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ABSTRACT Appropriate fault isolation and system reconfiguration scheme is of great significance to ensure
the reliability and precision of the tightly coupled global navigation satellite system/inertial navigation
system (GNSS/INS). Currently, the commonly used methods include fault isolation method and fault
adaptation method. However, the performance of them is not compared and analyzed fully in the existing
literatures. In this paper, the principle of them is analyzed and the performance of them under different
conditions is compared in theory firstly. On this basis, to improve the effectiveness and adaptability of
fault detection and isolation, an adaptive fault isolation and system reconfiguration method is proposed.
The radial basis function neural network (RBFNN) is used to predict the pseudo-GNSS measurement for
the measurement reconfiguration. Besides, taking the variety of observation conditions into consideration,
an adaptive adjustment criterion is introduced to realize the switch of fault isolation and measurement
reconfiguration. The performance of the proposed method is verified and compared with the traditional
methods by using the field test data. The results show that the fault isolation method can obtain higher
filtering precision than the fault adaptationmethod in theory, compared with these twomethods, the proposed
method has better adaptability to the complex environment, and can improve the reliability and precision of
the navigation system effectively.

INDEX TERMS Tightly coupled GNSS/INS integration, fault isolation and system reconfiguration, fault
adaptation, radial basis function neural network, measurement reconfiguration.

I. INTRODUCTION
The tightly coupled integration of global navigation satellite
system (GNSS) and inertial navigation system (INS) can
achieve a superior performance to the single system as a
result of the good complementary characteristics [1]. How-
ever, the integration can’t always offer reliable and accurate
navigation information due to the faulty observations of navi-
gation sensors [2]. If the faultymeasurements are not detected
and isolated in time, the accuracy of the integrated navigation
will be directly affected. Therefore, the real time fault detec-
tion and isolation is of great importance to ensure the relia-
bility and precision of the integrated navigation system [3].

In the field of integrated navigation, the commonly used
fault detection methods can be divided into two categories:

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu Zhou .

one is the snapshot method, such as the chi-square detection
method [4]-[6], Multiple Solution Separation (MSS) [7], [8].
This kind of method can detect the abrupt faults quickly
and accurately, but the performance for gradual fault is not
very good as a result of the serious time delay. The other
one is the sequential method, including the Autonomous
Integrity Monitoring by Extrapolation (AIME) method [9],
[10], Optimal Fault Detection (OFD) [11]. In these meth-
ods, the measurements used to calculate the test statistic are
not limited to a single epoch. Therefore, compared to the
snapshot method, these methods have better detection perfor-
mance for gradual fault. To further improve the sensibility for
gradual fault, a lot of modified methods have been proposed.
A new rate detector algorithm based on AIMEwas developed
in [12] and the test results show that it has better detection
performance than AIME and MSS for gradual fault. A fast
gradual fault detection method based on improved residual
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chi-square detection method was proposed for underwater
integrated navigation systems [13]. Besides, fault detection
based on artificial intelligence has attracted more attention
and been widely studied. Adaptive Neuron Fuzzy Inference
System (ANFIS)-based approach was presented for detecting
the navigation sensor faults in UAVs [14]. Reference [15] pro-
posed a novel fault detection method based on Gaussian Pro-
cess Regression (GPR) to improve the detection performance
for gradual fault. Least Squares Support Vector Machine
(LS-SVM) have been used for detecting fault in INS/GPS
integration [11].

However, the above researches mainly aimed at how to
detect the fault accurately and fast, the fault isolation and
system reconfiguration, which is another key issue of the fault
detection and tolerance, was seldom considered. In multi-
sensor integration, usually the faulty sub-filter is isolated and
the measurement update process is accomplished by fusing
the results of the other normal sub-filters [13]. In GNSS/INS
integration, isolating the faulty subsystem will force the inte-
grated system into the pure INS model, which will result
in the decrease of the filtering precision [16]. Currently,
the commonly used fault isolation method is identifying and
isolating the faulty measurement by conducting the local test
[17], [18]. After the isolation of the faulty measurements,
the other normal measurements will be used for the mea-
surement update process of the filter. This method reserves
more useful measurements, therefore, compared with the
method isolating the faulty sub-system, it has higher preci-
sion. However, the performance of this method is affected by
the satellite configuration and fault duration time [19], and
the difference of the location of faulty measurements will also
lead to different filtering precision and fault detection results.
Another fault isolation and system reconfiguration method
is the detection, identification and adaptation (DIA) method
[20], [21]. This method eliminates the presence of biases in
the filtered state of the navigation system by estimating the
model error. Nevertheless, the performance of this method
is seldom analyzed and verified in the existing literatures,
and the relation between this method and the fault isolation
method is rarely compared and analyzed in theory.

Apart from the above two methods, the robust estimation
is another way to improve the precision and reliability of the
integrated navigation under fault conditions. The core idea
of robust estimation is adaptively adjusting the weight of the
measurement by equivalent weight function [22]-[24]. The
typical equivalent weight function includes the three-segment
function and two-segment function [25]. The two-segment
function can maintain more measurements by reducing the
weight of faulty measurement. Compared with the former,
the three-segment function can eliminate the outlier from
the measurements when the fault error is large enough by
setting the adaptive weight factor of faulty measurement as
zero. However, the performance of the two robust estimation
methods depend on the selection of weight matrix a lot [26].

In practical application, the observation conditions and
fault models are variant, each method may not be suitable for

all the scenarios. In this paper, to have an overall understand-
ing of the performance of the existing methods, we mainly
analyze the principle of the fault isolation method and fault
adaptation method, and then compare the performance of
them under different conditions in theory. In order to over-
come the drawbacks of these two methods, an adaptive fault
isolation and system reconfiguration method is proposed.
A new predictor based on radial basis function neural net-
work (RBFNN) that can reduce the dependence on themotion
state of vehicle is used to predict the pseudo-GNSS measure-
ment for the measurement reconfiguration. Besides, an adap-
tive adjustment criterion is introduced to realize the switch
of fault isolation and measurement reconfiguration, which
improves the adaptability of fault detection and isolation
method to the complex environment. Field test data are used
to evaluate the proposed method, and the performance is
compared with the conventional methods.

The paper is organized as follows. Section II introduces
the fault detection and identification method for GNSS/INS
integration. Section III describes the principle of fault isola-
tion method and fault adaptation method, and then analyzes
and compares the performance of them in theory. Section IV
proposes the adaptive fault isolation and system reconfigu-
ration scheme. Section V presents the experimental results.
Section VI discusses the conclusions.

II. FAULT DETECTION AND IDENTIFICATION FOR
GNSS/INS INTEGRATION
A. GNSS/INS INTEGRATION MODEL
For the tightly coupled GNSS/INS integration, the system
state model consists of the error state equations of both INS
and GNSS, and is usually expressed as

Ẋ = FX+GW (1)

where X = [8, δV, δP, ε,∇, δtu, δtru]T is the state vec-
tor, 8 = [φE , φN , φU ] is the misalignment angle error
vector, δV = [δvE , δvN , δvU ] is the velocity error vector.
δP = [δL, δλ, δh] denotes the position error vector, ε =
[εx , εy, εz] and ∇ = [∇x ,∇y,∇z] represent the gyro biases
and accelerometer biases. δtu,δtru are the range bias and
range drift related to the receiver clock. F is the system
dynamic matrix, G is the noise coefficient matrix, W is the
system noise vector.

In the measurement model, the observation vector consists
of the pseudorange and pseudorange rate differences between
INS and GNSS. And the system measurement equation can
be written as

Z =
[
Zρ
Zρ̇

]
=

[
Hρ
Hρ̇

]
X+

[
Vρ
Vρ̇

]
= HX+ V (2)

where Z, H and V denote the measurement vector,
the measurement matrix and the measurement noise vector,
respectively. Zρ , Hρ and Vρrepresent the components for
pseudorange, while Zρ̇ , Hρ̇ and Vρ̇ represent the compo-
nents for pseudorange rate. The detailed expressions of these
parameters can be found in [27].
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B. FAULT DETECTION AND IDENTIFICATION
The linear discrete time varying system model can be
described as{

Xk = 8k,k−1Xk−1 + 0k,k−1Wk−1

Zk = HkXk + Vk
(3)

where Xk is the state vector, 8k,k−1 is the transition matrix,
0k,k−1 is the coefficient matrix, Zk represents the measure-
ment vector, Hk is the measurement model matrix. Wk and
Vk are the process noise and measurement noise, which are
commonly assumed as zero-mean Gaussian white noise with
covariance matrix Qk and Rk , respectively.
The residual vector in Kalman filter is

vk = Zk −Hk X̄k,k−1 (4)

where X̄k,k−1 = 8k,k−1X̂k−1 is the predicted state with the
covariance matrix Pk,k−1.
The corresponding covariance of the residual vector can be

expressed as

Pvk = HkPk,k−1HT
k + Rk (5)

To detect and identify the faulty measurement, the fault
detection function based on standardized residual is given
as [28]

λik =
cTi P
−1
vk vk√

cTi P
−1
vk ci

, i = 1, · · · , n (6)

where ci is the unit vector with the ith element equal to one,
and n is the dimension of the measurement vector. λik obeys
the normal distribution. The fault detection criterion is{∣∣λik ∣∣ > Nα/2 (0, 1) fault occurs∣∣λik ∣∣ ≤ Nα/2 (0, 1) no fault occurs

(7)

where α is the false alarm rate, Nα/2 (0, 1) is the correspond-
ing threshold. The faulty measurement can be detected and
identified by testing each dimension of the residual vector.

III. TRADITIONAL FAULT ISOLATION AND SYSTEM
RECONFIGURATION METHODS
A. SYSTEM RECONFIGURATION BASED ON THE
ISOLATION OF FAULTY MEASUREMENT
The commonly used fault detection and isolation method
conducts the measurement update of Kalman filter by using
the remaining normal measurements after the fault isolation.
For the convenience of analysis, assuming that fault occurs
on the ith dimension of the measurement vector, after the
isolation of the faulty measurement, the new measurement
equation can be written as

Z̃k =



Z1
k
· · ·

Zi−1k
Zi+1k
· · ·

Znk

=


H1
k
· · ·

Hi−1
k

Hi+1
k
· · ·

Hn
k

Xk +



V1
k
· · ·

Vi−1
k

Vi+1
k
· · ·

Vn
k

 = H̃kXk + Ṽk

(8)

where Zik , H
i
k and Vi

k are the ithrow element of Zk , Hkand
Vk , respectively. Then, the new state estimation X̃k and its
covariance matrix P̃ki can be written as

X̃k = P̃ki
(
P−1k,k−1X̄k,k−1 + H̃T

k R̃
−1
k Z̃k

)
P̃ki =

(
P−1k,k−1 + H̃T

k R̃
−1
k H̃k

)−1
(9)

where R̃k is the noise covariance matrix of the remaining
measurements.

B. FAULT ADAPTATION BASED ON OPTIMAL MODEL
ERROR ESTIMATION
The fault adaptation method is based on the optimal model
error estimation to eliminate the presence of biases on the
state estimation. Similarly, assuming that fault error occurs
on the ith measurement, then the measurement model can be
written as

Zk = HkXk + Vk + ei∇ (10)

where ∇is the model error on the ith observation, andei is the
unit vector with the ith element equal to one.
The optimal estimation of model error can be obtained as

∇̂ =

(
eTi P
−1
vk ei

)−1
eTi P
−1
vk vk (11)

The corresponding covariance of ∇̂ can be expressed as

P
∇̂
=

(
eTi P
−1
vk ei

)−1
=

(
P−1vk ii

)−1
(12)

where P−1vk ii is the ith diagonal element of covariance matrix
P−1vk . Then, the new measurement model after adaptation can

be expressed as
_

Zk = Zk − ei∇̂=HkXk + ξ k , where ξ k is

the new measurement noise and its covariance matrix
_

Rk is
approximately to Rk+eiP∇̂e

T
i , which ignores the correlation

between Vk and ∇̂. Then, the state estimation at time k and
its covariance matrix can be approximately expressed as

_

Xk =
_

Pk

(
P−1k,k−1X̄k,k−1 +HT

k
_

R
−1

k
_

Zk

)
_

P
−1

k = P−1k,k−1 +HT
k
_

R
−1

k Hk (13)

C. PERFORMANCE COMPARISON OF THE TWO METHODS
In [19], the influence of satellite configuration and fault
duration time on the performance of fault isolation method
has been analyzed and verified. Therefore, in this paper,
the relation between fault isolation and fault adaptation is
mainly analyzed and compared.

For the fault adaptation method, the optimal estimation of
the single model error can be obtained as

∇̂ =

(
eTi P
−1
vk ei

)−1
eTi P
−1
vk vk

=

(
P−1vk ii

)−1
P−1vk ivk

≈ vik (14)
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where P−1vk i and v
i
k are the ith row of P−1vk and vk , respectively.

Then, the new residual vector ṽk and
_vk of the fault isolation

method and fault adaptation method can be expressed as

ṽk =
[
v1k · · · v

i−1
k vi+1k · · · vnk

]T
_vk =

[
v1k · · · v

i−1
k 1vik v

i+1
k · · · vnk

]T (15)

where1vik is the ith row element of the new residual vector
_vk

and it’s the difference between ∇̂ and vik . According to (14),
1vik ≈ 0can be established. From the expressions of ṽk and
_vk , it can be seen that there is nearly no new measurement
information added in the measurement update of the fault
adaptation method compared with the fault isolation method.

Based on the theory of Kalman filter, the gain matrix K̃k

and
_

Kk of the isolationmethod and the adaptationmethod can
be given as

K̃k = P̃kiH̃T
k R̃
−1
k

_

Kk =
_

PkHT
k
_

R
−1

k (16)

where

R̃k = diag
[
R1k · · · R

i−1
k Ri+1k · · · Rnk

]
_

Rk = diag[R1k · · · R
i−1
k

(
Rik +

(
P−1vk ii

)−1)
Ri+1k · · · Rnk ]

where Rik is theith diagonal element of covariance matrix
Rk . Then, the state estimation of the isolation method can be
expressed as

X̃k = X̃k,k−1 + K̃k ṽk
= X̃k,k−1 + P̃ki1̃k (17)

where

1̃k =

[ (
H1
k

)T
· · ·

(
Hi−1
k

)T (
Hi+1
k

)T
· · ·

(
Hn
k

)T ]
R̃−1k

[
v1k · · · v

i−1
k vi+1k · · · vnk

]T
In the same way, the corresponding state estimation of the

adaptation method can be expressed as

_

Xk =
_

Xk,k−1 +
_

Kk
_vk

=
_

Xk,k−1 +
_

Pk
_

1k (18)

where

_

1k =

[ (
H1
k

)T
· · ·

(
Hi−1
k

)T (
Hi
k

)T (Hi+1
k

)T
· · ·

(
Hn
k

)T ]
_

R
−1

k
[
v1k · · · v

i−1
k 1vik vi+1k · · · vnk

]T
Combining the expressions of 1̃and

_

1, it can be obtained that
1̃ ≈

_

1 is established. From (17) and (18), it can be seen that
the difference between X̃k and

_

Xk is related to the one step
prediction of state estimation X̃k,k−1,

_

Xk,k−1 and covariance

matrix P̃ki,
_

Pk . According to the matrix theory, the relation
between

_

Pk and P̃ki can be expressed as

_

Pk=

[̃
HT
k R̃
−1
k H̃k+P−1k,k−1+

(
Hi
k

)T (
Rik+

(
P−1vk ii

)−1)−1
Hi
k

]−1

=

[
P̃−1ki +

(
Hi
k

)T (
Rik +

(
P−1vk ii

)−1)−1
Hi
k

]−1

= P̃ki − P̃ki
(
Hi
k

)T [(
Rik +

(
P−1vk ii

)−1)−1
+Hi

k P̃ki
(
Hi
k

)T]−1
Hi
k P̃ki

= P̃ki −1Pk (19)

From (19), it can be proved that the following equation is
established

_

P
jj

k ≤ P̃
jj
ki (20)

where
_

P
jj

k and P̃jjki are the jth diagonal element of covariance

matrix
_

Pk and P̃ki, respectively. Equation (20) indicates that
the weight of residual in fault adaptation method will be
smaller than that in fault isolation method. And the difference
between themmainly depends on the difference of

_

Pk and P̃ki.
Assuming that fault starts at time k . For t > k , the state

estimation and its covariance matrix of the fault isolation
method are expressed as X̃tand P̃ti, respectively, while the
corresponding parameters of fault adaptation method are
expressed as

_

Xt and
_

Pt . As we all know that it takes time for
the error to accumulate to a certain degree, so for t > k the
difference between

_

Pt of the fault adaptation method and P̃ti
is relatively small in the early phase of fault period, and the
state estimation of the two methods will be nearly the same.
In other words, X̃t ≈

_

Xt will be established for a period
of time. As faults on different satellite’s measurements will
result in the various degrees of decline in filtering precision.
When fault lasts for a period of time, the location of faulty
measurement will have a great influence on the change of
filtering precision, which will affect the difference between
_

Pt and P̃ti.
When themeasurement of faulty satellite has little effect on

the filtering precision, isolating the faulty measurement will
not result in obvious reduction of the filtering precision. For
this situation, the difference between

_

Pt and P̃ti will maintain
at a small level. Although the weight of residual in adaptation
method is smaller than that in isolation method, the filtering
precision of adaptation method will be just a little lower than
that of isolation method. Therefore, for t > k , X̃t ≈

_

Xtwill
be established for a relatively long period of time. In other
words, adopting one of the twomethods to deal with the faulty
measurement will lead to nearly the same filtering results.

However, when the measurement of faulty satellite has
a great effect on the filtering precision, isolating the faulty

17124 VOLUME 8, 2020



C. Zhang et al.: Adaptive Fault Isolation and System Reconfiguration Method for GNSS/INS Integration

measurement may result in obvious decrease of the filtering
precision. For this situation, with the fault duration time
getting longer, the state estimation error will get larger, and
the difference between

_

Pt and P̃ti will also get larger. After
the fault lasts for a period of time, as the one step prediction
of state vector contains a large error, the residual will have a

great influence on the state estimation. Because
_

P
jj

t is obvi-
ously smaller than P̃jjti, which will lead to that the weight of
the residual in adaptation method is much smaller than that in
isolation method. Hence, the precision of the state estimation
_

Xt will be lower than that of X̃t . And with the fault duration
time getting longer, the difference between X̃t and

_

Xt will
get larger. In other words, the filtering error of the adaptation
method will be apparently larger than that of the isolation
method after the fault lasts for a long time.

If there is enough measurement redundancy, both the fil-
tering errors of isolation method and adaptation method will
increase gradually. However, if the number of visible satel-
lites is small or the geometry of satellites is poor, both the two
methods will result in fast decrease of the filtering precision
and large state estimation errors.

IV. ADAPTIVE FAULT ISOLATION AND SYSTEM
RECONFIGURATION
In terms of the above analysis, the results of the fault isolation
method and fault adaptation method will be variant under
different observation conditions. Especially when the number
of visible satellites is small and the measurement of faulty
satellite has a great effect on the filtering precision, both
the two methods will have large estimation errors due to the
lack of useful observations. Therefore, in order to improve
the adaptability of fault detection and isolation method to
the complex environment, a new fault isolation and system
reconfiguration method is proposed.

A. MEASUREMENT RECONFIGURATION BASED ON
RBFNN
For GNSS/INS integration, in order to compensate INS errors
under the condition of lack of useful measurements, espe-
cially GNSS outages, many researchers introduced the error
predicting and compensating method based on artificial intel-
ligence (AI) [29]. These approaches include support vector
machine [30], random forest regression [31], neural network
[32], etc. Due to the good nonlinear function estimation
property and learning ability, the neural network (NN) has
drawn great attention and been widely used in the error
compensation of integrated navigation during GNSS outages.
A hybrid model of strong tracking Kalman filter and wavelet
neural network was proposed to predict INS error during GPS
outages [33]. A new multi-layer perceptron (MLP) network
prediction model that set up the relation between INS infor-
mation and the increments of GPS position was proposed,
which improved the prediction accuracy [16]. A hybrid pre-
diction method which combines the radial basis function
neural network (RBFNN) and the time series analysis was

FIGURE 1. The structure of RBFNN.

proposed to predict the measurement update of Kalman fil-
ter during GPS outages in [34]. To improve the positioning
precision of INS/GPS integration for long time GPS outages,
a magnetometer-assisted positioning solution which uses
the RBFNN predictor was introduced [35]. Although these
approaches adopted different prediction model, compared
with the pure INS mode, they can improve the positioning
precision effectively.

However, the above researches mainly aims at the loosely
coupled model of GNSS/INS integration. For the tightly
coupled model, a fusion algorithm based on RBFNN for
bridging GPS outages was proposed in [36], which used the
past measurements to predict the measurements of current
window, and then continued to predict the measurements
in the next window. This method can improve the filtering
precision during GPS outages, however, it’s hard to choose
a proper window size in practical application in real time.
Besides, the performance of the method depends a lot on the
motion state of the vehicle.

Compared with the other networks, the RBFNN is sim-
pler to design and can learn faster with high accuracy.
Therefore, in this paper, the RBFNN is used to obtain the
pseudo-GNSS measurement when the faulty measurement
is detected, which aims to provide a better fault isolation
and system reconfiguration scheme. Usually, a RBFNN has a
three-layer structure that consists of an input layer, a hidden
layer and an output layer, which is shown in Fig. 1.

Where xi (i = 1, 2, · · · ,m) and yi (i = 1, 2, · · · , n) are the
inputs and outputs, while ϕi (i = 1, 2, · · · , l) is the base func-
tion, which is commonly selected as the Gaussian function,
wij is the weight. The output yi can be given as

yi =
l∑
j=1

wjiφj (x) (21)

As well known, the pseudorange and pseudorange rate
measurements are time series information, which are affected
by the motion state of the vehicle. Therefore, the measure-
ment of INS is introduced to provide the motion constraint
information, which helps to avoid the rapid divergence of
the predicted measurements when the motion state changes.
Here, δρiG (k) and δρiI (k) are defined as the pseudorange
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FIGURE 2. The update and prediction process of RBFNN. (a) The update
process; (b) The prediction process.

increment of GNSS and INS for the ith satellite, which can
be expressed as

δρiG (k) = ρ
i
G (k + 1)− ρiG (k)

δρiI (k) = ρ
i
I (k + 1)− ρiI (k) (22)

where ρiG and ρiI represent the pseudorange measurements of
GNSS and INS for the ithsatellite, respectively. In this paper,
δρiI (k) and δρ

i
G (k) are selected as the input and output of

the network. Fig. 2 shows the update and prediction process
of the RBFNN. Assuming that ρiG (j) contains a fault error
and is detected at time j, then the pseudo-GNSS pseudorange
measurement at time j can be obtained as

ρ̂iG (j) = ρ
i
G (j− 1)+ δρ̂iG (j− 1) (23)

where δρ̂iG (j− 1) is the predicted pseudorange increment of
GNSS. After a period of time, the pseudo-GNSS pseudorange
at time tk can be expressed as

ρ̂iG (tk) = ρ
i
G (j− 1)+

tk−1∑
t=j−1

δρ̂iG (t) (24)

Then, the new pseudorange measurement of Kalman filter
for the ith satellite at time tk can be obtained as

Ẑ i (tk) = ρiI (tk)− ρ̂
i
G (tk) (25)

The RBFNN for pseudorange rate is similar to that for
pseudorange, the difference is that the input and output are
replaced by the pseudorange rate increments of INS and
GNSS.

B. ADAPTIVE ADJUSTMENT OF FAULT ISOLATION AND
MEASUREMENT RECONFIGURATION
According to the analysis in section III, it can be seen that
isolating the faulty measurement will lead to the decrease of
the filtering precision, and the rate of decline will be variant
for different observation conditions and location of faulty
measurement. In order to evaluate the influence of a satellite’s
measurement on the precision of state estimation, several
concepts are introduced. One is the precision of positioning

(POP), which is chosen to evaluate the filter precision, and is
expressed as

POP=

√√√√√ 9∑
j=7

P̂jjk (26)

where P̂jjk is the jth diagonal element of covariance matrix P̂k .
For the fault isolationmethod, P̂k is equal toP̃k , while for fault
free condition, P̂k is equal toPk . Although POP just contains
the covariance of positioning error, it can still reflect the state
estimation precision to some degree. And the smaller the POP,
the higher the precision of state estimation.

The other one is the relative differential precision of posi-
tioning (RDPOP), which is used to analyze the influence of
one satellite’s measurement on the filtering precision, and is
expressed as

RDPOP=

√
9∑
j=7

P̃jjki −

√
9∑
j=7

Pjjk√
9∑
j=7

Pjjk

(27)

RDPOP reflects the decrease degree of positioning preci-
sion after isolating the satellite’s measurement. The larger
the RDPOP, the greater the decrease of filtering precision.
When there are enough visible satellites, isolating the faulty
measurement will hardly affect the filtering precision or just
result in a very small decline of the filtering precision, which
will not bring bad effect on the whole navigation and can be
tolerant. For this situation, the good navigation performance
can be obtained by adopting the traditional fault isolation
method. Therefore, there is no need to use the predicted
measurement to conduct the measurement reconfiguration.

However, when the geometry or number of visible satellites
is poor, isolating the faulty measurement may lead to a fast
decrease of the filtering precision, and the filtering error
and RDPOP will get larger rapidly with the fault duration
time getting longer, which will have a bad influence on the
reliability of the navigation. For this situation, using the
predicted measurement to conduct the measurement recon-
figuration can restrain the divergence of filter and reduce the
risk of missed detection and false alarm effectively. There-
fore, to improve the adaptability of fault isolation and sys-
tem reconfiguration method to the environment, an adaptive
adjustment criterion is introduced and expressed as follows
POP ≤ ξ fault isolation
POP > ξ,RDPOP ≤ η fault isolation
POP > ξ, RDPOP > η measurement reconfiguration

(28)

where ξ and η are the thresholds of POP andRDPOP, and they
can be chosen according to the requirement for the filtering
precision.
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FIGURE 3. The flow chart of the adaptive fault isolation and system
reconfiguration scheme.

TABLE 1. Inertial sensor technical specifications.

Based on the above analysis, the process of adaptive fault
isolation and system reconfiguration scheme can be shown
in Fig. 3. Here, it should be clearly noted that the training pro-
cess of RBFNN is initiated after the fault is detected, which
is aimed to reduce the computing burden. As the number of
visible satellites is usually large, satellite observation failure
is a rare event and the number of faulty satellites is usually
small relatively, conducting the training process of RBFNN
for all the satellites’ measurements all the time will lead to
great calculation burden on the navigation computer.

V. FIELD TEST RESULTS AND ANALYSIS
To verify the theoretical analysis and evaluate the perfor-
mance of the proposed method, a low dynamic test was
carried out in Xi’an, China. The SPAN-CPT tightly coupled
navigation system was used to collect the raw IMU data and
GNSS data. The output rate of inertial sensor and GNSS is

FIGURE 4. The vehicle trajectory.

FIGURE 5. The number of GNSS visible satellites in the field test.

FIGURE 6. The sky plot view of the satellite geometry.

100Hz and 1Hz, respectively. The inertial sensor specifica-
tions of the SPAN-CPT are listed in Table 1. The experiment
vehicle drove along the 400m sports track nearly three laps.
The vehicle trajectory is shown in Fig. 4. The number of
visible satellites in the field test is shown in Fig. 5, while the
corresponding sky plot view is shown in Fig. 6.

A. THE PERFORMANCE ANALYSIS OF THE PROPOSED
PREDICTION MODEL
In order to ensure that the proposed prediction method is able
to provide the better performance in fault isolation and system
reconfiguration, the performance of the proposed prediction
model (M2) is verified and analyzed firstly, and the method in
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FIGURE 7. The prediction errors of the two methods.

TABLE 2. Comparison of the prediction errors.

reference [36] (M1) is introduced for comparison. Set satellite
G19 as an example, assuming that two segments of GNSS
measurements for G19 contain fault errors, the first one is
from 181s to 220s, while the second one is from 261s to 320s,
the corresponding trajectories are marked by red and green
lines in Fig. 4, respectively.

The prediction errors of the two methods during these
two segments are shown in Fig. 7. It can be seen that the
performance of M1 has large difference for the two segments
of measurements, this is because that M1 depends a lot on
the motion state of the vehicle. For the first segment, the state
of the vehicle changes from circular motion to linear motion,
so the prediction error is very large. For the second segment,
when the prediction process starts, the state of the vehicle
hardly change, so it can obtain high precision. As the state
changes slowly, the prediction error begins to get larger, and
for the last twenty seconds, the state of the vehicle changes
from circular motion to linear motion, so the prediction error
further increases. ComparedwithM1, the prediction accuracy
of M2 is much higher, and the performance of M2 depends
less on the motion state of the vehicle.

The mean absolute deviation (MAD) and root mean
squared error (RMSE) of the prediction errors are calculated
and shown in Table 2. It can be seen that the proposed pre-
diction model has high precision and the predicted pseudo-
measurement can be used to replace the faulty measurement
within a period of time.

B. THE PERFORMANCE VERIFICATION AND ANALYSIS OF
THE PROPOSED METHOD
In the tests, fault errors are attached to one satellite’s mea-
surements to simulate the fault scenario. The false alarm rate

FIGURE 8. The POP and RDPOP of the nine visible satellites.

is set as 0.001, so the corresponding detection threshold is
3.29. To verify the performance of the proposed adaptive
fault isolation and system reconfiguration method (AFISR),
the results of the other two methods are introduced for com-
parison. The first one is the fault isolation method (FI),
the other one is the fault adaptation method (FA). Besides,
the results of fault free condition (FF) are also given for
comparison. In this paper, the thresholds ξ and η are chosen
as 4 and 0.1, respectively.

According to the analysis in Section III, it can be concluded
that the performance of traditional fault isolation and system
reconfiguration will be variant for the different observation
conditions. Therefore, in the next parts, several tests under
different measurement conditions and fault models will be
conducted to verify the performance and superiority of the
proposed method.

1) THE PERFORMANCE COMPARISON AND ANALYSIS FOR
DIFFERENT NUMBERS OF VISIBLE SATELLITES
The number of visible satellite determines the observation
redundancy to a large extent, which has a great influence on
the filtering precision. Therefore, the performance of these
methods under the condition of different numbers of visible
satellites are tested firstly.

Test 1: Assuming that 100m abrupt fault error occurs on the
measurement of one satellite from 281 to 300s, the visible
satellites are G1, G3, G6, G7, G8, G9, G11, G19 and G27.
During this period, there are enough observation redundancy.
Fault on different satellite may result in variant navigation
precision, so the POP and RDPOP of each satellite are calcu-
lated firstly, and the results are shown in Fig. 8.

It can be seen from Fig. 8 that the POP values of the nine
satellites are less than 4 during the fault period, which means
that the navigation can maintain high precision after isolating
one satellite’s measurements. Besides, it can be obtained that
the POP and RDPOP of G1 are the largest among the nine
visible satellites, while those of G27 are the smallest. In other
words, isolating the measurements of G1 and G27 will result
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FIGURE 9. The position errors for fault on G1 under the condition of nine
visible satellites.

FIGURE 10. The position errors for fault on G27 under the condition of
nine visible satellites.

in the maximum and minimum decline of the filtering pre-
cision, respectively. Set satellite G1 and G27 as examples,
the corresponding navigation results of the four methods are
shown in Fig. 9 and Fig. 10.

It can be seen from Fig. 9 that the difference between the
results of the four methods for fault on G1 is very obvious.
Compared with the results of FF, the precision of FI is just
a little lower, and as the POP is less than 4 during the whole
fault period, the proposed AFISR changes into FI mode. The
precision of FA is nearly the same as FI in the first few sec-
onds of the fault period, however, with the fault time getting
longer, the position errors begin to get larger, the precision
of FA gradually gets lower than the other methods. It can be
seen from Fig. 10 that the position errors of the four methods
for fault on G27 are nearly the same. This is because that the
measurement of G27 has little effect on the filtering precision
and isolating the faulty measurement will not lead to obvious
decline of the filtering precision.

Test 2: To simulate the case that the number of visible
satellites is relatively small, several satellites’ measurements
are removed artificially from 281s to 300s, and only five of

FIGURE 11. The POP and RDPOP of the five visible satellites.

FIGURE 12. The position errors for 20s fault on G19 under the condition
of nine visible satellites.

them are reserved, which are G7, G8, G9, G11 and G19.
Similarly, assuming that 100m abrupt fault error occurs on the
measurement of one satellite, the POP and RDPOP of each
satellite are calculated and shown in Fig. 11.

It can be seen from Fig. 11 that as the fault duration time
increases, all the POP values have a tendency to get larger
and are greater than the threshold 4 at some point during the
fault period. Among the five satellites, the POP and RDPOP
of G19 are the largest, which means that isolating the mea-
surement of G19 will result in the maximum decline of the
filtering precision. Figs. 12 and 13 show the navigation results
of the four methods for fault on G19 under the condition
of nine and five satellites, respectively. It can be seen that
compared with the results of FF, the position errors of the
other three methods increase to some extent. When there are
nine satellites, as the observation redundancy is relatively
large, isolating the measurement of G19 just results in a
small decline of the filtering precision. When there are only
five satellites, the measurement of G19 has a great influence
on the filtering precision. Both the geometry of satellites
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FIGURE 13. The position errors for 20s fault on G19 under the condition
of five visible satellites.

FIGURE 14. The FDFs of the three methods for 20s fault on G19.

and the observable degree of navigation parameters will get
worse after isolating the measurement of G19. Therefore,
the position errors of FI and FA get larger rapidly with time,
and the precision is obviously much lower than that of FF
when fault lasts for a period of time. Compared with FI and
FA, the AFISR conducts the measurement update process by
using the predicted pseudo-GNSS measurement from 290s,
so the position errors of it gradually get smaller.

The corresponding fault detection function (FDF) of the
three methods under the condition of five satellites are shown
in Fig. 14. The red line represents the threshold of fault
detection function, which is marked by Td . It can be seen that
the FDFs of FI and FA have an obvious downward trend due
to the declined filtering precision, while the FDF of AFISR
can maintain stable because of the high filtering precision.

In order to further verify the superiority of the proposed
method, the situation with the longer fault duration time is
investigated. Assuming that 100m abrupt fault error occurs
on G19 from 261s to 320s, the navigation results of the four
methods are shown in Fig. 15.

It can be seen that the position errors of FI and FA continue
to increase with the fault duration time getting longer, and the

FIGURE 15. The position errors for 60s fault on G19 under the condition
of five visible satellites.

TABLE 3. Comparison of the RMS of position errors during 60s fault
period.

FIGURE 16. The FDFs of the three methods for 60s fault on G19.

maximum errors of FI for longitude, latitude and height are
57.8m, 67.5m and 66.9m, respectively, while those of FA are
155.2m, 190.6m and 181.5m, which are too large to provide
reliable navigation. Compared with FI and FA, the position
errors of AFISR reach to the maximum values at 270s, and
then it switches to the new measurement update mode using
the predicted pseudo-GNSS measurement, so the position
errors gradually decrease. Table 3 shows the RMSE of these
methods, it can be seen that compared with the conventional
methods, the positioning accuracy is obviously improved by
the proposed AFISR.

Fig. 16 shows the FDFs of the three methods, it can be seen
that both the FDFs of the FI and FA have a rapid downward
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FIGURE 17. The sky plot views of two different geometries with five
visible satellites. (a) geometry 1; (b) geometry 2.

trend, and the FDF value of FI at 305s is 3.19 that is smaller
than the threshold, which results in the missed detection.
After fault ends at 320s, the FDF has a few seconds of false
alarm due to the large position errors. While the FDF of FA
declines below the threshold at 290s and the missed detection
happens during 290s∼300s. Similarly, after the end of fault
at 320s, the false alarm happens and lasts for very long time
due to the too large position errors. Compared with these two
methods, the FDF of AFISR just has a gradual downward
trend because of the high precision, which means that the
AFISR can reduce the risk ofmissed detection and false alarm
effectively.

2) THE PERFORMANCE COMPARISON AND ANALYSIS FOR
DIFFERENT GEOMETRY OF VISIBLE SATELLITES
The above tests mainly investigate the influence of the num-
ber of visible satellites. In fact, when the number of satel-
lites is constant, the geometry of satellites will also affect
the navigation precision. For the same satellite in different
geometries, its measurements will have different contribution
to the filtering precision. And the effect is more obvious
when the number of visible satellites is small. To further
verify the performance of the proposed method, the number
of visible satellites is set artificially as five, and two different
geometries are chosen to conduct the tests. The first geometry
consists of G7, G8, G9, G11 and G19, which lasts from
281s to 310s, while the second one consists of G1, G7, G11,
G13 andG19, which lasts from 181s to 210s. The correspond-
ing sky plot views are show in Fig. 17.

Set satellite G11 as an example, and 100m abrupt fault
errors are attached to the measurements of G11 in these
two periods. The POP and RDPOP of G11 in these two
geometries are calculated and shown in Fig. 18. It can be
seen that the POP and RDPOP in geometry 1 increase fast and
exceed the thresholds in about 11 seconds, while the values
in geometry 2 increase slowly, and the RDPOP is still smaller
than the threshold when fault ends. This result indicates that
the measurements of G11 have the greater influence on the
filtering precision in geometry 1 than in geometry 2. In other
words, isolating the measurements of G11 in geometry 1 may
result in the worse filtering precision than in geometry 2.

The corresponding filtering results are shown in Fig. 19.
And the RMS of position errors during the two fault periods

FIGURE 18. The POP and RDPOP of G11 for the two geometries.

FIGURE 19. The position errors for fault on G11 under the condition of
five visible satellites.

TABLE 4. Comparison of the RMS of position errors during fault period.

are shown in Table 4. From Fig. 19 and Table 4, it can be seen
that the position errors of these methods in geometry 2 are
nearly the same due to the little effect of G11’s measurements
on the filtering precision, while the difference of position
errors between these methods in geometry 1 is very evident.
As the measurements of G11 have a great influence on the
filtering precision, the position errors of FI increases fast with
time. Compared with FI, the position errors of FA are nearly
the same as those of FI in the first few seconds, however,
when the error accumulates to a certain degree, the position
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errors of FA increases faster than FI. Therefore, the FA has
the worse filtering precision. The AFISR switches to the new
measurement update mode that uses the predicted pseudo-
GNSS measurement at 292s, so it has high precision.

VI. CONCLUSION
In this paper, the fault isolation and system reconfiguration
for GNSS/INS integration is investigated. The principle and
performance of the conventional fault isolation method and
fault adaptation method are analyzed and compared in theory.
To overcome the drawbacks of them in complex environment,
an adaptive fault isolation and system reconfigurationmethod
is proposed. The RBFNN is adopted to predict the pseudo-
GNSS measurement when fault is detected, which can be
used to conduct the measurement reconfiguration. Besides,
an adjustment criterion is introduced to realize the adaptive
switch of fault isolation and measurement reconfiguration,
which can improve the adaptability to the environment. The
theoretical analysis for the comparison of the two traditional
methods and the performance of the proposed method are
verified by several tests. The main conclusions are listed
below.

1)When the measurement of faulty satellite has little effect
on the filtering precision, the filtering results of fault isolation
and fault adaptation are nearly the same. However, when the
measurement of faulty satellite has a great effect on the filter-
ing precision, the fault isolation method can obtain the higher
filtering precision than fault adaptation method, especially
when the number of visible satellites is small.

2) The proposed predictor based on RBFNN introduces
the measurements of INS to provide the motion constraint
information. Therefore, compared with the conventional pre-
diction model, it depends less on the motion state of the
vehicle and has higher prediction precision.

3) The proposed method can adaptively adjust the fault
isolation and system reconfiguration scheme, compared with
the traditional methods, it has the better adaptability to the
environment, and can improve the precision and reliability of
the integration effectively.

In addition, the thresholds of POP and RDPOP have a
great influence on the performance of the proposed method,
the selection of appropriate values is a key issue and need to
be further researched in the future work.
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