTION AND CORRECTION OF THE CLOSED EYE
According to prior knowledge, when the eye are closed, its
ROI is relatively flat, i.e., the ratio of width to height is
relatively large. Accordingly, the state of the closed eyes can
be judged. In the closed eye state, the positions of iris center
of both eyes are corrected with the midpoints of their ROIs.

2) THE DISTANCE FROM THE ROI BOUNDARY IS TOO SMALL
When the estimated iris center is too close to the inner
boundary (edgeInner) of the ROI, its outer boundary (edge-
Outer), its upper boundary (edgeUpper), or its lower bound-
ary (edgeLower), it shows that the localization error of the
iris center is large, so its location will be corrected. The
limit of distance between the iris center and the boundary
of the ROI is dmin, which is set according to the subsequent
formula (10).

3) INTERPUPILLARY DISTANCE IS TOO LARGE OR TOO
SMALL
When the interpupillary distance (DistancePupils) is too
small, the position of the iris center will be corrected. If the
iris center of the left eye is close to its inner boundary
(edgeInner), which indicates that the localization error of the
left eye is relatively large and its iris center will be corrected,
so its correction flag (flagLeft) is set to 1. On the contrary,
if the iris center of the right eye is close to its inner boundary,
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its correction flag (flagRight) is set to 1. When the interpupil-
lary distance is too large, the position of the iris center will
also be corrected. If the iris center of the left eye is close to its
outer boundary (edgeOuter), its iris center will be corrected.
On the contrary, if the iris center of the right eye is close to
its outer boundary, its iris center will be corrected. When the
flagLeft is 1, the midpoint (xLeftc, yLeftc) of the left eye ROI
will be adopted as its iris center. Similarly, when the flagRight
is 1, the midpoint (xRightc, yRightc) of the right eye ROI will
be used as its iris center.

The parameters of the correction are set according to prior
knowledge. As stated above, the ROI is selected as 1.5 times
size of minimum rectangle region surrounding the landmark
points in the eye region. If the width of the ROI is W , then
the width of the eye is 2W /3, and the distance between the
midpoint of the eye and its corner is W /3, and the distance
between the corner of the eye and the edge of the ROI isW /6,
as shown in Fig. 7. When the distance between the iris center
and the edge of the ROI is less than dmin, the position of the
iris center will be corrected. From Fig. 7, we have

dmin = d +W/6, (10)

FIGURE 7. Parameter diagram of proposed post-processing correction.

where d is the distance between the iris center and the nearest
corner of the eye. According to the experience, we know
normally

d ≥ D/10, (11)

where D = W /3, so we can derive that dmin = 0.2W .
Likewise, we can set the threshold of distance between the
iris center and its upper or lower edge. Furthermore, as we
know, the interpupillary distance is about two times size of the
eye width, so the interpupillary distance is about 4W /3.When
the interpupillary distance is smaller than a low threshold
(namely din) or larger than a high threshold (namely dout),
the position of the iris center will be corrected. In order
to enhance the robustness, a certain margin is left, i.e. din
is set to 1.2W , while dout is set to 1.5W here. When the
interpupillary distance is too large or too small, it is obvious
that the position of the iris center is incorrect. In this case,
the minimum distance (namely dmid) between the iris center
and the edge of the ROI can be set to a bigger value, such as
0.26W here, to acquire an accurate location.

Some examples of localization results before and after the
post-processing correction are shown in Table 7. The iris
centers are marked with cross lines. It can be seen that in the
closed-eye state or when the large deviations appear, caused
by specular reflection, black-rimmed glasses, and so on, the
positions of the iris centers are all corrected. The localiza-
tion errors before and after the post-processing correction
are compared in Table 8, which shows that the localization
accuracy after correction has been further improved.

TABLE 7. Comparison of localization results before and after
post-processing correction.

TABLE 8. Comparison of localization errors before and after
post-processing correction.

IV. EVALUATION OF IRIS CENTER LOCALIZATION
PERFORMANCE
The quality of the localization results needs to be verified
on face databases, as well as good evaluation indexes and
evaluation methods needed. The algorithm can be further
optimized according to the feedback location results. The
dataset selection and performance evaluation are as follows.

A. DATASET SELECTION
The public face database can be used to measure the algo-
rithm, and the more the database approaches to the real
world, the more accurately it will measure. Thus the BioID
database [19] can be the most ideal choice. The database
contains 23 different subjects and 1,521 gray images with
a resolution of 384∗286. Moreover, it also contains some
closed eye and semi-closed eye images, and even those in
which eye area is blocked by the strong light of the glasses,
so it is considered publically the most challenging database.
Furthermore, it also provides true iris center location of both
eyes, which provides the opportunity for the localization.

B. EVALUATION INDEXES AND METHOD
1) EVALUATION INDEXES
Whether the localization results are precise requires certain
evaluation indexes. The maximum normalized localization
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error is often used as an evaluation index for iris center
localization [26], which is given by

e =
max(el − er )

dlr
=

max(
∥∥ĉl − cl∥∥2 , ∥∥ĉr − cr∥∥2)
‖cl − cr‖ 2

, (12)

where ĉl and ĉr are the estimated iris center of left eye
and right eye respectively; cl and cr are their actual iris
center respectively; el and er represent the Euclidean distance
between the estimated position and the ground truth, namely
their absolute localization error; dlr represents the actual
Euclidean distance between the iris centers of both eyes.
The formula (12) represents the ratio of the maximum value
of absolute localization errors of both eyes to the distance
between them. It can be seen that the localization error is
independent of image size and face size, which is normalized.
In addition, minimum normalization error and average one
are also used as the evaluation indexes.

Moreover, e ≤ 0.05, e ≤ 0.10 and e ≤ 0.25 respectively
indicate that the localization error is in the range of pupil, iris
and eye center to eye corner.

2) EVALUATION METHODS
In order to further improve the algorithm, good evaluation
methods are desirable.

a: PROCESSING OF INPUT IMAGE
If each image in the BioID database is taken as the input
separately, the workload is very heavy. Therefore, a real-time
video acquisition method is adopted. All 1521 images in the
database are taken as video frames for sequential acquisition,
followed by identification and localization. Then the local-
ization result of the iris center for each image is stored as a
row of data, and the image number is saved in front of the
localization result. The localization results for 1515 detected
images are all saved in one file.

b: EXTRACTION OF ACTUAL EYE POSITION
In order to locate all the images in the database automatically,
the true values of the iris centers for all 1521 images need
to be extracted automatically. However, for each image, its
actual eye position is stored in an individual file. Therefore,
it is desirable to extract the true values of the eye
positions of all images successively and save them in
one file, which is mainly realized by deserialization and
serialization.

c: EVALUATION OF LOCALIZATION PERFORMANCE
The data is imported from the estimated iris center localiza-
tion file and the actual eye position file. Then the localization
errors of the iris centers are computed, and the results are
assessed by using the above evaluation indexes. At the same
time, the proportion of the corresponding image in each range
of the errors is counted to obtain the localization accuracy.
Finally, the localization error and localization accuracy are
saved in the output file.

3) RESULTS ANALYSIS
The above evaluation method is adopted to get the maximum
normalization localization error and localization accuracy
of 1515 images detected in the BioID database. The statistical
results of localization accuracy are shown in Table 9.

TABLE 9. Localization accuracy of the iris center in each stage.

The first row of data is the localization accuracy of the
iris center by using the basic gradient method; the second
row is that after the image inpaint; the third one is that after
the energy map synthesis; and the last one is that after the
post-processing correction. By comparing the first two rows
of data in Table 9, we can see that after the image inpaint,
the localization accuracy is increased by 1.4% when the
localization error is in the range of 0.05; that is raised by 1.0%
when the error is within 0.1. By the contrast of the data in
the second and third row, it can be seen that after the energy
map synthesis, when the error is within 0.05, the localization
accuracy is improved by 5.9%; when the error is within 0.1,
that is increased by 3.3%. It is obvious that the energy map
synthesis significantly improves the localization accuracy.
From the last two rows of data, we can see that after the
post-processing correction, when the error is within 0.05, the
localization accuracy is improved by 2.0%; when the error is
within 0.1, that is increased by 3.4%. After the image inpaint,
the energy map synthesis and the post-processing correction,
the localization accuracy is improved by 9.3% when the error
is in the range of 0.05; increased by 7.7% when the error is
within 0.1; raised by 3.1% when the error is within 0.25. The
localization accuracy corresponding to the maximum, aver-
age and minimum normalized errors is shown in Table 10,
and their curves are shown in Fig. 8. By comparing the first
two rows of data in Table 10, we can see that the localization
accuracy in average normalized error is 5.8% higher than that
in maximum normalized error when the error is within 0.05,
0.8% higher within 0.1. By comparing the first row and the
last row of data in Table 10, it can be seen that the localization
accuracy in the minimum normalized error is 8.8% higher
than that in the maximum normalized error when the error
is within 0.05, 1.2% higher within 0.1. It is clear that in the

TABLE 10. Localization accuracy corresponding to maximum, average
and minimum normalized errors.
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FIGURE 8. Localization accuracy curve.

case of average and minimum normalization errors, a higher
localization accuracy and a better performance are achieved.

The localization accuracy of the proposed method on the
BioID database is compared with other advanced methods,
as shown in Table 11.

TABLE 11. Comparison of localization accuracy on BioID database.

In different error ranges, the results with the highest
localization accuracy are marked in bold. The localization
accuracy of the proposed method is listed in the last row,
marked with underline. The localization accuracy of the
proposed method is higher than any other methods listed
in Table 11 except [3]–[5]. Though they achieve higher accu-
racies than our method on the BioID database, they have their
limitations and disadvantages. The comparison between our
approach and their methods is summarized as follows. Firstly,
because their methods are supervised learning approaches,
they are very dependent on training samples and prone to
overfitting, with a poor generalization ability. Their predic-
tion accuracies beyond the range of training data will degrade
greatly. In contrast, the proposed method is an unsupervised
approach without the need of training samples, whose gener-
alization ability and adaptability are much better. Secondly,
their methods are tested only in the frontal face databases
such as BioID or GI4E databases. They are hard to adapt to

variable pose images, with poor robustness on pose variation.
In contrast, the proposed method has a better robustness to
different pose images, which has been verified on the Talk-
ing Face Video database and the MUCT face database (see
section V). Thirdly, their methods normally need the sup-
port of advanced computer hardware such as GPU and large
RAMmemory. Furthermore, the time cost for training will be
very expensive with lower levelled computer hardware. The
consumed time for testing will be prolonged. In contrast, the
proposed method only requires the support of hardware such
as CPU and small RAM memory, without the need of GPU.
We have achieved a good real time performance with lower
levelled computer hardware (see the subsequent real time
performance). Moreover, the real time performance will be
improved significantly in the support of advanced computer
hardware. From Table 11, it can be seen that the localization
accuracy of the proposed method has outperformed the state-
of-the-art unsupervised approaches on the BioID database.

The localization accuracy of the iris center estimated by
basic gradient method (see the first row of data in Table 9) is
not as high as that in [10] (see the first row of data in Table 11),
which indicates that the gradient method used in the paper
is not very perfect or some parameter values are not the
most optimal. However, after the subsequent image inpaint,
the energy map synthesis and the post-processing correction,
the localization accuracy is significantly improved, greatly
higher than that in [10], which also shows that the robustness
of the proposed method is strong.

In addition, in terms of real time performance, the proposed
method is compared with the other approaches as shown
in Table 12. As the proposed method is based on the gra-
dient method, it has not the disadvantage of poor real-time
performance of regression or machine learning algorithm.
On the PC with Intel Core i5-3.2GHz CPU and 4G RAM,
the average consumed time of localization algorithm for the
1515 detected images in the BioID database is about 50ms,
i.e. with the speed of 20 frames per second, which shows that
the algorithm has a good real-time performance.

TABLE 12. Comparison of real time performance.

V. ROBUSTNESS TO POSE AND ILLUMINATION
Since BioID database mainly consists of frontal faces, it is
important to evaluate the robustness of the algorithm to vari-
ous poses and variable illuminations. Thus, in order to verify
the robustness of the algorithm, the method is tested on the
other two databases of Talking Face Video database [36] and
the MUCT face database [37]. Talking Face Video database
consists of 5000 images of a person engaged in conversation,
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with different poses and various expressions. The MUCT
face database consists of 3755 images with multiple poses
in variable illuminations. Among the 5000 Talking Face
images, all faces were detected successfully. While among
the 3755 MUCT face images, 3752 faces were detected suc-
cessfully. The following experimental results are all based on
the above detected images. Some examples of the detected
face regions, eye ROIs and corresponding localization results
on the Talking Face Video database are shown in Fig. 9. Their
iris center positions are represented with white cross line in
eye ROI images. Fig. 10 displays some examples of iris center
localization results on the MUCT face database.

FIGURE 9. Examples of iris center localization results on Talking Face
Video database.

FIGURE 10. Examples of iris center localization results on the MUCT face
database.

The localization accuracy of the iris center at each stage
on Talking Face Video database is shown in Table 13.

TABLE 13. Localization accuracy of the iris center at each stage on
talking face video database.

The images in this database are of high quality, so there
is no need for image inpaint. Compared with the gradient
method, when the normalized error is within 0.05, after
energy map synthesis, the localization accuracy of the pro-
posedmethod is improved by 9.9%; after post-processing cor-
rection, increased by 0.7%; totally improved by 10.6%.When
the normalized error is within 0.1, the localization accuracy is
totally improved by 2.9%. Table 14 displays the localization
accuracy on the MUCT face database. From the table, we can
see that for the gradient method, the localization accuracy is
very low, because of the huge effects of the dark eyelashes,
black-rimmed glasses or dark skin in many images. While,
when the normalized error is within 0.05, after image inpaint,
the localization accuracy is improved by 1.8%; after energy
map synthesis, improved by 13.8%; after post-processing cor-
rection, increased by 2.1%; improved by 17.7% totally com-
pared with the gradient method. Compared with the gradient
method, the localization accuracy of the proposed method is
improved by 8.4% when the normalized error is within 0.1,
increased by 1.5% within 0.25.

TABLE 14. Localization accuracy of the iris center at each stage on muct
face database.

Comparisons of localization accuracy with the other
advanced methods on the two databases are shown in
Table 15 and Table 16 respectively. It can be seen that
the localization performance outperforms the other meth-
ods listed in the tables. Furthermore, the results in the two
databases verify that the proposed algorithm is robust to the
pose and illumination.

TABLE 15. Comparison of localization accuracy on talking face video
database.

TABLE 16. Comparison of localization accuracy on muct face database.
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VI. CONCLUSION AND PROSPECT
In order to accurately locate the iris center in low-quality
images and meet the need of efficiency in practical applica-
tions, a novel method of iris center localization is proposed
in this paper using energy map synthesis based on image
gradient, image inpaint technology, and post-processing cor-
rection. Moreover, the algorithm is verified on the BioID
database. The image inpaint technology is firstly adopted
to inhibit the effect of some specular reflection to improve
the localization accuracy of the iris center. Then the energy
maps based on image gradient and the eye ROI midpoint are
synthesized to improve localization accuracy significantly.
Especially localization accuracy is enhanced by 5.9% in the
small range of maximum normalization localization error
(e ≤ 0.05). After that, a post-processing correction method
is proposed and used, in order to further refine the local-
ization accuracy. Particularly the localization accuracy is
improved by 3.4% in the range of larger localization error
(e ≤ 0.1). Overall, after the image inpaint, the energy map
synthesis and the post-processing correction, the localiza-
tion accuracy is 89.6% (improved by 9.3%) when the local-
ization error is within 0.05, that reaches 98.7% (improved
by 7.7%) when the localization error is within 0.1. Compared
with the other advanced methods on the BioID database,
the proposed method has outperformed the state-of-the-art
unsupervised methods, which has also confirmed the validity
of this method. Furthermore, the algorithm has high real-
time performance with the speed of 20 frames per second,
which has laid a foundation for its further applications in gaze
tracking and other aspects.

Moreover, the algorithm is tested on the other two
databases of Talking Face Video database and the MUCT
face database, which has verified the robustness to various
poses and variable illuminations. Comparing the results of
image inpaint, energy map synthesis and post-processing cor-
rection in the proposed method, the localization accuracy has
been improved significantly by energy map synthesis, while
image inpaint and post-processing correction are helpful to
refine localization accuracy in further. However, the proposed
method has also limitations, because face detection and land-
mark detection before iris center localization are based on
dlib, though the consumed time for localization algorithm
is short, the whole running time is prolonged. If dlib is
used, the consumed time is short in the Ubuntu operating
system, while it will take more time in Windows systems.
Thus, the proposed localization algorithm is more applicable
to run in Ubuntu systems. The other alternative is to run
the proposed method based on other fast face detection and
landmarks detection algorithms, which we will explore and
research in the future.

In addition, the localization accuracy of the iris cen-
ter based on basic gradient method is compared with that
obtained by Timm, there is still a room for improvement, so in
the future we will upgrade the program to further improve
localization accuracy.

In the future, based on the iris center localization, we will
research on gaze tracking and iris biometrics of astronauts by
virtue of astronaut assistant robot. Mobile device is installed
on the astronaut assistant robot to capture the images of
astronauts by the camera embedded in the mobile device.
For one thing, gaze tracking can be employed to detect the
health state of astronauts including physical and psycholog-
ical health. For another, iris biometrics can be applied to
identify astronauts in order to make them have access to do
some special jobs. Furthermore, the mobile device is widely
used by almost everyone. In the near future, it is likely that

Algorithm 1 Energy Map Synthesis Algorithm
Input: ImageOfEyeROI MidpointOfEyeROI (xm, ym)
Initialize: parameters k,m, σ , W
Compute: DisplacementVector di

GradientVector gi

di = (xi − xc, yi − yc)T

‖di‖2 =
√
(xi − xc)2 + (yi − yc)2

di =
di
‖di‖2

gi =
(
∂Ii
∂xi
,
∂Ii
∂yi

)T
‖gi‖2 =

√(
∂Ii
∂xi

)2

+

(
∂Ii
∂yi

)2

gi =
gi
‖gi‖2

Compute: WeightValue ωci

ωci = (255− Ii)∗ k + m

Please refer to formula(8)
Compute: EnergyMapOfGradient Egi

EnergyMapOfEyeROIMidpoint Emi
SyntheticEnergyMap Ei

Egi =
1
n

n∑
i=1

[
ωci

(
dTi gi

)2]
Please refer to formula(6)

Emi = 255 · e
(xi−xm)

2
+(yi−ym)

2

σ

Please refer to formula(9)

Ei = WEgi + (1−W )Emi

Compute: IrisCenter (xc, yc)

(xc, yc) =
n

max
i=1

Ei

Output: IrisCenter (xc, yc)

16976 VOLUME 8, 2020



L. Dai et al.: Iris Center Localization Using Energy Map With Image Inpaint Technology and Post-Processing Correction

it will be widely applied to capture iris images of people and
identify them [39]. The MICHE iris database [40], in which
the images are collected by mobile devices, will be used to
verify and test the related algorithms. To sum up, the iris
center localization lays a good foundation for the future gaze
tracking and iris biometrics.

APPENDIX
See Algorithms 1 and 2.

Algorithm 2 Postprocessing Correction
Input: originCenterLeft, originCenterRight, ROI
Compute:edgeInnerLeft,edgeOuterLeft,edgeUpperLeft

edgeLowerLeft
edgeInnerRight,edgeOuterRight,
edgeUpperRig ht, edgeLowerRight
dis tan cePupils

if widthROI/heightROI > ratio then
flagLeft = 1
flagRight = 1

end if
if

(edgeInnerLeft <dmin)or (edgeOuterLeft <dmin)
or (edgeUpperLeft <dmin) or(edgeLowerLeft <dmin2)
flagLeft = 1 then

end if
if
(edgeInnerRight <dmin) or (edgeOuterRight <dmin)
or (edgeUpperRight <dmin2) or (edgeLowerRight <dmin2)
flagRight = 1 then
end if
if distancePupils <din then

if edgeInnerLeft <dmid then
flagLeft = 1

end if
if edgeInnerRight <dmid then

flagRight = 1
end if

end if
if distancePupils >dout then

if edgeOuterLeft <dmid then
flagLeft = 1

end if
if edgeOuterRight <dmid then

flagRight = 1
end if

end if
if flagLeft = 1 then

CenterLeft = (xLeftc, yLeftc)
end if
if flagRight = 1 then

CenterRight = (xRightc, yRightc)
end if
Output: CenterLeft, CenterRight
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