
Received November 28, 2019, accepted January 9, 2020, date of publication January 15, 2020, date of current version January 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2966919

Xatkit: A Multimodal Low-Code Chatbot
Development Framework
GWENDAL DANIEL 1, JORDI CABOT 2, (Member, IEEE),
LAURENT DERUELLE 3, AND MUSTAPHA DERRAS 3
1IN3, UOC, 08060 Castelldefels, Spain
2ICREA, 08010 Barcelona, Spain
3Berger-Levrault, 54250 Champigneulles, France

Corresponding author: Gwendal Daniel (gdaniel@uoc.edu)

This work was supported in part by the Spanish Government under Project TIN2016-75944-R, and in part by the Electronic Component
Systems for European Leadership Joint Undertaking under Grant 737494.

ABSTRACT Chatbot (and voicebot) applications are increasingly adopted in various domains such as
e-commerce or customer services as a direct communication channel between companies and end-users.
Multiple frameworks have been developed to ease their definition and deployment. While these frameworks
are efficient to design simple chatbot applications, they still require advanced technical knowledge to define
complex interactions and are difficult to evolve along with the company needs (e.g. it is typically impossible
to change the NL engine provider). In addition, the deployment of a chatbot application usually requires a
deep understanding of the targeted platforms, especially back-end connections, increasing the development
and maintenance costs. In this paper, we introduce the Xatkit framework. Xatkit tackles these issues by
providing a set of Domain Specific Languages to define chatbots (and voicebots and bots in general) in a
platform-independent way. Xatkit also comes with a runtime engine that automatically deploys the chatbot
application and manages the defined conversation logic over the platforms of choice. Xatkit’s modular
architecture facilitates the separate evolution of any of its components. Xatkit is open source and fully
available online.

INDEX TERMS Modeling, DSL, chatbot design, chatbot deployment.

I. INTRODUCTION
Instant messaging platforms have been widely adopted as
one of the main technologies to communicate and exchange
information [1], [2]. Nowadays, most of them provide built-in
support for integrating chatbot applications, which are auto-
mated conversational agents capable of interacting with users
of the platform [3]. Chatbots have proven useful in various
contexts to automate tasks and improve the user experience,
such as automated customer services [4], education [5], and
e-commerce [6]. Moreover, existing reports highlight the
large-scale usage of chatbots in social media [7], and empha-
size that chatbot designwill become a key ability in IT hires in
the near future [8]. Additional predictions say that by 2022,
80% of the companies will use chatbots and banks will be
able to automate up to 90% of their customer interaction
with them.1 The global chatbot market is projected to reach

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Nardone .
1https://chatbotsmagazine.com/chatbot-report-2019-global-trends-and-

analysis-a487afec05b

2 billion dollars by 2024, growing at a CAGR (compound
annual growth rate) of 29.7%.2

This widespread interest and demand for chatbot appli-
cations has emphasized the need to be able to quickly
build complex chatbot applications supporting AI-based nat-
ural language processing [9] in order to be able to flu-
ently chat with the user. Moreover, any non-trivial chatbot
requires accessing an orchestration [10] of internal and exter-
nal services in order to perform the requested user actions
(e.g. to check and query the data to be served back to
the user or to actually execute some processes/actions in
response). As such, chatbots are becoming complex soft-
ware artifacts that require a more methodical development
approach to be developed with the proper quality standards.

As such, the definition of chatbots becomes a challenging
task that requires expertise in a variety of technical domains,
ranging from natural language processing to a deep under-
standing of the APIs of the targeted instant messaging plat-
forms and third-party services to be integrated.

2https://www.alliedmarketresearch.com/chatbot-market

15332 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0692-0628
https://orcid.org/0000-0003-2418-2489
https://orcid.org/0000-0001-9912-7949
https://orcid.org/0000-0002-2227-4024
https://orcid.org/0000-0003-4938-9216


G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

So far, chatbot development platforms have mainly
addressed the first challenge, typically by relying on external
intent recognition providers, which are natural language (NL)
processing frameworks providing user-friendly interfaces to
define conversation assets. As a trade-off, chatbot applica-
tions are tightly coupled to their intent recognition providers,
hampering their maintainability, reusability and evolution.
Typically, once the chatbot designer chooses a specific chat-
bot development platform, she ends up in a vendor lock-in
scenario, especially with the NL engine coupled with the
platform. Similarly, current chatbot platforms lack proper
abstraction mechanisms to easily integrate and communi-
cate with other external platforms the company may need to
interact with.

This work aims to tackle all these issues by raising the
level of abstraction at what chatbots are defined. To this
purpose, we introduce Xatkit, a novel model-based chatbot
development framework that aims to address this question
usingModel Driven Engineering (MDE) techniques: domain-
specific languages, platform independent bot definitions, and
runtime interpretation. Indeed, Xatkit embeds a dedicated
chatbot-specific modeling language to specify user inten-
tions, computable actions and callable services, combining
them in rich conversation flows. Conversations can either be
started by a user awakening Xatkit or by an external event
that prompts a reaction from Xatkit (e.g. alerting a user that
some event of interest fired on an external service the bot is
subscribed to).

The resulting chatbot definition3 is independent of the
intent recognition provider (which can be configured as part
of the available Xatkit options) and frees the designer from
the technical complexities of dealing with messaging and
backend platforms as Xatkit can be deployed through the
Xatkit runtime component on them without performing any
additional steps. Xatkit is the result of a collaboration work
between the Open University of Catalonia and the Berger-
Levrault company who is interested in adapting chatbots as
part of its citizen portal service offering.

This paper extends our previous work [11]4 in the follow-
ing directions:

• Ability to define event-based conversations. Now Xatkit
can subscribe to external events that may induce Xatkit
to start a conversation and not just respond to conversa-
tions started by the user

• A significant growth in the tools maturity, both in
the number of platforms and features offered in each
platform.

• A new regex-based NLP parser to be used for testing
purposes or very simple bots (e.g. as a way to check the
Xatkit installation was successfully completed without
requiring to setup as well a connection to a remote NLP
engine).

3In this paper, we use the terms bot, chatbot and voicebot indistinctly as
Xatkit supports all of them via its set of supported platforms

4Xatkit was previously known as Jarvis but we changed the name since
that paper was published

• Better support for the Platforms mechanism and
extended list of platforms, including the support for
voicebots.

• An initial validation as part of an ongoing initiative to
use Xatkit in an education setting

• A specific packaging for a Xatkit Development Toolkit
that lowers the barrier to entry for those potential con-
tributors that want to start tinkering with the code.

• A completely reworked related work section.
• Plus many other minor changes (e.g. refinements on the
concrete syntax) based on the feedback and experience
we got since the first release.

The rest of the paper is structured as follows: Section II
introduces preliminary concepts used through the article.
Section III shows an overview of the Xatkit framework,
while Section IV, V and VI detail its internal components.
Section VII presents the tool support, Section IX compare
our approach with existing chatbot design techniques and
Section VIII a first empirical evaluation. Finally, Section X
summarizes the key points of the paper, draws conclusions,
and present our future work.

II. PRELIMINARIES AND RUNNING EXAMPLE
This section defines the key concepts of a chatbot application
that are reused through this article.

Chatbot design [12] typically relies on parsing techniques,
pattern matching strategies and Natural Language Processing
(NLP) to represent the chatbot knowledge. The latter is the
dominant technique thanks to the popularization of libraries
and cloud-based services such as DialogFlow [13] or IBM
WatsonAssistant [14], which rely onMachine Learning (ML)
techniques to understand the user input (based on a set of
training sentences provided as part of the chatbot definition)
and provide user-friendly interfaces to design the conversa-
tional flow.

However, Pereira and Díaz have recently reported that
chatbot applications can not be reduced to raw language
processing capabilities, and additional dimensions such as
complex system engineering, service integration, and testing
have to be taken into account when designing such appli-
cations [15]. Indeed, the conversational component of the
application is usually the front-end of a larger system that
involves data storage and service execution as part of the
chatbot reaction to the user intent. Thus, we define a chatbot
as an application embedding a recognition engine to extract
intentions from user inputs, and an execution component
performing complex event processing represented as a set of
actions.
Intentions are named entities that can be matched by the

recognition engine. They are defined through a set of training
sentences, which are input examples used by the recogni-
tion engine’s ML/NLP framework to derive a number of
potential ways the user could use to express the intention.5

5In this article we focus on ML/NLP-based chatbots, but the approach
could be extended to alternative recognition techniques

VOLUME 8, 2020 15333



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

Matched intentions usually carry contextual information
computed by additional extraction rules (e.g. a typed attribute
such as a city name, a date, etc) available to the underlying
application. In our approach, Actions are used to represent
simple responses such as sending a message back to the user,
as well as advanced features required by complex chatbots
like database querying or external service calling. Finally,
we define a conversation path as a particular sequence of
received user intentions and associated actions (including
non-messaging actions) that can be executed by the chatbot
application.

In Xatkit, bots can also be triggered by events. They may
subscribe to external events that trigger a reaction on their side
without being prompted by a user starting a conversation with
them. Same as for intents, the chatbot designer can define the
set of actions to be executed in response to an event.

A. RUNNING EXAMPLE
We now present how Xatkit’s concepts are put into prac-
tice through a running example: our case study will be a
multi-platform chatbot aiming to optimize the collaboration
between project owners and end-users of a givenGitHub open
source project.

On the one hand, our chatbot will aim to assist newcomers
in the definition of issues on the Github platform, a reported
concern in the open source community [16]. Instead of
directly interacting with the GitHub repository, users of our
software could use the chatbot to report a new issue they
found. The chatbot helps them to specify the repository to
open the issue in and the relevant error information, and opens
the issue on their behalf. The chatbot is deployed as a Slack
app (i.e. the conversation between the user and the chatbot
takes place on the Slack messaging platform). In particular,
in this example, we will assume that the project in question is
aWordPress plugin and therefore the bot will take care of ask-
ing two crucial questions: what WordPress version the user
is on and what PHP version the host is running. These two
data points are critical for themaintainer to reliably reproduce
the issue and efficiently debug the user error, saving time for
everybody.

On the other hand, this same chatbot can also be useful to
alert the owner every time the status of the GitHub reposi-
tory changes (either because somebody has used the chatbot
as a user or because somebody directly interacted with the
repository’s issue tracker in GitHub). Instead of forcing the
owner to keep an eye on GitHub or subscribe to its complex
notification system, our bot will ping him on her platform
of choice (in this case, we assume that she wants to be
pinged on both, Slack and Discord, since it is there where
she spends most of its online time). Once alerted, she will be
able to respond back to the bot to perform some immediate
reply action like labeling or assigning the opened issue. Note
that in this second scenario it is not the user who starts the
conversation but the bot.

Although this chatbot is obviously a simplification of what
a proper chatbot for GitHub could look like (with more

FIGURE 1. The chatbot collecting user information before opening the
issue.

FIGURE 2. The bot alerting the project owner that a new issue has just
been opened.

complex information flows and richer set of alerts after
updates on the GitHub side), we believe it is representative
enough of the current chatbot landscape, where chatbots usu-
ally need to interact with various input/output platforms and
keep track of contextual information and partial responses in
order to provide richer user experiences.

In the following we show how this chatbot is defined with
the help of the Xatkit modeling language, and we detail how
the runtime component manages its concrete deployment and
execution.

III. XATKIT FRAMEWORK OVERVIEW
Our approach applies Model Driven Engineering (MDE)
principles to the chatbot building domain. As such, chatbot

15334 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

models become the primary artifacts that drive all software
(chatbot) engineering activities [17]. Existing reports have
emphasized the benefits of MDE in terms of productivity
andmaintainability compared to traditional development pro-
cesses [18], making it a suitable candidate to address chatbot
development and deployment, which, as discussed before,
goes much further than simply processing natural language
sentences.

FIGURE 3. Xatkit framework overview.

The following Figure 3 presents an overview of our MDE-
based chatbot approach and its main components. At design
time the chatbot designer specifies the chatbot under con-
struction using two domain-specific languages (DSLs) part
of Xatkit Modeling Infrastructure:

• Intent Package to describe the user intentions using
training sentences, contextual information extraction,
and matching conditions (e.g. the intention to open an
issue or the intention to select a repository, in our run-
ning example)

• Execution Package to bind user intentions to response
actions as part of the chatbot behaviour definition
(e.g. sending a welcome message to the user when he
intents to open a new issue or actually creating the issue
on the GitHub platform once the user has completed
explaining it).

The actions in the Execution part of the bot often involve
a set of orchestrated calls to services provided by the avail-
able Platforms. Platforms are defined by a Platform designer
via a separate Platform Package and, once available, are
enabled for all existing bots. Platforms are organized in a
taxonomy so the chatbot designer can choose generic actions
(e.g. a textual reply, something available in all chat-based
platforms) or more specific ones (e.g. attaching a file to
a message, only available in some specific platforms like
Slack). The resulting platform definition hides all the tech-
nical details of the communication with the platforms.

These models are complemented with a Deployment Con-
figuration file that specifies the Intent Recognition Provider
to use (e.g Google’s DialogFlow [13] or IBM Watson
Assistant [14]), platform specific configuration parameters
(e.g. OAuth credentials), as well as custom execution proper-
ties, which for instance can introduce some limited variability
in the bot behaviour. Note that in the Xatkit infrastructure, all

the intent recognition providers implement a common inter-
face that allows switching from one to another transparently
through configuration properties. Support for new providers
can be easily achieved by implementing this common
interface.

These assets constitute the input of the Xatkit Runtime
component that starts by deploying the created chatbot. This
implies registering the user intents to the selected Intent
Recognition Provider(which involves translating the intents
in the bot definition into the primitives/mechanisms available
in that specific provider), connecting to the InstantMessaging
Platforms, and starting the External Services specified in
the execution model. Then, when a user input is received,
the runtime forwards it to the Intent Recognition Provider,
gets back the recognized intent and performs the required
action associated to that intent based on the chatbot execution
model.

This infrastructure provides three main benefits:

• The Xatkit Modeling Language packages decouple the
different dimensions of a chatbot definition, facilitating
the reuse of each dimension across several chatbots.

• Each sublanguage is totally independent of the concrete
deployment and intent recognition platforms, easing the
maintenance and evolution of the chatbot.

• The Runtime architecture can be easily extended to sup-
port new platform connections and computable actions.
This aspect, coupled with the high modularity of the
language, fosters new contributions and extensions of
the framework.

Next sections cover each of these components and lan-
guages in more detail.

IV. XATKIT MODELING LANGUAGE
In the following we introduce the Xatkit Modeling Language,
composed by a set of interrelated chatbot Domain Specific
Languages (DSL) that provides primitives to design the user
intentions, execution logic, and deployment platforms of the
chatbot under construction (this latter one will be described
in Section VI).

The Xatkit language is defined through two main com-
ponents [19]: (i) an abstract syntax (metamodel) defining
the language concepts and their relationships (generalizing
the primitives provided by the major intent recognition plat-
forms [13], [14], [20]), and (ii) a concrete syntax in the form
of a textual notation to write chatbot descriptions conforming
to the abstract syntax.6 In the following we use the abstract
syntax to describe the DSL packages and primitives, and the
textual to show, via examples based on our running case study,
how those concepts can be used to create bots. A modeling
IDE for the language is also introduced in our tool support.

6A graphical notation sharing the same metamodel is left as further work.
Curiously enough, business users are far more interested in having automatic
importers that could generate the bot definition itself from internal docu-
ments than on having a graphical drag&drop interface. As such, importers
have now higher priority

VOLUME 8, 2020 15335



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

To decouple the definition of the user intentions the chatbot
should recognize from the actions the chatbot should execute
in response to those intents, our language is split up into
two different sublanguages: the Intent and the Execution
packages.

A. INTENT PACKAGE
Figure 4 presents the metamodel of the Intent Package, that
defines a top-level IntentLibrary class containing a collection
of IntentDefinitions. An IntentDefinition is a named entity
representing a user intention. It contains a set of Training
Sentences, which are input examples used to detect the user
intention underlying a textual message. Training Sentences
are split into TrainingSentenceParts representing input text
fragments — typically words — to match.

FIGURE 4. Intent package metamodel.

Each IntentDefinition defines a set of outContexts, that
are named containers used to persist information along the
conversation and customize intent recognition. A Context
embeds a set of ContextParameters which define a mapping
from TrainingSentenceParts to specific EntityDefinitions,
specifying which parts of the TrainingSentences contain
information to extract and store. In the current version of
Xatkit EntityDefinitions can be either BaseEntityDefinitions,
i.e. generic entities that are provided for all the intent recog-
nition platforms such as city or date, or MappingEntityDefi-
nitions that represent user-designed entities represented by a
value and a list of synonyms. Note that a Context also defines
a lifespan representing the number of user inputs that can be
processed before deleting it from the conversation, allowing
to specify information to retain and discard, and customize
the conversation based on user inputs.
IntentDefinitions can also reference inContexts that are

used to specify matching conditions. An IntentDefinition
can only be matched if its referenced inContexts have been
previously set, i.e. if another IntentDefinition defining them
as its outContexts has been matched, and if these Contexts are
active with respect to their lifespans. Finally, the follow asso-
ciation defines IntentDefinition matching precedence, and
can be coupled with inContext conditions to finely describe
complex conversation paths.

LISTING 1. Example intents for the github case study.

Listing 1 shows a (partial) instance of the Intent Package
from the running example introduced in Section II-A. The
model defines the IntentLibrary Example, that contains
four IntentDefinitions and a MappingEntityDefinition. The
three first IntentDefinitions (OpenBug, DescribeBug,
and TellWPVersion) correspond to user-related intents
(i.e. the users of ourWordPress plugin who want to report and
issue). The last IntentDefinition SetLabel and the asso-
ciated MappingEntityDefinition LabelValue correspond
to an issue management intents typically triggered by the
plugin’s maintainer.
OpenBug is a simple IntentDefinition that does not follow

any other intent nor require inContext value, and thus will be

15336 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

the first intent matched in the conversation. It contains several
training sentences specifying alternative inputs used to initi-
ate the conversation. The DescribeBug intent follows the
OpenBug one, and defines one outContext issue, with a
default lifespan of 5,7 and a single parameter title. Finally
TellWPVersion asks for the WordPress version the user
has installed. Note that theContextParameters of these Intent-
Definitions use BaseEntityDefinition for their value extrac-
tion —respectively any and number—, the latter explicitly
looking for a number as a parameter to store in the context.

The LabelValue MappingEntityDefinition represents
the issue labels understood by the bot. For our example we
defined three issue labels: bug, enhancement, and wontfix
as well as their synonyms. This entity is used to extract the
issueLabel parameter value from the SetLabel IntentDefi-
nition’s training sentences.8 This intent is for project owners
triaging open issues after the bot alerts them of the creation
of a new issue.

FIGURE 5. Execution package metamodel.

B. EXECUTION PACKAGE
The Execution Package (Figure 5) is an event-based language
that represents the chatbot execution logic.

An ExecutionModel imports Platforms and IntentLi-
braries, and specifies the ProviderDefinitions used to receive
user inputs and events. The ExecutionRule class is the corner-
stone of the language, which defines the mapping between
received IntentDefinitions/EventDefinitions and Actions to
compute.

The Action class represents the reification of a Platform
ActionDefinition with concrete ParameterValues bound to its
Parameter definitions. These Actions are part of the def-
inition of the Platform, as discussed in the next section.
The value of a ParameterValue is represented as an Expres-
sion instance. Xatkit Execution language currently supports

7the lifespan indicates how many failed intents can happen before the
information collected so far is forgotten and the conversation needs to restart

8Adding such enumeration constraints and synonyms are a good practice
in existing ML-powered NLP tools that may not manage efficiently free text

Literals, Unary and Binary Operations, as well as Vari-
ableAccesses that are read-only operations used to access
ContextParameters.9

An Action can also define an optional returnVariable
that represents the result of its computation, and can be
accessed from other Actions through VariableAccess Expres-
sions, allowing to propagate information between computed
actions. Finally, an Action can also contain onErrorActions,
which are specific Actions that are executed when the base
one errored.

Listing 2 shows the Execution model from our running
example. It imports the Example IntentLibrary and the
Slack and Github Platforms.

LISTING 2. Chatbot execution language example.

The defined ExecutionModel specifies two ProviderDefi-
nitions that will receive user inputs from the Slack Platform
and from GitHub generated events so that the bot is useful to
both users attempting to report a bug and project owners that
want to get an automatic notification once the bug is actually
opened.

Let’s focus first on the sub bot facing the user (Listing 2).
Once the OpenBug IntentDefinition is matched, the bot
replies asking the user to provide more information. Note
that, this bot directly uses the Slack platform but we could
redefine it in a more generic way by using the abstract Chat
Platform if the chatbot designer would like to redeploy the
bot as a web chat window, for instance.Wewould write a very
similar behaviour for the other intents that collect information
about the bug until we have everything we need and are
ready to open the issue reporting the bug in GitHub. This is
simply done by calling the OpenIssue method provided by
the GithubPlatform using as parameters the data stored so far
in the bug context.

9Note that future releases of Xatkit will integrate Xtext’s Xbase language
as its default expression language

VOLUME 8, 2020 15337



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

As we have discussed above, the bot can also react to
events. As shown in Listing 3, when the event Issue_Opened
(one of the events generated by the GitHub platform) arrives,
we can get all the details of the new issue and immediately
alert the project owner in Slack and Discord. Note that the
execution language does not limit the number of platforms to
use in an interaction.

LISTING 3. Chatbot execution language example.

V. XATKIT RUNTIME
The Xatkit Runtime component is an event-based execu-
tion engine that deploys and manages the execution of the
chatbot. Its inputs are the chatbot model (written with the
Xatkit Modeling Language) and a configuration file hold-
ing deployment information and platform credentials. In the
following we detail the structure of this configuration file,
then we present the architecture of the Xatkit Runtime
component. Finally, we introduce a dynamic view of the
framework showing how input messages are handled by its
internal components.

LISTING 4. Chatbot deployment configuration example.

A. XATKIT DEPLOYMENT CONFIGURATION
The Xatkit deployment configuration file provides runtime-
level information to setup and bind the platforms with whom
the chatbot needs to interact either to get user input or to
call as part of an action response. Listing 4 shows a possi-
ble configuration for the example used through this article.
The first part (lines 1-4) specifies DialogFlow as the
concrete IntentRecognitionProvider service used to match
received messages against IntentDefinitions, and provides the
necessary credentials. The second part of the configuration
(lines 5-6) binds the concrete Slack platform (using its
path attribute) to the abstract Chat used in the Execution
model (Listing 2). This runtime-level binding hides platform-
specific details from the Execution model, that can be reused

and deployed over multiple platforms. The last part of the
configuration (lines 7-10) specifies platform credentials.

B. ARCHITECTURE
Figure 6 shows an overview of the Xatkit Runtime internal
structure, including illustrative instances from the running
example (light-grey). The XatkitCore class is the cornerstone
of the framework, which is initialized with the Configu-
ration and ExecutionModel previously defined. This initial
step starts the InputProviders that receive the user messages,
as well as the EventProviders used to extract EventInstances
from received third-party events (e.g. the Issue_Opened event
in our running example), and setups the concrete Inten-
tRecognitionProvider (in our case DialogFlow) employed
to extract RecognizedIntents, which represent concrete
instances of the specified IntentDefinitions.

FIGURE 6. Xatkit runtime engine architecture overview.

The input ExecutionModel is then processed and its
content stored in a set of Registries managing Intent-
Definitions, EventDefinitions, Actions, and Platforms. The
PlatformRegistry contains PlatformInstances, which corre-
spond to concrete Platform implementations (e.g. the Slack
platform from the running example) initialized with the Con-
figuration file. PlatformInstances build ActionInstances, that
contain the execution code associated to the ActionDefini-
tions defined in the Intent language, and are initialized with
Actions from the Executionmodel. These ActionInstances are
finally sent to theActionRunner that manages their execution.

The XatkitCore also manages a set of Sessions, used to
store Context information and ActionInstance return vari-
ables. Each Session defines a unique identifier associated to a
user, allowing to separate Context information from one user
input to another.

Figure 7 shows how these elements collaborate together
by illustrating the sequence of operations that are executed
when the framework receives a user message. To simplify
the presentation, this sequence diagram assumes that all
the internal structures have been initialized and that the

15338 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

FIGURE 7. Runtime engine sequence diagram.

different registries have been populated from the provided
ExecutionModel.
User inputs are received by the framework through the

InputProvider’s newInput method (1), that defines a sin-
gle parameter i containing the raw text sent by the user.
This input is forwarded to the XatkitCore instance (2), that
calls its IntentRecognitionProvider’s extract method (3). The
input is then matched against the specified IntentDefinitions,
and the resulting RecognizedIntent (4) is returned to the
XatkitCore (5).

The XatkitCore instance then performs a lookup in its
ActionRegistry (6) and retrieves the list of Actions associated
to the RecognizedIntent (7). The XatkitCore then iterates
through the returned Actions, and retrieves from its Plat-
formRegistry (8) their associated PlatformInstance (9). The
user’s Session is then retrieved from the XatkitCore’s sessions
list (10). Note that this process relies on both the user input
and the Action to compute, and ensures that a client Session
remains consistent across action executions. Finally, theXatk-
itCore component calls the build method of the PlatformIn-
stance (11), that constructs a new ActionInstance from the
provided Session and Action signature (12) and returns it to
the core component (13). Finally, the XatkitCore component
relies on the execute method of its ActionRunner to compute
the created ActionInstance (14) and stores its result (15),
in the user’s Session (16).
Note that due to the lake of space the presented diagram

does not include the fallback logic that is triggered when the
computation of an ActionInstance returns an error. Additional
information on fallback and on error clauses can be found in
the project repository.

VI. PLATFORM PACKAGE
Xatkit comes with a set of platforms packaged as part of the
release.10 Figure 8 shows a taxonomy of the 13 platforms

10Updated list of platforms available in the project wiki https://github.
com/xatkit-bot-platform/xatkit-releases/wiki

FIGURE 8. Taxonomy of the released platforms.

available so far including their inheritance links. Abstract
classes (e.g. the text ChatPlatform) can be used in place of
the concrete ones when the bot does not require any specific
method only available in the concrete platform, thus facilitat-
ing the reusability of the bot.

Nevertheless, it is often the case that a chatbot designer
requires a new platform (e.g. to talk with the internal ser-
vices in the company). If so, a platform designer (remember
Figure 3)will take care of defining and implementing the plat-
form. This platform designer could be the same person that is
designing the chatbot or somebody else hired to perform this
specific task. One way or the other, once a platform is created,
it can be reused by any past, present or future chatbot.

A. PLATFORM DEFINITION
To this purpose, Xatkit includes a DSL to define the capa-
bilities of a given platform, both in terms of the actions that
can be executed on the platform and the events the platform
can emit, depending on theProviderDefinitions offered by the
platform. These are the capabilities that are explicitly used in
the execution model to interact with the platform.

FIGURE 9. Platform package metamodel.

The Platform Package (Figure 9) defines the modeling
primitives to define platforms. A Platform is defined by
a name, and provides a path attribute that is used by the
Xatkit Runtime component to bind the model to its concrete
implementation. A Platform holds a set of ActionDefinitions,
which are signatures of its supported operations. ActionDef-
initions are identified by a name and define a set of required
Parameters. A Platform can be abstract, meaning that it does
not provide an implementation for its ActionDefinitions but it

VOLUME 8, 2020 15339



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

represents, instead, a family of similar platforms. This feature
allows to define chatbots in a more generic way.

As an example, the Chat Platform in Listing 6 is
an abstract platform that defines three ActionDefinitions:
PostMessage, PostFile, and Reply. The first two
ActionDefinitions require two parameters (the message/-
file and the channel to post it), and the third one defines
a single parameter with the content of the reply. The
Github Platform (Listing 7) defines a single ActionDef-
inition OpenIssue with the parameters repository,
title, and content. Note that these are the actions that
we have used to implement the bot described in the previous
sections.

LISTING 6. Chat platform example.

LISTING 7. Github platform example (only showing the actions and
events used in the running example).

A Platform can extend another one, and inherit its Action-
Definitions. This mechanism is used to define specific
implementations of abstract Platforms. As an example, the
concrete Slack and Discord Platforms extend the Chat
one and implement its ActionDefinitions for the Slack and
Discord messaging applications, respectively.

Finally, ProviderDefinitions are named entities represent-
ing either message processing capabilities that can be used
as inputs for the chatbot under design (InputProviderDefini-
tion), or dedicated event receiver that will trigger execution
rules when specific events are received (EventProviderDef-
inition).As an example, Listing 7 shows the definition of
the GithubEventProvider, that describes an EventDefinition
that is generated when a new issue is created on the GitHub
repository. Note that similarly to IntentDefinitions, EventDef-
initions contains Context defining the information extracted
from the received event.

B. PLATFORM IMPLEMENTATION
Xatkit platforms are implemented as standalone Java projects
implementing the Xatkit Platform Interface. This interface is
used internally by the Xatkit Runtime component to dynam-
ically load platforms, create action instances, and run them
when an execution rule is matched.

A Xatkit platform consist of a main class holding platform-
specific data accessible to all the actions (e.g. OAuth token
for our GitHub platform), and a collection of classes repre-
senting the Action that can be called on the platform (e.g. the
GitHub platform contains an OpenIssue class that contains
the code to actually open an issue on GitHub). In addition,
optional classes can be defined to add ProviderDefinitions to
the platform, and containing the code responsible of pars-
ing received inputs/events into Xatkit IntentDefinition and
EventDefinition instances.
To implement these classes, platform developers can rely

on the generic architecture of the framework as well as a set of
utility classes provided by Xatkit to perform REST requests,
parse events (typically JSON payloads), and integrate their
code in Xatkit’s internal life-cycle with minimum efforts.

C. VOICE SUPPORT
Among all the predefined platforms, voice platforms are of
special interest and deserve additional explanation.

Right now, Xatkit supports Alexa11 while Google
Assistant12 is currently under development.
In both cases, the implementation strategy has been the

same: rely on the speech-to-text functionality of platform
to translate any voice input into plain text. As an example,
we defined a generic Alexa skill accepting any kind of voice
command and delegating the processing of the extracted text
to a preset Xatkit server. The whole process is wrapped in a
regular InputProvider, that can be imported the same way as
standard messaging platform such as Slack.

With this approach, defining a voicebot does not require
additional voice-specific techniques (nor more technical
knowledge) than defining standard chatbots with Xatkit. As a
side benefit, our approach makes Xatkit bots multimodal,
since translating an existing chatbot to a voicebot can be done
easily by switching from one InputProvider to another.

VII. TOOL SUPPORT
The Xatkit framework is open source and released under the
Eclipse Public License v2.13 The source code of the project
and the Eclipse update site are available on the Xatkit GitHub
organization.14

As part of this organization, we provide the differ-
ent releases of the framework, the runtime component
and the repositories for the several platform components
and connectors. There is also a wiki (linked from the

11https://developer.amazon.com/en-US/alexa/alexa-voice-service
12https://assistant.google.com/
13https://www.eclipse.org/legal/epl-2.0/
14https://github.com/xatkit-bot-platform

15340 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

FIGURE 10. The xatkit editor.

GitHub organization) and an external website15 that provide
additional documentation, installation instructions and news
around the project.

To facilitate the specification of the chatbots we provide
and Eclipse editor that supports auto-completion, syntactic
and semantic validation, and can be installed from the Xatkit
Eclipse update site. The concrete syntaxes of the Xatkit mod-
eling languages are implemented with Xtext [21], an EBNF-
based language used to specify grammars and generate the
associated toolkit containing a meta-model of the language,
a parser, and textual editors.

The execution of the chatbots mainly relies on the Xatkit
Runtime engine. At its core, the engine is a Java library that
implements all the execution logic available in the chatbot
languages. In addition, Xatkit provides a full implementa-
tion of the IntentRecognitionProvider interface for Google’s
DialogFlow engine [13], as well as the concrete PlatformIn-
stance implementations for the Slack, Discord, and Github
platforms used in the running example (and a few others as
mentioned in the previous section). The runtime component
can be downloaded and deployed on a server as a stan-
dalone application, or integrated in an existing application
using a dedicatedMaven dependency. Additional integrations
(in particular with nlp.js16 to enable a local NL analysis)
are underway. Note that all these new integrations become
immediately available to all existing bots due to the clean and
modular architecture of Xatkit.

Xatkit also embeds amonitoring component that stores and
computes metrics to evaluate the quality of the underlying
IntentRecognitionProvider. These metrics can be accessed
using a dedicated REST API provided by the Xatkit server,17

and describe:

• The average number of intents matched per user session
• The average number inputs that have not been matched
per user session

15https://xatkit.com/
16https://github.com/axa-group/nlp.js
17Presenting this data in a more user-friendly way (e.g. via a dedicated

dashboard) is left for future work.

• The distribution of matched intents (to help design-
ers understand which conversation flows are the most
followed)

• The list of unmatched inputs to help designers integrate
them in their existing intents when relevant

• The average recognition confidence level per user ses-
sion, as well as per intent, in order to ease the detection
of intents that should be improved

• The average user session time
Note that for now the computed metrics focus on the

quality of the intent recognition, but we are currently working
on it to cover other aspects of running Xatkit bots such as
performance measurements, or user engagement.

Overall, the Xatkit organization in GitHub is composed of:
• 27 code repositories
• 1154 commits
• 13 supported platforms
We would like to highlight that Xatkit has already four

external contributors that are developing additional plat-
forms for the organization. To attract even more contributors,
we have created a specific Xatkit Development Toolkit that
facilitates the experimentation with the platform code.

VIII. VALIDATION
Xatkis is used internally by several colleagues that have
adopted some of the examples18 we have created. Several
pilot projects are under evaluation at the moment to apply
Xatkit in Student Support, eHealth and Public Administration
scenarios. All these preliminary use cases have provided
useful feedback that has been key to improve Xatkit.

Moreover, as part of our teaching initiative that aims to
bring Xatkit to the classroom19 as a tool to teach students
concepts like DSLs, NLP, bots,... we are also starting joint
teaching initiatives with several institutions.

Precisely, in this section, we would like to focus on the
first completed experience that allowed us to conduct an
initial validation of the usefulness and benefits of Xatkit with
the students of a master seminar on model-driven engineer-
ing taught at the university ‘‘Universidad de la República’’
(Uruguay). Using students as participants remains a valid
simplification of reality needed in laboratory contexts [22].

A. EMPIRICAL SETTING
The seminar lasted three days and was taught by Robert Clar-
isó (a member of our research group, but not a co-author of
Xatkit). The first two days focused on teaching core modeling
principles while the last one included a remote presentation
by Gwendal Daniel introducing Xatkit as an example of the
use of model-based solution to build advanced software sys-
tems. After the three teaching days, the students were asked to
spend a minimum of 30 additional hours of work developing
a model-based solution around Xatkit. This could either be:

18https://xatkit.com/chatbot-examples/
19https://modeling-languages.com/building-chatbots-use-case-modeling-

course/

VOLUME 8, 2020 15341



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

• A bot reusing existing Xatkit platforms
• An implementation of a new platform that extended
Xatkit to a new domain

The first assignment was considered feasible for everybody
while the second one was targeting students that could have
a special interest in the chatbots domain and wanted to go
deeper in their exploration of Xatkit.

The seminar was taken by 22 students, out of which
20 went for the first option and two chose the second
one. Bots developed on top of existing Xatkit platforms
included extensions of our GitHub bot with more complex
conversation paths gathering additional information from the
user, use of additional events (e.g. comments on issues and
pull requests) to create advanced bots, and integration of
additional actions to automatically close issues or reply to
comments. The students who chose to implement a new plat-
form developed an initial Twitter support for Xatkit allowing
to retrieve trending tweets, check the user’s direct message
inbox, and post new tweets on behalf of the user.20 At the end
of the term, all solutions were collected and marked together
with the local responsible of the course (Dr. Daniel Caligari).

Additionally, all students were asked to complete an online
survey explaining their perception of Xatkit. The survey
asked a few questions about their past experience with chat-
bots (only one had ever created a chatbot in the past even if
75% of them were already working as software developers,
at least part-time ) and then they were asked to evaluate Xatkit
from several perspectives. Finally, they were provided with
open text areas to explain what they liked the most and the
least about Xatkit, what was missing, and any other general
comment theywanted to discuss. The surveywas optional and
anonymous. Out of the 22 students enrolled in the seminar,
17 students completed it. Next section discusses some of the
survey results.

B. SURVEY RESULTS
The following figures show that Xatkit was evaluated very
positively in a number of categories, ranging from the overall
experience with Xatkit (Figure 11), the usability of Xatkit’s
modeling language (Figure 12), the power of the platform
abstraction mechanism (Figure 13), the benefits of defin-
ing chatbots at a higher-abstraction level (Figure 14), how
this helps to the portability between messaging platforms
(Figure 15) and the quality of the Xatkit IDE (Figure 16).

Regarding the improvement suggestions, most were
around adding new platforms to Xatkit, especially input plat-
forms such as Facebook and WhatsApp that would have
allowed them to build chatbots for those platforms as part
of their assignment. Two students also asked for support for
other Intent Recognition Providers beyond DialogFlow. Also,
more entry-level tutorials were requested.

Among the most appreciated elements of Xatkit, the DSLs
themselves, the separation of concerns (between intent,

20Their collaboration with us continued after the seminar and their initial
proposal has become the official Twitter platform in Xatkit

FIGURE 11. Overall experience with xatkit.

FIGURE 12. Is the xatkit language easy to use?.

FIGURE 13. Does the platform definition DSL facilitate the definition of
bots targeting that platform?.

execution and platform models) and the easy integration with
external platforms were the most commented. Overall, they
also said they saw a lot of potential in the platform and
appreciated the fact that it was open-source.

IX. RELATED WORK
Our chatbot modeling approach reuses concepts from agent-
oriented software engineering [23] and event-based system
modeling [24] and adapts them to the chatbot/conversational
domain. As far as we know, Xatkit is the first attempt to
provide a fully modular and extensible platform-independent
chatbot modeling language.

15342 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

FIGURE 14. Does the separation between the chatbot specification and
its implementation ease the development?.

FIGURE 15. Is it easy to translate a chatbot from one messaging platform
to another?.

FIGURE 16. Rate the usefulness of the editor features (code completion,
syntax highlighting,...)?.

In what follows we aim to compare in more detail Xatkit
with the plethora of other chatbot development platforms.
Note that most of the links are to software platforms and not
to research works. Even if a few of the platforms derive from
sound research results, most are recent initiatives showing
that the chatbot market is still in its infancy21 and needs
consolidation and maturity.

A. NATURAL LANGUAGE UNDERSTANDING TOOLKITS
Some tools focus on the parsing/matching of user utterances
(i.e. given the user text, understanding the intention the user
is trying to express).

21Indeed, the first chatbot [25] was created more than 40 years ago but its
real emergence is happening right now

Neural networks are typically used to attempt to clas-
sify the user utterance in one of the predefined intents in
the chatbot definition. The neural network is trained with
the example sentences provided together with the intents
definition, often augmented with the use of synonyms and
stemming procedures. Stemming reduces the derivations of a
word to its root to improve the accuracy of the classification
process. Well-known examples of these tools (many times
provided as part of a cloud service) are Dialog Flow22, IBM
Watson,23 Amazon Lex,24 Microsoft LUIS 25 or nlp.js.26

Others, like Stanford Core NLP27 use a more traditional
parsing approach.

A few of the above tools do offer a user interface to
completely define a chatbot within the platform but with
limited capabilities. In short, any complex chatbot response
(beyond purely giving a text-based answer) requires manual
coding and API management, making them unfit for non-
professional developers. This is exactly one of the core design
principles behind Xatkit.

As such, these tools are not competitors to Xatkit. On the
contrary, Xatkit relies on them for the NL part of Xatkit’s
runtime engine. Still, to avoid vendor lock-in, Xatkit imposes
a common interface that facilitates switching from one NLU
provider to another (e.g. a company may want to change
due to cost issues or due to a better support for non-English
languages).

B. CHATBOT DEVELOPMENT PLATFORMS
There are dozens of chatbot platforms. We first start by fil-
tering out popular companies like HelloMyBot,28 Inbenta,29

BotCore,30 1MilionBot31 or Imperson32 that offer bot con-
sulting services but not a public tool to build the bot
yourself.

Other proposals are more of building blocks for more
advanced development platforms. E.g bot frameworks like
Microsoft Bot Framework,33 BotKit34 or Hubot35 provide
a set of programming libraries/scripts to facilitate the cod-
ing and deployment of chatbot applications. They usually
help you to integrate intent recognition engines and some
messaging platforms (a specific solution for this would be
Smooch36 as well, even if this is not really their focus, but

22https://dialogflow.com/
23https://www.ibm.com/watson/services/natural-language-

understanding/
24https://aws.amazon.com/lex/
25https://www.luis.ai/
26https://github.com/axa-group/nlp.js
27https://stanfordnlp.github.io/CoreNLP/
28https://hellomybot.io/
29https://www.inbenta.com/en/
30https://botcore.ai/
31https://1millionbot.com/en/
32https://imperson.com/
33https://dev.botframework.com/
34https://botkit.ai/
35https://hubot.github.com/
36https://smooch.io/

VOLUME 8, 2020 15343



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

they require manual work to complete the process and to
perform more advanced connections with external services.
Also, they hardly ever provide any specific domain-specific
language and mostly rely on JavaScript or some other pro-
gramming language for the bot development.

More similar to Xatkit, we have full-fledged chatbot
development platforms that users can execute on their own.
They all provide a textual/graphical interface that allows to
specify the user intentions, the conversation path, and the
contextual information to be maintained through the con-
versation, and offer excellent natural language processing
capabilities. For the latter, many of them rely on the NLU
engines from the previous section (as Xatkit does) while
others have their own proprietary engine. We believe this
latter option has some important drawbacks (e.g. duplication
of coding efforts) but it offers a larger control on the engine
itself.

Relevant examples of this family of tools are Octane.ai37

FlowXO,38 Oracle Digital Assistant,39 Botsify,40 Many-
Chat,41 Engati,42 Chatfuel,43 PandoraBots,44 Rasa45 or
Hubtype.46

To begin with, most of these tools are closed source.47

Moreover, while each of them supports a different number
of input messaging platforms, they do not typically offer
any extension capabilities. Therefore, they are only a good
fit as long as your needs are in the scope of the platforms
supported by the tool, hampering the evolution of your bot
if the requirements change later on. This is especially worri-
some regarding the plugging of external services. Most tools
just offer an API to query the results of the intent recogni-
tion status and ask you to program yourself the integration
with the third-party service. Instead, in Xatkit, the Platform
DSL, its modular architecture and the possibility of work-
ing with abstract platforms are aimed to solve this issue.
Finally, the possibility of creating chatbots that combine
proactive and reactive behaviour (i.e. that can be activated
by the user starting a conversation or by an external event
relevant for the bot) is practically nonexistent in the above
platforms.

All in all, Xatkit proposes a higher-abstraction solution to
the chatbot domain that combines the benefit of platform-
independent chatbot definition, including non-trivial chatbot
actions and side effects, together with an easy deployment.

37https://octaneai.com/
38https://flowxo.com/
39https://www.oracle.com/application-development/cloud-

services/digital-assistant/
40https://botsify.com/
41https://manychat.com/
42https://www.engati.com/
43https://chatfuel.com/
44https://home.pandorabots.com/home.html
45https://rasa.com/
46https://www.hubtype.com/
47We cannot report here all the tools we have analyzed but out of the over

40 tools we explored, only 8 had an open source version

Moreover, the extensibility of our modular design facilitates
the integration of any external API/services as input/output
source of the chatbot. These integrations can be shared and
reused in future projects, which is when the benefits of mod-
eling and abstraction are maximized [26]

C. CHATBOT COMPONENTS IN LOW-CODE SOLUTIONS
Given the model-based and low-code approach followed in
Xatkit, we could also combine Xatkit with other low-code
solutions (like Mendix,48 OutSystems49 or Genexus50) in
order to generate complete software systems that need to
integrate a chatbot as part of its user interface. Right now,
low-code platforms are just starting to study the integration
of chatbot components and could benefit from adopting a
specific solution such as Xatkit.

And this intersection between bots and modeling can
bring other additional advantages [27], like the use of chat-
bots to build the models themselves. This has explored in
[28] and [29] and we are now collaborating with both teams
to use Xatkit as core chatbot engine for their modeling
efforts.

X. CONCLUSION
In this paper we introduced Xatkit, a multi-channel andmulti-
platform chatbot modeling framework. Xatkit proposes a
set of domain-specific languages to decouple the chatbot
definition from the technical details of the platform-specific
aspects where the bot is going to be deployed. This increases
the reusability of the chatbot and facilitates its redeployment
when the needs of the company change, including the pos-
sibility of evolving the NLU engine used during the text
analysis phase.

Moreover, the runtime component can be easily extended
to support additional platform-specific actions and events
beyond those already shipped with the current version of
Xatkit. For instance, some platforms like Alexa or Trello
have been recently added by external contributors to the core
Xatkit team.

Xatkit is ready to be used in real-case scenarios. But it has
still plenty of room for improvements. At the language level
we plan to improve the variability of the bot specification,
moving towards a product-line approach that enables com-
panies to create and quickly update several versions of the
same bot (e.g. to create localized versions of the bot for each
branch of the company). At the framework level, we plan to
work on the integration of chatbot generators, able to create
partial bot specifications from existing data sources within
the company (e.g. FAQs or user guides). We also plan to
study the combination of sentiment analysis and behavioural
design patterns [30] to create more likeable and effective
chatbots [31]. Finally, security and access-control is another

48https://www.mendix.com/
49https://www.outsystems.com/
50https://www.genexus.com/en/

15344 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

important aspect of any chatbot design as we may want to
allow users to query (or not) certain aspects of our data
depending on their profile.

ACKNOWLEDGMENT
The authors would like to thank L. Baruffini, H. Ed-douibi,
N. Erlichman, and F. Fernàndez Cecchetto for extending
Xatkit with support for additional platforms and to Robert
Clarisó and Daniel Caligari for his help during the empirical
evaluation.

REFERENCES
[1] B. Nardi, S. Whittaker, and E. Bradner, ‘‘Interaction and outerac-

tion: Instant messaging in action,’’ in Proc. 3rd CSCW Conf., 2000,
pp. 79–88.

[2] R. Grinter and L. Palen, ‘‘Instant messaging in teen life,’’ in Proc. 5th
CSCW Conf., 2002, pp. 21–30.

[3] L. C. Klopfenstein, S. Delpriori, S. Malatini, and A. Bogliolo, ‘‘The
rise of bots: A survey of conversational interfaces, patterns, and
paradigms,’’ in Proc. Conf. Designing Interact. Syst. (DIS), 2017,
pp. 555–565.

[4] A. Xu, Z. Liu, Y. Guo, V. Sinha, and R. Akkiraju, ‘‘A new chatbot for
customer service on social media,’’ in Proc. CHI Conf. Human Factors
Comput. Syst. (CHI), 2017, pp. 3506–3510.

[5] A. Kerly, P. Hall, and S. Bull, ‘‘Bringing chatbots into education: Towards
natural language negotiation of open learner models,’’ Knowl.-Based Syst.,
vol. 20, no. 2, pp. 177–185, Mar. 2007.

[6] N. T. Thomas, ‘‘An e-business chatbot using AIML and LSA,’’ in Proc.
Int. Conf. Adv. Computing, Commun. Informat. (ICACCI), Sep. 2016,
pp. 2740–2742.

[7] V. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman,
L. Zhu, E. Ferrara, A. Flammini, and F. Menczer, ‘‘The DARPA Twitter
bot challenge,’’ Computer, vol. 49, no. 6, pp. 38–46, Jun. 2016.

[8] G. Inc, The Road to Enterprise AI. Pune,Maharashtra: RAGEFrameworks,
2017.

[9] P. Jackson and I. Moulinier, Natural Language Processing for Online
Applications: Text Retrieval, Extraction and Categorization, vol. 5.
Amsterdam, The Netherlands: John Benjamins, 2007,

[10] M. Brambilla, M. Dosmi, and P. Fraternali, ‘‘Model-driven engineering of
service orchestrations,’’ in Proc. IEEE Congr. Services, Los Angeles, CA,
USA, Jul. 2009, pp. 562–569, doi: 10.1109/SERVICES-I.2009.94.

[11] G. Daniel, J. Cabot, L. Deruelle, and M. Derras, ‘‘Multi-platform chat-
bot modeling and deployment with the jarvis framework,’’ in Advanced
Information Systems Engineering (Lecture Notes in Computer Science),
vol. 11483, P. Giorgini and B. Weber, Eds. Rome, Italy: Springer,
Jun. 2019, pp. 177–193, doi: 10.1007/978-3-030-21290-2_12.

[12] J. Masche and N.-T. Le, ‘‘A review of technologies for conversational
systems,’’ in Proc. 5th ICCSAMA Conf. Springer, 2017, pp. 212–225.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-
61911-8_19

[13] (2018). DialogFlow Website.[Online]. Available: https://dialogflow.com/
[14] (2018). Watson Assistant Website. [Online]. Available: https://www.ibm.

com/watson/ai-assistant/
[15] J. Pereira and O. Díaz, ‘‘Chatbot dimensions that matter: Lessons from

the trenches,’’ in Proc. 18th ICWE Conf. Springer, 2018, pp. 129–135.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-
91662-0_9

[16] D. Kavaler, S. Sirovica, V. Hellendoorn, R. Aranovich, and V. Filkov,
‘‘Perceived language complexity in GitHub issue discussions and their
effect on issue resolution,’’ in Proc. 32nd IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), Oct. 2017, pp. 72–83.

[17] M. Brambilla, J. Cabot, and M. Wimmer, ‘‘Model-driven software engi-
neering in practice,’’ Synth. Lectures Softw. Eng., vol. 1, no. 1, pp. 1–182,
Sep. 2012.

[18] J. Hutchinson, J. Whittle, andM. Rouncefield, ‘‘Model-driven engineering
practices in industry: Social, organizational and managerial factors that
lead to success or failure,’’ Sci. Comput. Program., vol. 89, pp. 144–161,
Sep. 2014.

[19] A. Kleppe, Software Language Engineering: Creating Domain-Specific
Language Using Metamodels. London, U.K.: Pearson, 2008.

[20] Amazon. (2018). Amazon Lex Website. [Online]. Available: https://aws
.amazon.com/lex/

[21] L. Bettini, Implementing Domain-Specific Language with Xtext Xtend.
Birmingham, U.K.: Packt, 2013.

[22] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,
and M. Oivo, ‘‘Empirical software engineering experts on the use of
students and professionals in experiments,’’ Empir Softw. Eng, vol. 23,
no. 1, pp. 452–489, Feb. 2018, doi: 10.1007/s10664-017-9523-3.

[23] N. Jennings and M. Wooldridge, ‘‘Agent-oriented software engineer-
ing,’’ Handbook Agent Technology, vol. 18. 2001. [Online]. Available:
https://link.springer.com/book/10.1007/978-3-642-54432-3

[24] S. Rozsnyai, J. Schiefer, and A. Schatten, ‘‘Concepts andmodels for typing
events for event-based systems,’’ in Proc. Inaugural Int. Conf. Distrib.
Event-Based Syst. (DEBS), 2007, pp. 62–70.

[25] J. Weizenbaum, ‘‘ELIZA – a computer program for the study of
natural language communication between man and machine,’’ Com-
mun. ACM, vol. 26, no. 1, pp. 23–28, Jan. 1983, doi: 10.1145/357980.
357991.

[26] O. Diaz and F. M. Villoria, ‘‘Generating blogs out of product catalogues:
An MDE approach,’’ J. Syst. Softw., vol. 83, no. 10, pp. 1970–1982,
Oct. 2010, doi: 10.1016/j.jss.2010.05.075.

[27] J. Cabot, R. Clarisó, M. Brambilla, and S. Gérard, ‘‘Cognifying
model-driven software engineering,’’ in Software Technologies: Appli-
cations and Foundations, Marburg, Germany, Jul. 2017, pp. 154–160,
doi: 10.1007/978-3-319-74730-9_13.

[28] S. Perez-Soler, E. Guerra, and J. De Lara, ‘‘Collaborative modeling and
group decision making using chatbots in social networks,’’ IEEE Softw.,
vol. 35, no. 6, pp. 48–54, Nov. 2018, doi: 10.1109/ms.2018.290101511.

[29] A. López, J. Sànchez-Ferreres, J. Carmona, and L. Padró, ‘‘From process
models to chatbots,’’ in Advanced Information Systems Engineering (Lec-
ture Notes in Computer Science), vol. 11483, P. Giorgini and B. Weber,
Eds. Rome, Italy: Springer, Jun. 2019, pp. 383–398, doi: 10.1007/978-3-
030-21290-2_24.

[30] B. J. Fogg, Persuasive Technology: Using Computers to Change What
We Think and Do. New York, NY, USA: Ubiquity, Dec. 2002. [Online].
Available: https://www.amazon.com/Persuasive-Technology-Computers-
Interactive-Technologies/dp/1558606432, doi: 10.1145/764008.763957.

[31] R. Ren, J. W. Castro, S. T. Acu na, and J. de Lara, ‘‘Usability of chatbots:
A systematic mapping study,’’ in Proc. 31st Int. Conf. Softw. Eng. Knowl.
Eng. (SEKE), Lisbon, Portugal, Jul. 2019, pp. 479–484, doi: 10.18293
/SEKE2019-029.

[32] O. López-Pintado, M. Dumas, L. García-Bañuelos, and I. Weber,
‘‘Dynamic role binding in blockchain-based collaborative business pro-
cesses,’’ in Advanced Information Systems Engineering (Lecture Notes in
Computer Science), vol. 11483, P. Giorgini and B. Weber, Eds. Rome,
Italy: Springer, Jun. 2019, doi: 10.1007/978-3-030-21290-2_25.

GWENDAL DANIEL received the Ph.D. degree
with the AtlanMod Team, Ecole des Mines de
Nantes, France, in 2017. He is currently a Postdoc-
toral Fellow with the SOM Research Lab, Inter-
net Interdisciplinary Institute (IN3), a Research
Center, Universitat Oberta de Catalunya (UOC).
He also funded by the MegaM@rt2 ECSEL-JU
project. His research interests include model
driven engineering, model persistence, query,
and transformation techniques, domain specific

languages, and applying model-based techniques for large-scale data
applications. He received the Best Thesis Award from the GDR-GPL and
the INFORSID Association, in 2018.

VOLUME 8, 2020 15345

http://dx.doi.org/10.1109/SERVICES-I.2009.94
http://dx.doi.org/10.1007/978-3-030-21290-2_12
http://dx.doi.org/10.1007/s10664-017-9523-3
http://dx.doi.org/10.1145/357980.357991
http://dx.doi.org/10.1145/357980.357991
http://dx.doi.org/10.1016/j.jss.2010.05.075
http://dx.doi.org/10.1007/978-3-319-74730-9_13
http://dx.doi.org/10.1109/ms.2018.290101511
http://dx.doi.org/10.1007/978-3-030-21290-2_24
http://dx.doi.org/10.1007/978-3-030-21290-2_24
http://dx.doi.org/10.1145/764008.763957
http://dx.doi.org/10.18293/SEKE2019-029
http://dx.doi.org/10.18293/SEKE2019-029
http://dx.doi.org/10.1007/978-3-030-21290-2_25


G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

JORDI CABOT (Member, IEEE) received the
B.Sc. and Ph.D. degrees in computer science from
the Technical University of Catalonia.

He was a Leader of the INRIA and LINA
Research Group, Ecole des Mines de Nantes,
France, a Postdoctoral Fellow with the Univer-
sity of Toronto, a Senior Lecturer with the Open
University of Catalonia, and a Visiting Scholar
with the Politecnico di Milano. He is currently
an ICREA Research Professor with the Internet

Interdisciplinary Institute. His research interests include software and sys-
tems modeling, formal verification, and the role AI can play in software
development (and vice versa). He has published over 150 peer-reviewed
conference and journal articles on these topics. Apart from his scientific
publications, he writes and blogs about all these topics in several sites. He is
a member of the ACM.

LAURENT DERUELLE is currently a Research
Manager with Berger-Levrault. He is also an in
charge of managing collaborative projects with
universities and research labs all the way towards
the product industrialization. He actively partici-
pates in foundamental and applied research activ-
ities in the fields of big data/big analytics, cloud
computing, distributed artificial intelligence and
mulitagent systems, UI, and the IoT.

MUSTAPHA DERRAS is currently the R&D
and Innovation Executive Director of Berger-
Levrault. He has accomplished executive experi-
ence in management of technology and solutions
realizations with more than 30 years of profes-
sional background working for major companies,
such as General Electric, Cadence Design Sys-
tems, or Berger-Levrault. With extensive capabil-
ity in leading teams of all sizes (10–500 persons)
in software development, product marketing,

research and innovation, he is also a decisive decision maker on many
occasions in fields like organization, negotiation (M&A and alliances), and
strategy. He also involving in business management, innovation funding, and
activities leading.

15346 VOLUME 8, 2020


	INTRODUCTION
	PRELIMINARIES AND RUNNING EXAMPLE
	RUNNING EXAMPLE

	XATKIT FRAMEWORK OVERVIEW
	XATKIT MODELING LANGUAGE
	INTENT PACKAGE
	EXECUTION PACKAGE

	XATKIT RUNTIME
	XATKIT DEPLOYMENT CONFIGURATION
	ARCHITECTURE

	PLATFORM PACKAGE
	PLATFORM DEFINITION
	PLATFORM IMPLEMENTATION
	VOICE SUPPORT

	TOOL SUPPORT
	VALIDATION
	EMPIRICAL SETTING
	SURVEY RESULTS

	RELATED WORK
	NATURAL LANGUAGE UNDERSTANDING TOOLKITS
	CHATBOT DEVELOPMENT PLATFORMS
	CHATBOT COMPONENTS IN LOW-CODE SOLUTIONS 

	CONCLUSION
	REFERENCES
	Biographies
	GWENDAL DANIEL
	JORDI CABOT
	LAURENT DERUELLE
	MUSTAPHA DERRAS


