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ABSTRACT Accurate electric load forecasting is critical not only in preventing wasting electricity pro-
duction but also in facilitating the reasonable integration of clean energy resources. Hybridizing the varia-
tional mode decomposition (VMD) method, the chaotic mapping mechanism, and improved meta-heuristic
algorithm with the support vector regression (SVR) model is crucial to preventing the premature problem
and providing satisfactory forecasting accuracy. To solve the boundary handling problem of the cuckoo
search (CS) algorithm in the cuckoo birds’ searching processes, this investigation proposes a simple method,
called the out-bound-back mechanism, to help those out-bounded cuckoo birds return to their previous (the
most recent iteration) optimal location. The proposed self-recurrent (SR) mechanism, inspired from the
combination of Jordan’s and Elman’s recurrent neural networks, is used to collect comprehensive and useful
information from the training and testing data. Therefore, the self-recurrent mechanism is hybridizedwith the
SVR-based model. Ultimately, this investigation presents the VMD-SR-SVRCBCS model, by hybridizing
the VMD method, the SVR model with the self-recurrent mechanism, the Tent chaotic mapping function,
the out-bound-back mechanism, and the cuckoo search algorithm. Two real-world datasets are used to
demonstrate that the proposed model has greater forecasting accuracy than other models.

INDEX TERMS Support vector regression, variational mode decomposition, self-recurrent mechanism, tent
chaotic mapping function, out-bound-back mechanism, cuckoo search algorithm.

I. INTRODUCTION
Along with the huge economic growth in China, the elec-
tricity consumption in each sector, such as industrial produc-
tion, mining exploration, economic business administrations,
educational activities, and the residential usages, has simulta-
neously increased. Therefore, providing sufficient electricity
reserves for all users will be the important functions of the
government. On the other hand, excessive electricity gener-
ation will waste the country’s non-renewable resources and
cause environmental pollution. To successfully prevent the
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production of waste, it is an essential challenge to provide
suitable electricity production planning to meet the equi-
librium from both supply and demand sides. In addition,
energy reserves reducing caused from inaccurate electric load
forecasting would lower other industries’ energy budgets,
while it is an unacceptable problem for those resource-saving
developing countries like China [1]. Therefore, more accurate
electric load forecasting is not only the critical success factor
among the highly competitive electricity markets, but also the
essential support for national energy policy [2]. However, due
to lots of exogenous variables, such as weather statuses, eco-
nomical productions, promotion activities, and special dates
(e.g., weekends, holidays and festivals) [3], the electric load
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data demonstrate fluctuation tendency, nonlinear characteris-
tics, and chaotic nature, which let the electric load forecasting
become a complicate research topic to conduct the electric
load forecasting [4], [5].

A. TRADITIONAL FORECASTING MODELS
Many improving approaches to enhance higher load fore-
casting accuracy have been widely explored in past decades.
Those load forecasting approaches have two categories: the
first one is the traditional forecasting models which are
mostly based on statistics, and the other is based on arti-
ficial intelligent technologies. The traditional models are
devoted to look for the recurrent relationships of the electric
loads themselves among the previous time periods. The well-
known statistical models include ARIMA models [6]–[8],
exponential smoothing models [9], [10], regression mod-
els [11]–[13], Kalman filter models [14], [15], and Bayesian
models [16], [17]. For instance, Yuan et al. [6] employ the
ARIMA model to conduct the energy demand forecasting in
China. The forecasting results indicate that the fitted values
of ARIMA model respond less to the fluctuations in the
long-term trend. Dong et al. [10] propose a partially linear
additive quantile regression model to forecast the short-term
electricity demand during the peak hours using South African
data from 2009 to 2012. The results show that the proposed
model could provide a minimal cost of unit scheduling and
electricity dispatching to system operators during the peak
period. Dudek [11] proposes a new forecasting framework by
using the ensemble Kalman filter technique. The employed
ensemble Kalman filter technique can extract detail analytical
information (e.g., temperature response rate) by modeling
the nonlinear electric load. The forecasting results show that
the forecasting performance of the proposed models signifi-
cantly outperforms other alternative models. Those statistical
models could be established easily, however, based on their
theoretical definitions, these models are difficult to get the
substantial improvements, which largely limit their forecast-
ing ability and reduce their forecasting accuracy. These mod-
els are based on linear definitions; thus, they could hardly deal
with nonlinear modeling, particularly suffering from very
complex tendency changes in electric load [18].

B. ARTIFICIAL INTELLIGENT FORECASTING MODELS
With the significant technology development in recent
years, the artificial intelligent models have received lots
of attentions to improve forecasting accuracy, such as,
knowledge-based system (KBS) models [19], [20], artificial
neural network (ANN) [21]–[24], and fuzzy inference mod-
els [25]–[28]. For instance, Karimi et al. [19] provide a new
priority index to determine the similar days by considering
the similarity of the temperature and the special date. The
issued model illustrates its superior advantages than other
alternative models in terms of modeling time and forecasting
accuracy. Singh and Dwivedi [21] provide a novel algorithm
(i.e., follow the leader), they hybridize the algorithm with the
ANN to properly tune its parameters to conduct the load fore-

casting problem. Three real-world electric load data sets are
used to compare the forecasting performance, and the results
show that the superiority of the proposed model. Hippert and
Taylor [16] provide a novel framework by hybridizing fuzzy
model with optimized parameter, which is a bio-inspired
optimizer combination between two heuristic approaches.
The experimental results illustrate that the suitability and
the superiority of the proposed approach in load forecast-
ing. However, these proposes artificial intelligent models
also have several drawbacks, such as time consuming, slow
convergent speed, subjective to determine suitable network
architecture [29], and easily trapping into local optimum [30];
more relevant discussions of artificial intelligent technologies
in electricity demand forecasting could be found in [31], [32].
Thus, to continue exploring innovative forecasting frame-
works, approaches would still be an essential issue.

C. SUPPORT VECTOR REGRESSION MODEL WITH
META-HEURISTIC ALGORITHMS IN FORECASTING
Due to simultaneously considering the minimization prin-
ciple of the structural risk and the novel loss function of
Vapnik’s ε-insensity, support vector machines (SVMs) have
been successfully extended to solve the nonlinear prob-
lems, particularly for time series forecasting, i.e., the sup-
port vector regression (SVR) model [33]. Recently, the SVR
model has received widely explorations in many professional
fields, such as financial time series forecasting [34]–[37],
tourism forecasting [38], [39], atmospheric rainfall forecast-
ing [40]–[42]. For electric load forecasting fields, authors
also provide a series research results, by hybridizing novel
searching techniques, such as hybridizing with cloud gener-
ator to simulate the continuous process of the temperature
annealing [33], hybridizing with the classical chaotic map-
ping functions to avoid higher homogeneity of the population
for each meta-heuristic algorithms [43], [44], and quantum
searching mechanism [45], [46]. Based on the conclu-
sions of these researches, selecting an appropriate parameter
combination of the SVR model would receive better fore-
casting performances, i.e., to simultaneously select suitable
values of C (the tradeoff among the flatness of function and
training errors), ε (the width of the ε-insensitive function),
and σ (the critical parameter of the Gaussian kernel func-
tion) is still a deserved issue in the SVR research fields.
To continue exploring the feasibility in terms of hybridizing
meta-heuristic algorithm with an SVR model and provid-
ing associate improving arrangements to conquer the critical
drawbacks of the employed approach, this investigation tries
to apply the cuckoo search (CS) algorithm [47] to select
appropriate parameters of the SVR model. The primary con-
cepts of the CS algorithm are inspired from the phenomenon
of the interesting parasitic mechanism of the cuckoo birds,
which includes the followings actions: imitating the pattern
and the color from the hosts, throwing the eggs out of the
hosts’ nests, and constructing a new nest. As a meta-heuristic
algorithm, the CS algorithm also has some problems as
the same as other algorithms, such as slow convergent
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performances, homogeneity of the population, and the
premature convergent phenomenon [48], [49]. Besides,
another outstanding problem of the CS algorithm is boundary
handling problem. Therefore, this paper firstly hybridizes the
Tent mapping function to avoid homogeneity of the cuckoo
population in the searching space and to guarantee to escape
from the local optima. Secondly, this investigation proposes
an out-bound-back mechanism to overcome the boundary
handling problem, by keeping those cuckoo birds which were
out-bounded come back to previous (last iteration) optimal
location.

D. SELF-RECURRENT MECHANISMS
In addition, to share the past and current information of
electricity data, this article proposed a combined two famous
recurrent mechanisms (Jordan’s [50] and Elman’s [51]
recurrent neural networks), namely self-recurrent (SR)
mechanism, to learn about: (1) more output differences
(i.e., forecasting errors) from the testing results, which is
based on Jordan’s mechanism; and (2) the inherent character-
istics (i.e., information structure of the training data), which
is based on Elman’s mechanism. By applying those learned
knowledge (experiences) from these twomechanisms, the SR
mechanism can help current training work to achieve more
precise information explanation of the employed electricity
data. As known that the basic design of the recurrent frame-
work often uses input layer and the memory of previous layer
(called ‘context layer’) as the input in the training stage [52].
This kind of recurrent framework could also be hybridized
with the SVR model. Furthermore, the recurrent framework
not only possess the link weight between units in different
layers, but also has the special link weight from the hidden
layer to the context layer, which is the critical factor that they
are extensively applied to sequence-relational data forecast-
ing [53]. Jordan’s and Elman’s recurrent mechanisms both
contain the multilayer perceptron (MLP) with one hidden
layer. The former one sets the ‘context layer’ to be repre-
sented the memory from output layer; the latter one sets ‘con-
text layer’ to be represented the memory from hidden layer.
They both implement the historical information interaction
from layers and obtain more details from past information or
trained knowledge. However, as mentioned in [54] that both
Jordan’s and Elman’s mechanisms are with simple structure
and outstanding dynamic characteristic. Therefore, in this
investigation, the proposed SR mechanism combines both
recurrent mechanisms (i.e., the ‘context layer’ is represented
the memory from both output layer and from hidden layer) is
employed to hybridize with an SVR model.

E. APPLICATIONS OF VARIATIONAL MODE
DECOMPOSITION (VMD)
On the other hand, it is helpful to implement the data
pre-processing procedure to reduce the non-linear and non-
stationary characteristics, to obtain a more regular sub-
series, such as the empirical mode decomposition (EMD)
method [55]–[57]. After this kind of pre-processing

operation, the electric load forecasting model can closer fit
each decomposed component (namely intrinsic mode func-
tion, briefed as IMF) to improve the forecasting performance.
However, while data set suffers from the characteristics of
mode aliasing (mode mixing), false modes, and many com-
ponents with similar frequencies [58], the EMD method is
limited to provide significant decomposed components to be
further analyzed. Thus, the improvement of forecasting accu-
racy is also limited. Variational mode decomposition (VMD)
method, proposed by Dragomiretskiy and Zosso [58], can
adaptively decompose the data into the non-recursive fre-
quency domain and transform them into variational modes
with strong continuity and correlation [58], [59]. The
VMDmethod has been employed to solve the data decompo-
sition problems in many fields, such as financial analysis [60]
and energy forecasting [61]. This paper would also employ
the VMDmethod to successfully reduce the non-linearity and
non-stationarity of the electric load data, and separate the data
into feature component precisely.

F. CONTRIBUTIONS OF THIS PAPER
Therefore, the proposed hybrid the VMDmethod and the SR-
SVR-based model with the CBCS algorithm, the so-called
VMD-SR-SVRCBCS model, is used to receive higher fore-
casting accuracy while exploring nonlinear electric load data.
This paper also employs ARIMA, SARIMA, BPNN, and
GRNNmodels as alternative models to compare the forecast-
ing accuracy with the proposed VMD-SR-SVRCBCS model.
In the meanwhile, two datasets from worldwide famous elec-
tric load datasets are used to validate the performances of all
compared models. The principal contributions are stated as
follows,

1) An innovative hybrid electricity demand forecasting
model is proposed, by applying the VMD method,
the self-recurrent mechanism, the Tent mapping func-
tion, the out-bound-backmechanism, the CS algorithm,
and the SVR model, namely VMD-SR-SVRCBCS
model.

2) The VMD method is hybridized with the SR-SVR-
based model to conduct data preprocessing to decom-
pose more accurate IMFs (not aliasing in a certain
range, less false modes, and less components with sim-
ilar frequencies), and then apply SR-SVRCBCS model
to model each decomposed IMFs to receive more accu-
rate forecasting results. Please refer Section II.A.

3) The Tent mapping function is introduced to avoid
homogeneity of the population during the searching
periods of the CS algorithm to help cuckoo birds escape
from the local optima. The out-bound-back mechanism
is proposed to provide a guideline of these cuckoo
birds while they fly out bound the defined domain, and
capture them back to previous better location to ensure
the searching quality. Please refer Section II.B. and D.

4) The self-recurrent mechanism is applied to the
SVRCBCS model to help to capture more embedded
data information during the training processes among
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layers. Eventually, select more suitable parameters of
the SVR model and to receive higher forecasting accu-
racy than other compared models; in addition, the per-
formances also receive the significance under 95%
confident levels. Please refer Section II.D.

G. ORGANIZATION OF THIS PAPER
The rest of this paper is organized as follows. Section II
presents the modeling details of the VMD-SR-SVRCBCS
model, including the theoretical introduction of the SVR
model, the CBCS algorithm, the out-bound-back mechanism,
the VMD method, and the self-recurrent mechanism. Two
numerical examples in real world are presented in Section III.
Finally, the conclusion is proposed in Section IV.

II. THE PROPOSED VMD-SR-SVRCBCS MODEL
A. THE VARIATIONAL MODE DECOMPOSITION (VMD)
METHOD
The variational mode decomposition (VMD) method, pro-
posed by Dragomiretskiy and Zosso [58], is a newly
non-recursive data processing approach to adaptively decom-
pose an input data series into k discrete number of sub-series
(modes) by obtaining the optimal solution of the constrained
variational model, where eachmode (u_k) has a limited band-
width with a unique center frequency ($_k) in the frequency
domain. During the VMD processes, the center frequency
and bandwidth of each mode are constantly determined and
the sum value of the estimated bandwidth is minimized [58].
In addition, the sum of the IMFs must be equal to the input
data series, F(t), which is the constraint condition. The pro-
cess of estimating the bandwidth of each mode is as follows:

1) Hilbert transform is used to decompose the electric load
data series, F(t); the analytic signal of eachmode (uk ) is
calculated to obtain the associated unilateral frequency
spectrum;

2) Apply an exponential tuned operator, e−jωk t , to mix
with the estimated center frequency to modulate the
mode’s frequency spectrum to baseband;

3) Apply the H1 Gaussian smoothness (the L2 norm) of
the demodulated signal gradient to estimate the band-
width for each mode.

Subsequently, the constrained variational problem is
described as (1),

Min
{uk },{$k }

K∑
k=1

∥∥∥∥∂t [(ð (t)+ j
π t

)
~ uk (t)

]
e−j$k t

∥∥∥∥2
2

s.t.
K∑
k=1

uk = F(t) (1)

where {uk} = {u1, u2, . . . , uk} is the set of all modes, i.e.,
uk represents the kth mode; {$k} = {$1,$2, . . . ,$k} are
the center frequencies of each corresponding mode, i.e., $k
is the kth center frequency of uk ; F(t) is the original electric
load time series; ð (t) represents the Dirac distribution; j is an

imaginary number, i.e., j2 = −1; represents the convolution
operator.

By introducing a quadratic penalty term, µ, and Lagrange
multipliers, λ(t), the constrained variational problem can be
converted to an unconstrained variable problem, as shown
in (2),

L ({uk} , {$k} , `)

= µ

K∑
k=1

∥∥∥∥ðt [(δ (t)+ j
π t

)
~ uk (t)

]
e−j$k t

∥∥∥∥2
2

+

∥∥∥∥∥F (t)−
K∑
k=1

uk (t)

∥∥∥∥∥
2

2

+ 〈`(t),F(t)−
k∑

k=1

uk (t)〉 (2)

The alternate direction method of multipliers (ADMM) is
used to find out the saddle point of Eq. (2) by updating uk
and $k . As mentioned in [58], the convergent criterion is∑

k

(∥∥∥ûn+1k − ûnk

∥∥∥2
2

/∥∥ûnk∥∥22) < γ , where γ is the con-

vergence tolerance; ∧ represents the Fourier transforms.
Consequently, the solutions for uk , $k , and l (t) can be
demonstrated as (3) to (5) [58],

ûn+1k ($) =
F̂ (ω)−

∑
i6=k ûi ($)+

λ̂($ )
2

1+ 2α($ −$k )2
(3)

$ n+1
k =

∫
∞

0 $

∣∣∣ûn+1k ($)

∣∣∣2 d$∫
∞

0

∣∣∣ûn+1k ($)

∣∣∣2 d$ (4)

ˆ̀n+1 (ω) = ˆ̀n($ )+ τ

[
F̂($ )−

∑
k

ûn+1k ($)

]
(5)

where F̂ ($), ûi ($), ˆ̀($ ), ûn+1k ($) represent the Fourier
transforms of F(t), ui (t), `(t), and un+1k (t), respectively;
n represents the number of iteration; τ is the time step of the
dual ascent.

B. THE SUPPORT VECTOR REGRESSION (SVR) MODEL
The modeling details of the SVR model are briefed as fol-
lows. A nonlinear mapping function, ϕ (·) : Rn

→ Rnh ,
is defined to map the original datax(training data) into a so-
called high dimensional feature space (which may have infi-
nite dimensions), Rnh . Given a set of data, G = {(xi, yi)}Ni=1,
where xi is the input data; yi is the actual value, and N is the
total number of the data set. Then, in the high dimensional
feature space, there theoretically exists a linear function, f ,
i.e., the SVR function, to formulate the nonlinear relationship
between input data and output data, as shown in (6),

f (x) = wTϕ (x)+ b (6)

where f (x) denotes the forecasting values; both w (w ∈Rnh )
and b (b ∈ R) are adjustable coefficients, they are estimated
byminimizing the following empirical risk function as shown
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in (7),

R (f ) =
1
N

N∑
i=1

Lε
(
yi,wTϕ (xi)+ b

)
(7)

where Lε (y, f (x)) is the ε-insensitive loss function to penal-
ize the training errors between f (x) and y, and is defined
as (8),

Lε (y, f (x)) =
{
0 if |y− f (x)| ≤ ε
|y− f (x)| − ε otherwise (8)

The loss equals zero if the forecasted value is within the ε-
insensitive tube (8). In addition, Lε (y, f (x)) is also employed
to excellently divide the training data into two subsets in the
so-called feature space by the optimized hyper plane. Thus,
the SVRmodel is devoted to look for the optimal hyper plane
and minimize the training errors between the training data (y)
and the ε-insensitive tube (f (x)).

After solving the quadratic optimization problem with
inequality constraints, the SVR regression function is com-
puted as (9),

f (x) =
N∑
i=1

(
βi − β

∗
i
)
K (xi, x)+ b (9)

where βi, β∗i are the so-called Lagrangian multipliers, and
they are obtained in the quadratic programming processes;
K
(
xi, xj

)
is the so-called kernel function, it is defined as the

inner product calculating for the feature values, ϕ (xi) and
ϕ
(
xj
)
, from these two vectors, xi and xj, respectively, i.e.,

K
(
xi, xj

)
= ϕ (xi) · ϕ

(
xj
)
.

The Gaussian function with a width of σ : K
(
xi, xj

)
=

exp
(
−
∥∥xi − xj

∥∥2 /2σ 2
)
, is well-known kernel function.

Due to easily implementations and powerful nonlinear map-
ping capability [43], the Gaussian exponential kernel function
(another classical Gaussian kernel function), K

(
xi, xj

)
=

exp
(
−
∥∥xi − xj

∥∥ /2σ 2
)
, is employed in this investigation.

As mentioned above that the better forecasting perfor-
mance of an SVR model always comes from an appropri-
ate selection of its three parameters. Recently, authors have
employed the Tent chaotic mapping function with the famous
bionic-based meta-heuristic algorithm, i.e., the CS algorithm,
to provide appropriate parameter combination of the SVR
model, and receive some degree improvement in terms of
forecasting accuracy [44]. However, some outstanding prob-
lem of the CS algorithm, i.e., the boundary handling problem,
still deserves to be explored. Thus, authors propose the out-
bound-back mechanism hybridizing with the Tent chaotic
mapping function, namely CBCS algorithm, to receive more
approximate parameter combination of the SVR model to
enhance the forecasting accurate level.

C. CBCS ALGORITHM
1) TENT MAPPING FUNCTION
As defined as highly unstable/unpredictable motion in finite
phase space, chaos often occurs in deterministic nonlin-
ear dynamic systems [4]. It is sensitive caused from the

minute changes in initial condition (the so-called butterfly
effect), and generally demonstrates multiple elements with
non-linear interactions. Chaos could also be observed via a
very simple equation, which is the so-called chaotic mapping
function.

The chaotic mapping function could transform the data to
have the chaotic ergodicity mentioned above (i.e., sensitive
dependence on initial conditions), therefore, it is easily to
avoid the homogeneity of population during the optimization
procedures of any algorithms, to abound the searching tracks
in the definition domain, and eventually to avoid prema-
ture problem. Based on the chaotic characteristics analysis,
the Tent mapping function demonstrates faster iteration speed
than the Logistic mapping function, more autocorrelation,
and more suitable for a large number of sequences, i.e., with
good ergodic uniformity. The Tent mapping function not
only has better uniformity traversal and optimization effi-
ciency, but also its initial value sensitivity of probability
density distribution function is not strong, which is suitable
for computing. In addition, randomly set the initial values in
the interval (0,1) for the Logistic mapping function and the
Tent mapping function, and set the iteration times as 10,000.
Then, record the obtained chaotic values for each mapping
function, and the statistical results are plotted asFigs. 1 and 2,
respectively. It is obviously that the Tent mapping function
has more chaotic features than the Logistic mapping function.
Therefore, this paper uses the Tent mapping function during
the modeling processes of the CS algorithm to assist those
cuckoo birds to look for more suitable parameters of an
SVR model.

The Tent mapping function is a one dimension
piecewise-linear mapping defined by (10),

xn+1 =
{
xn/a x ∈ [0, a]
(1− xn) /(1− a) x ∈ (a, 1]

(10)

where xn represents the nth iterative value of the variable x,
and n represents the number of the iteration.

When a = 0.5, it is the standard Tent mapping and shown
in (11),

xn+1 =
{
2xn x ∈ [0, 0.5]
2 (1− xn) x ∈ (0.5, 1]

(11)

2) CUCKOO SEARCH ALGORITHM
The primary concepts of the CS algorithm are based on the
brood parasitic mechanism: the cuckoos’ eggs are laid in the
neighborhood nests. In addition, due to application of Lévy
flight behaviors, cuckoo birds could accelerate the searching
speed than the normal randomwalk. Therefore, the number of
iterations could be successfully reduced and improve the local
search performances [47]. The implementation of the CS
algorithm, each egg in a nest represents a potential solution.
Based on the Lévy flight behaviors, the cuckoo birds can soon
choose to leave their eggs in the recently-spawned nests (host
nests) to make sure that the left eggs could receive the priority
to be hatched. Due to the natural hatching habits of the cuckoo
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FIGURE 1. Histogram of 10,000 iterative distributions for Logistic
mapping function.

FIGURE 2. Histogram of 10,000 iterative distributions for Tent mapping
function.

birds, they are usually without doubt to hatch the eggs in the
host nests. Of course, the host cuckoo birds would have the
probability, pa, to detect out those eggs in their nests but not
belong to them [49]. Once those ‘‘stranger’’ eggs have been
detected out, the host cuckoo birds have two strategies, one is
directly thrown out all eggs in their nest; the second one is to
leave the old nest, then, establish a new nest in a completely
new location. Then, based on Lévy flight behaviors, new eggs
(solutions) would be laid continuously by the cuckoo birds
around the current best solutions [62].

Based on the cuckoo birds’ behaviors analysis, three useful
rules are required [62]: 1) each cuckoo is not permitted to lay
more than one egg at a time in its selected host nest; 2) only
those eggs with high-quality and the associate host nests
could be survived for the next generations; 3) the number
of the host nests should not be changed, and the detection
probability of the host cuckoo birds is set as pa ∈ [0, 1]. The
last rule could be represented by using a probability (pa) of the
n host nests will be replaced by new random nests. Here, pa is
often set as 0.25 [49]. Therefore, the core searching ability of
the CS algorithm is the usage of the parameter, pa, to trade off
the balance between two kinds of searches, the local search
and the global search, i.e., let the cuckoo birds discover new
or more prospective regions. These two searches are defined
as (12) and (13), respectively,

x t+1i = x ti + αs⊗ H (pa − δ)⊗
(
x tj − x

t
k

)
(12)

x t+1i = x ti + αL (s, λ) (13)

where x tj and x
t
k are the current positions which are randomly

determined; α is the positive scale variable and is defined
as the size of Lévy flight step; s is defined as the step size
for each local search; H (·) is the Heavy-side function; δ is a
uniformly random number; ⊗ is the product of H (·) and the
current positions; L (s, λ) is the Lévy distribution as the step
size of search, it is often defined as (14),

L (s, λ) =
λ0(λ) sin(πλ/2)

π

1
s1+λ

(14)

where λ is the standard deviation of these step sizes in
the global search; the Gamma function,0(λ), is defined as
0 (λ) =

∫
∞

0 tλ−1e−tdt . Only whenλ is a positive integer,
it can also be represented as 0 (λ) = (λ− 1)!. The Lévy
flight distribution guarantees the system to avoid premature
problem [63].

3) THE OUT-BOUND-BACK MECHANISM
Based on the details of the CS algorithm illustrated above,
the search space of any cuckoo birds is not limited to a
specified range. However, after hybridizing the CS algorithm
with an SVR model, the searching range for each parameter
would be limited according to the employed electric load data
sets. Thus, it is possible to suffer from the out-bound problem,
i.e., the cuckoo birds may search for the host nest out of the
limited bound set by the SVRmodeling requirements, and the
worst situation is that those cuckoo birds continue looking
for the solution to the wrong direction which is far from the
defined domain. The best improving method is to propose a
warning mechanism, namely out-bound back mechanism in
this paper, to let those out-bound cuckoo birds come back
to the best solution (the location of the nest) in previous
iteration.

The so-called out-bound behavior means that any cuckoo
birds fly out of the defined domain in any dimension of the
coordinate would be noticed and all behaviors in this iteration
would also be cleaned, i.e., the best solution would not be
updated and the locations of these birds would be turned back
to the previous locations (not back to the bound) associate
with the previous best solution, as shown in (15) and (16).

x t+1i =


x ti + αs⊗ H (pa − δ)⊗

(
x tj − x

t
k

)
,

if x tj , x
t
k ∈ defined domain

x ti , otherwise

(15)

x t+1i =

 x ti + αL (s, λ) ,
if αL (s, λ) ∈ defined domain

x ti , otherwise
(16)

More details of the proposed out-bound-back mechanism
are demonstrated in Fig. 3. In which, it is clearly to see that
the ith cuckoo bird has conducted t iterations searching jobs,
for the (t + 1)th iteration searching, it flies out of the defined
domain. At that moment, it would receive some warning from
the mechanism and its searching status would be cleaned by
the mechanism. In addition, it would be turned back to the
previous locations associate with the previous best solution,
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FIGURE 3. The out-bound-back mechanism.

and would eventually guarantee to continue the (t + 2)th

iteration searching, as shown in red color real line. Rather
than the general arrangement: turning back to the bound but
could not guarantee the (t + 2)th iteration searching could be
successfully implemented, as shown in purple color dot line.

For example, in Fig. 3, for the 1st to the t th itera-
tions, the ith cuckoo bird looks for the solution in-bound,
the parameter combination for the t th iteration is, (C, σ, ε) =
(17575, 3.7,0.8). For the (t + 1)th iteration, the cuckoo bird
flies out-bound with parameter combination, (C, σ, ε) =
(17575, 3.7, 2.4), i.e., it really flies out the bound in terms
of ε-dimension. Consequently, not only warning messages
would be sent to the ith bird, but also all searching status in
terms of ε-dimension would be cleaned, in addition, it would
be sent back to the status in terms of ε-dimension of the
t th iteration, i.e., the parameter combination is recovered to
(C, σ, ε) = (17575, 3.7,0.8). For the general arrangement,
the parameter combination of the bird would be recovered
to (C, σ, ε) = (17575, 3.7, 1). And obviously, our proposed
out-bound-back mechanism could guarantee to continue to
the (t+2)th iteration, but the general arrangement could not
guarantee it.

4) DETAILS OF CBCS ALGORITHM
The implementation detail steps of the CBCS algorithm with
the SVR model are illustrated as followings. The relevant
flowchart is also shown in Fig.4.
Step 1 Initialization: Randomly generate n nests for each

parameter of the SVRmodel, and their associate locations are

shown as, x(i)k,j =
[
x(i)k,1, x

(i)
k,2, . . . , x

(i)
k,n

]T
, where k = C, σ, ε, i

implies the number of the iterative loops; j implies the count
of nests. For initialization (i = 0), use (17) to normalize the
location variable to be a chaotic variable in the interval,

cx(i)k,j =
x(i)k,j −Mink

Maxk −Mink
(17)

where Mink and Maxk represent the minimal real numbers
and the maximal real numbers for the parameters of the SVR
model, respectively.

FIGURE 4. The proposed CBCS algorithm flowchart.

Step 2 Tent Chaotic Mapping Process: The chaotic vari-
ables, cx(i+1)k,j , in the next iteration, are generated by (11).
Then, use (18) to receive the associate locations of three
parameters in real number form, x(i+1)k,j , in the next iteration,

x(i+1)k,j = Mink + cx
(i+1)
k,j (Maxk −Mink) (18)

Step 3 Fitness Calculations: Use the real number form
of the associate locations in (17) to calculate the fitness
values (forecasting errors) in this iteration, to look for the
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best location of the desired nest, x(i+1)k,best . In this paper, the
forecasting error is computed based on the mean absolute
percentage error (MAPE), as illustrated in (19),

MAPE =
1
N

N∑
i=1

∣∣∣∣yi − fiyi

∣∣∣∣× 100% (19)

where N is the total number of data; yi is the actual electricity
value at the ith point; fi is the forecasted electricity value at
the ith point.
Step 4 Cuckoo Global Search With the Out-Bound-Back

Mechanism: Use the best nest position, x(i+1)k,best , to implement
cuckoo global search with the out-bound-back mechanism
(16), and use (14) to update other nest positions, and compute
the associate forecasting errors.
Step 5 Determine New Nest Location: Update and select

the new nest location only with more appropriate fitness
value among the generated nest positions in Step 4 and
from the previous iteration, and denote it as, x(t)k,j =[
x(t)k,1, x

(t)
k,2, . . . , x

(t)
k,n

]T
.

Step 6 Cuckoo Local Search With the Out-Bound-Back
Mechanism: If pa is smaller than a critical number r , then, use
the new nest position, x(t)k,j, and turn to local search with out-
bound-back mechanism (Eq. (15)). And, continue updating
the new nests, x(t)k,j, only with smaller MAPE value.
Step 7 Determine the Best Nest Location: Determine the

best nest location, x(t)k,best , only with the smallest fitness value
among the new nest locations in Step 6, x(t)k,j, and the best nest

position, x(i+1)k,best .
Step 8 Stop Criteria: If the number of searching iterative

loops exceeds the given criterion, then, the best nest location,
x(t)k,best , in Step 7 could be verified as the most appropriate
parameters (i.e., C , σ , and ε) of the SVR model; otherwise,
go back to Step 2 and start the next iteration.

D. SELF-RECURRENT (SR) MECHANISM
As mentioned above, the proposed self-recurrent (SR) mech-
anism combines the superiorities of both Jordan’s and
Elman’s recurrent mechanisms as the learning framework.
It is clearly to see that, except the context layer, the neurons in
the same layer are connected with all neurons in their forward
layer. The context layer is a specified hidden layer. It interacts
with itself, the hidden layer, and the output layer.

For the proposed SR mechanism with an SVR model,
suppose there are p input neurons (x =

[
x1, x2, . . . , xp

]
),

q hidden neurons, r output neurons and s context neu-
rons, then, the output of the nth neuron in the t th iteration,
f̂n(t), is shown as (20),

f̃n(t) =
q∑
i=1

ωhoi 8i(t)+ b (20)

whereωhoi is the weight linking with the ith hidden neuron and
output neuron, b is the same as in (6), and 8i is the hidden
layer output of the ith hidden neuron in the t th iteration, which

is defined as (21),

8i (t) = g

 p∑
j=1

ωihji xj +
s∑

m=1

ωchmi8i (t − 1)

+

s∑
m=1

r∑
v=1

ωchmvifv(t − m)

)
(21)

where ωihji is the weight linking with the jth input neuron and
the ith hidden neuron;ωchmi is the weight linking with the mth

context neuron and the ith hidden neuron; ωchmvi is the weight
linking with the mth context neuron and the vth output neuron
with delay periods; 8i (t − 1) is the context layer output of
the ith neuron in the t th iteration, which is the same with the
hidden layer output of the ith neuron in the (t − 1)th iteration;
fv(t − m) is the output layer output of the vth neuron in the
(t − m)th iteration, which is the same with the context layer
output of the mth neuron in the t th iteration.
Therefore, the output of the SVR model in the t th iteration,

(f̂n(t)) could be computed as (22),

f̂n(t) =
q∑
i=1

ωhoi g

 p∑
j=1

ωihji xj +
s∑

m=1

ωchmi8i (t − 1)

+

s∑
m=1

r∑
v=1

ωchmvifv(t − m)

)
+ b (22)

Then, (21) replaces (6) in the SVR modeling processes,
to hybridize with the proposed CBCS algorithm and imple-
ment the parameter combination optimization procedure, and
eventually, receive the forecasting values.

III. NUMERICAL EXAMPLE
A. THE EMPLOYED DATA SETS
To comprehensively illustrate the advantages of the proposed
VMD-SR-SVRCBCS model, two famous electric load data
sets are employed in this paper. The first one is collected from
the National Electricity Market (NEM), Queensland region,
Australia, namely Queensland Example, which is based on
half-hour load data type. The second example is acquired
from the New York Independent System Operator (NYISO),
New York, USA, namely New York Example, which is based
on hourly load data type.
In Queensland Example, the data set has 1,200 half-hour

electric load values in total, for detail time period is from
the half of 0 o’clock on 1 January 2017 to the end of
24 o’clock on 25 January 2017. As Schalkoff [64] recom-
mends that the ratio of the number of the validation data set to
the number of the training data set should approximate to one
to four. Thus, in this example, the electricity demand data set
is partitioned into three parts. The first part is the training set,
which contains 768 half-hour demand values, from the half
of 0 o’clock on 1 January 2017 to the end of 24 o’clock
on 16 January 2017. The second part is the validation set,
which includes 192 half-hour demand values, the half of 0
o’clock on 17 January 2017 to the end of 24 o’clock on
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TABLE 1. Training, validation and testing data sets of the proposed
model.

20 January 2017. The third part is the testing set, which
contains 240 half-hour demand values, from the half of 0
o’clock on 21 January 2017 to the end of 24 o’clock on
25 January 2017.

In New York Example, the employed data set has 1,200
hourly electricity demand values in total, from 1 o’clock on
1 January 2018 to the end of 24 o’clock on 19 February 2018.
In this example, the electricity demand data set is also par-
titioned into three parts, based on Schalkoff’s suggestion,
the training set is with 768 hourly demand values (i.e., from
1 o’clock on 1 January 2018 to the end of 24 o’clock on
1 February 2018), the validation set is with 192 hourly load
values (i.e., from 1 o’clock on 2 February 2018 to the end
of 24 o’clock on 9 February 2018), and the testing set is with
240 hourly load values (i.e., from 1 o’clock on 10 Febru-
ary 2018 to the end of 24 o’clock on 19 February 2018). The
data set divisions for these two examples are demonstrated
in Table 1. To compare with the same modeling conditions,
other alternative models also have the same data partitions.

B. FORECASTING RESULTS OF THE VMD-SR-SVRCBCS
MODEL
1) THE SETTINGS OF THE VMD METHOD AND CBCS
ALGORITHM’S INTERNAL PARAMETERS
In the VMD processing, the quadratic penalty term (µ) for
these two examples are both set to be 2,000, and the time step
of the dual ascent (τ ) are both set to be 1.

The settings of the internal parameters in the CBCS algo-
rithm are briefed as followings. The maximal number of nests
is put as fifty; the maximal number of computing iterative
loops is 10; the detection probability, pa, is recommended
as 0.25 [49]. The three parameters of an SVRmodel are set as,
C ∈ [0, 18000], σ ∈ [0, 5] and ε ∈ [0, 1]. In the meanwhile,
to take the iterative time into account that it would seriously
affect the forecasting performances of each compared model,
thus, the modeling time for each compared model is equal as
far as possible.

2) FORECASTING ACCURACY INDEXES
Four forecasting performance indexes are employed to com-
prehensively evaluate the forecasting accuracy for those com-
pared models, they are: 1) the MAPE, as mentioned in
Eq. (19); 2) the mean absolute error (MAE); 3) the mean

square error (MSE); and 4) the root mean square error
(RMSE). The latter three indexes are shown in (23) to (25),
respectively,

MAE =
1
N

N∑
i=1

|yi − fi| (23)

MSE =
1
N

N∑
i=1

(yi − fi)2 (24)

RMSE =

√√√√ 1
N

N∑
i=1

(yi − fi)2 (25)

where N is the total number of data; yi is the actual electricity
value at the ith point; fi is the forecasted electricity value at
the ith point.

3) SIGNIFICANT TESTS FOR OUTSTANDING FORECASTING
PERFORMANCES
To verify the forecasting significance of the VMD-SR-
SVRCBCS model, some useful statistical tests are recom-
mended to be conducted. Derrac et al. [65] indicate that for
large sample size test (240 half-hour/hour loads forecasting
in both examples), Friedman test is suitable. In addition,
the Wilcoxon signed-rank test can be used to make simple
pairwise comparisons. Therefore, these two statistical tests
are used herein.

Wilcoxon signed-rank test is used to determine the sig-
nificance of the forecasting errors made by two forecasting
models with the same sample number. Let ei be the absolute
forecasting errors in the ith forecasts from these two forecast-
ing models. If ei > 0, then let r+ be the sum of ranks; if
ei < 0, let r− be the sum of ranks, and if ei = 0, eliminate
this comparison, and delete the sample size. The statistic W
is defined as in (26):

W = min
{
r+, r−

}
(26)

Friedman test is one of the non-parameter statistical tests
in ANOVA analysis procedure, it devotes to conduct the
comparison of the significance between twomodels or among
more models. The statistic (F) of Friedman test is illustrated
as (27),

F =
12N

u(u+ 1)

 u∑
j=1

R2j −
u(u+ 1)2

4

 (27)

where N is the total number of forecasted values; u is the
total number of alternative models; Rj is the average rank sum
received in each forecasted value for each alternative model
as demonstrated in (28),

Rj =
1
N

N∑
i=1

r ji (28)

where r ji is the ith forecasted result among the jth compared
model, which is based on the rank sum from the best forecast-
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ing result (ranked as the 1st ) to the worst forecasting result
(ranked as the k th).

Eventually, if the p-value does not meet the acceptable
criterion, then, the null hypothesis could not be held, i.e.,
the significance of the forecasting performance from the
proposed VMD-SR-SVRCBCS model could be verified.

4) FORECASTING RESULTS AND ANALYSIS FOR
QUEENSLAND EXAMPLE
With respect to Queensland Example, the CBCS algorithm is
firstly applied to search for the appropriate parameter combi-
nation of an SVR model that is with the smallest forecasting
error in terms of the MAPE index value. During the train-
ing stage, the famous rolling-based procedure [64] is imple-
mented to assist the CBCS algorithm to carefully consider
the fluctuation change between training points, and to well
look for appropriate parameter of the SVR model. In this
example, in the first run, the first 576 load data in the training
set (totally 768 load data) is used by the CBCS algorithm to
minimize the empirical risk, then, the first forecasting load
(i.e., the 577th forecasting load) by the SVRCBCS model
is received. Secondly, the next 576 load data (from 2nd to
577th load values) are employed by the SVRCBCS model to
receive the second forecasting load (i.e., the 578th forecasting
load). Repeat this procedure till the remained 192 forecasting
loads are eventually received, then, the training error could be
further calculated. Similarly, based on the validation dataset,
the validation error could also be calculated after iteration
stopped in the validation stage. The potential parameters
with the smallest training and validation errors would be
selected as the appropriate parameters for the SVRCBCS
model. Then, the 240 half-hour forecasting demand would be
eventually forecasted by the SVRCBCS model.

In addition, the finalized SVRCBCS model with the
smallest testing MAPE value would be used to imple-
ment the SR-SVRCBCS model. Eventually, the forecasting
results and the suitable parameters for the SVRCS model
(hybridizing the CS algorithm with the SVR model), for the
SVRCBCS model (hybridizing the CBCS algorithm with the
SVR model), and for the SR-SVRCBCS model (hybridizing
SRmechanismwith the SVRCBCSmodel) in theQueensland
Example would be illustrated in Table 2. In which, it is
clearly to illustrate that the SVRCBCS model receives more
accurate forecasting performances than the SVRCS model.
In addition, the SR-SVRCBCS model obtains the highest
forecasting accuracy among these hybrid CSwith SVR-based
models.

Secondly, the VMD method is employed to the origi-
nal electric load data from the National Electricity Market
(NEM), Queensland region, Australia, and six IMFs and one
residual term are obtained. The decomposition result is shown
in Fig. 5. Then, the SR-SVRCBCS model is used to forecast
these six IMFs and the residual term, separately. Table 3
illustrates the best suitable parameters for each IMF and the
residual term.

TABLE 2. Parameters and forecasting accuracy indexes of SVRCS,
SVRCBCS, and SR-SVRCBCS models (Queensland example).

TABLE 3. The optimized parameters of the VMD-SR-SVRCBCS model for
each IMF and residual (Queensland example).

FIGURE 5. The decomposed IMFs and the residual term in Queensland
Example.

The forecasting results of these IMFs and the residual term
are reconstructed, then, the electric load forecasting results
can be obtained by adding the forecasting values of these
IMFs and the residual term. For comparing the forecast-
ing superiority of the proposed VMD-SR-SVRCBCS model,
authors provide a four-level comparison structure to com-
prehensively compare the superiority of the proposed VMD-
SR-SVRCBCS model. Thus, for the first comparison level,
it is devoted to compare the superiority of the original SVR
model against other artificial intelligent approaches, such as
ARIMA(7,0,8), SARIMA(7,0,8)×(5,0,4), GRNN (σ = 1.0), and
BPNNmodels. For the second comparison level, it is devoted
to compare the superiority of the proposed SVRCS model
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TABLE 4. Forecasting accuracy indexes of the VMD-SR-SVRCBCS model
and other models (Queensland example).

against other SVR-based model with different swarm-based
algorithms (including particle swarm optimization (PSO)
algorithm, bat algorithm (BA), cuckoo search (CS) algorithm,
and firefly algorithm (FFA)). For the third comparison level,
it is devoted to compare the superiority of the proposed
chaotic out-bound-back mechanism among different SVR-
swarm-based models. For the fourth comparison level, it is
devoted to compare the superiority of the proposed SR mech-
anism and the VMD method among other SVR-based mod-
els. Table 4 presents the forecasting performance evaluation
indexes for these four comparison levels.

For the first comparison level, the original SVR model
receives superior forecasting accuracy among ARIMA(7,0,8),
SARIMA(7,0,8)×(5,0,4), GRNN (σ = 1.0), and BPNN models.
For the second comparison level, the proposed SVRCSmodel
also receives superior forecasting accuracy among other SVR
models with different swarm-based algorithms. For the third
comparison level, the forecasting error of the proposed SVR-
CBCS model is smaller than other SVR-CB-based models
with different swarm-based algorithms. Finally, for the fourth
comparison level, the proposed VMD-SR-SVRCBCS and
SR-SVRCBCS models receive the best and the second-best
forecasting performance among other alternative models.

These comparison results of the four comparison levels
obviously reveal the advantages of the VMD method, the SR
mechanism, the chaotic-out-bound-back mechanism, and CS
algorithm, respectively. In addition, the comparison figures
of these four levels are demonstrated in Fig. 6 to 9, respec-
tively. In Fig. 6, it is obviously to see that the SVR model
(red line) can effectively catch the trend of the actual load
and is superior to other models. In Fig. 7, the SVRCS model
(red line) is able to accurately simulate the changing pat-
terns of the actual load than other SVR-based models with
different swarm-based algorithms. In Fig. 8, the chaotic-
out-bound-back mechanism can significantly improve the
forecasting performance of each employed swarm-based
algorithms. In which, the proposed SVRCBCS model is
superior to other SVR-CB-based models. In Fig. 9, the

FIGURE 6. Forecasting comparison level 1: the original SVR model v.s.
other models for Queensland Example.

FIGURE 7. Forecasting comparison level 2: the SVRCS model v.s. other
models for Queensland Example.

FIGURE 8. Forecasting comparison level 3: the SVRCBCS model v.s. other
models for Queensland Example.

VMD-SR-SVRCBCS model is the closest one to the actual
electricity demand than other alternative models. The VMD
method really plays well the role in decomposing the electric
load data into six different IMFs and the residual term.

Finally, to verify the forecasting accuracy improvement is
with significance in each comparison level. As mentioned
above, the Friedman test is conducted based on one-tail style,
under one significant level, α = 0.05. The significant test
results in each comparison level are shown in Tables 5 to 8,
respectively. These tables clearly indicate that the SVR,
the SVRCS, the SVRCBCS, and the VMD-SR-SVRCBCS
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FIGURE 9. Forecasting comparison level 4: the VMD-SR-SVRCBCS model
v.s. other models for Queensland Example.

TABLE 5. Results of Wilcoxon signed-rank test and Friedman test for
comparison level 1 (Queensland example).

TABLE 6. Results of Wilcoxon signed-rank test and Friedman test for
comparison level 2 (Queensland example).

TABLE 7. Results of Wilcoxon signed-rank test and Friedman test for
comparison level 3 (queensland example).

models receive the significance than other alternative models
in each comparison level, respectively.

5) FORECASTING RESULTS AND ANALYSIS FOR NEW YORK
EXAMPLE
In New York Example, the CBCS algorithm is also used
to determine the appropriate parameter combination of an
SVR model with the smallest MAPE index value. The
rolling-based procedure is also employed in the training stage
of the VMD-SR-SVRCBCS modeling process. The fore-
casting results and the suitable parameters for the SVRCS

TABLE 8. Results of Wilcoxon signed-rank test and Friedman test for
comparison level 4 (queensland example).

TABLE 9. Parameters and forecasting accuracy indexes of SVRCS,
SVRCBCS, and SR-SVRCBCS models (New York example).

TABLE 10. The optimized parameters of the VMD-SR-SVRCBCS model for
each IMF and residual (New York example).

model, the SVRCBCS model, and the SR-SVRCBCS model
in this example are shown in Table 9. In which, it also
clearly illustrates the same results as in previous example,
i.e., the SVRCBCS model once again receives higher fore-
casting accuracy than the SVRCSmodel. In addition, the SR-
SVRCBCS model obtains the highest forecasting accuracy
among these hybrid CS with SVR-based models.

Secondly, the VMD method is also applied to the original
electric load data from the New York Independent System
Operator (NYISO), New York, USA, and six IMFs and one
residual term are also obtained. The decomposition result is
shown in Fig. 10. The VMD-SR-SVRCBCS model is then
employed to forecast these six IMFs and the residual term,
separately. Table 10 presents the best suitable parameters for
each IMF and the residual term.

The forecasting results of these IMFs and the residual
term are further reconstructed, the electric load forecasting
results can be obtained by adding the forecasting values of
these IMFs and the residual term. For demonstrating the fore-
casting superiority of the VMD-SR-SVRCBCS model, four
comparison levels as shown in Section III-B-4) are also con-
ducted. The comparison figures of the forecasting results for
these four levels are demonstrated in Figs. 11 to 14, respec-
tively. Similar to Queensland Example, for each comparison
level, the proposed mechanisms (including the chaotic-out-
bound-back mechanism, the recurrent mechanism, and the
VMD method) can significantly improve the forecasting
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FIGURE 10. The decomposed IMFs and the residual term in New York
example.

FIGURE 11. Forecasting comparison level 1: the original SVR model v.s.
other models for New York example.

performance. In which, the proposed VMD-SR-SVRCBCS
model is also the closest one to the actual electricity
demand than other alternative models.Table 11 illustrates the
forecasting performance evaluation indexes for these four
comparison levels. Similar to Queensland Example, the com-
parison results of these four comparison levels once again
reveal the advantages of the VMD method, the SR mech-
anism, the chaotic-out-bound-back mechanism, and the
CS algorithm, respectively.

Finally, to verify the forecasting accuracy improvement is
with significance, once again, the Friedman test is imple-
mented based on one-tail style, under one significant level,
α = 0.05. The test results are list in Tables 12 to15, respec-
tively, which indicate clearly that the SVR, the SVRCS,
the SVRCBCS, and the VMD-SR-SVRCBCSmodels receive
the significance than other alternativemodels in each compar-
ison level, respectively.

FIGURE 12. Forecasting comparison level 2: the SVRCS model v.s. other
models for New York example.

FIGURE 13. Forecasting comparison level 3: the SVRCBCS model v.s. other
models for New York example.

FIGURE 14. Forecasting comparison level 4: the VMD-SR-SVRCBCS model
v.s. other models for New York example.

C. DISCUSSIONS
The proposed VMD-SR-SVRCBCS model has obtained sig-
nificant highest forecasting accuracy indexes than other alter-
native models (ARIMA, SARIMA, GRNN (σ = 1.0),
BPNN, SVRCS, SVRPSO, SVRBA, SVRFFA, SVRCBCS,
SVRCBPSO, SVRCBBA, SVRCBFFA, and SR-SVRCBCS
models). It is contributed from the following points.
1) The embedded superior nonlinear capabilities and struc-
tural risk minimization of the SVR model. 2) The excel-
lent decomposition capability of the VMD to reduce the
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TABLE 11. Forecasting accuracy indexes of the VMD-SR-SVRCBCS model
and other models (New York example).

TABLE 12. Results of Wilcoxon signed-rank test and Friedman test for
comparison level 1 (New York example).

TABLE 13. Results of Wilcoxon signed-rank test and Friedman test for
comparison level 2 (New York example).

TABLE 14. Results of Wilcoxon signed-rank test and Friedman test for
comparison level 3 (New York example).

characteristics of mode aliasing, each IMF can compre-
hensively represent its decomposed characteristics, then,
the SR-SVRCBCS model can separately simulate the
decomposed data pattern of each IMF, eventually, receive out-
standing forecasting performance. 3) The superior searching
capabilities of the CBCS algorithm that employs the Tent
mapping function to enrich the diversity of the population,
to avoid premature problem, which are the general drawbacks

TABLE 15. Results of Wilcoxon signed-rank test and Friedman test for
comparison level 4 (New York example).

of anymeta-heuristic algorithms. In addition, the CBCS algo-
rithm applies both global search and local search in each
iteration to look for better solution (parameters of the SVR
model) and proposes a simple out-bound-back mechanism to
provide successful actions to avoid these cuckoo birds flying
continuously to the undefined domain, eventually deteriorate
the searching performance. For example, in Fig. 3, the out-
bound birds could be easily captured back to the previous
better location, and continue qualified searching behaviors.
(4) The SR mechanism has more superior capability to cap-
ture more data structures between the hidden layer and the
context layer embedded in the past electric load data. For
example, in Table 2, for the Queensland Example, the CBCS
algorithm is excellently to shift the local solution of the
SVRCS model, (C, σ , ε) = (1.265×104, 0.1638, 0.3265)
with local optimal forecasting errors, in terms of MAPE
(2.502%), to another better solution, (C, σ , ε) = (1.467×104,
0.4967, 0.1660) of the SVRCBCS model to be another more
accurate forecasting results in terms of MAPE (1.338%).
Thus, it proves the superiority of the Tent mapping function to
avoid premature problem by hybridized into the SVR model.
In addition, the SR mechanism also provides a significant
contribution to continue improving the better solution of the
SVRCBCS model to another better solution, (C, σ , ε) =
(1.718×104, 0.3342, 0.0059) of the SR-SVRCBCS model
to receive the most appropriate solution in terms of
MAPE (1.123%).

In the meanwhile, based on the results of the proposed
four comparison levels, it is clearly to see that 1) the supe-
riority of the original SVR model than other artificial intel-
ligent approaches; 2) the superiority of the SVRCS model
than other SVR- based models with different swarm-based
algorithms; 3) the superiority of the SVRCBCS model than
other SVR-CB-based models, i.e., the very contributions
from the proposed chaotic-out-bound-back mechanism; and
4) the superiority of the SR-SVRCBCS model and the
VMD-SR-SVRCBCS model than other SVRCS-based mod-
els, i.e., the very contributions of the proposed SRmechanism
and the VMD method.

For forecasting accuracy improvement significant test,
based on Tables 6 to 8 and 12 to 15, the VMD-SR-
SVRCBCS model significantly outperforms other alternative
models. By comparing the SVRCS model with the SVR-
CBCS model (Tables 7 and 14), they recognize that the Tent
mapping function and the out-bound-back mechanism could
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significantly improve the premature problem. By comparing
the SVRCBCS model with the SR-SVRCBCS model
(Tables 8 and 15), they also indicate the SRmechanism could
also significantly improve the forecasting performances, even
it really costs more computing time, it is valuable to con-
duct the SR mechanism while modeling. By comparing the
SR-SVRCBCS model with the VMD-SR-SVRCBCS model
(Tables 8 and 15), it indicates the VMDmethod could signif-
icantly improve the forecasting performances, even it really
costs some pre-processing time, it is deserved to conduct the
VMD method.

Finally, compare the differences between the
SR-SVRCBCSmodel and authors’ previous proposed SSVR-
CCS model [44], which also hybridizes the CS algorithm
with the SVR model. For the same theoretical mechanism
of these two models, they both benefit from the Tent map-
ping function to enrich the diversity of cuckoo’s population
(i.e., the CCS algorithm) while trapping into local opti-
mum. For the differences, the SR-SVRCBCSmodel furtherly
hybridizes the out-bound-back mechanism to improve the
searching quality by turning the out-bound cuckoo birds back
to the previous location, to guarantee the continuous search-
ing on the right way. In addition, the hybridized SR mech-
anism also improves the searching quality by enhancing the
past searching experiences. Eventually, the SR-SVRCBCS
model could receive more satisfied forecasting accuracy.
On the other hand, the SSVRCCS model only furtherly com-
bines the seasonal mechanism to resolve the seasonal/cyclic
trends embedded in the electric load data, then, calculate
the seasonal indexes to receive higher forecasting accuracy.
The improvement is related minor than the SR-SVRCBCS
model.

For the theoretical modeling, it is no doubt that the
SR-SVRCBCS model is superior to the SSVRCCS model.
Because the SR-SVRCBCS model additionally demon-
strates the theoretical improvements (out-bound-back mech-
anism and SR mechanism) by hybridizing with the original
CS algorithm and the original SVR model.

IV. CONCLUSION
For a resource-saving developing country, like China,
accurate electric load forecasting plays an important role to
effectively implementations of national energy policy plan-
ning. In this paper, authors hybridize several novel intelligent
techniques, including the SVR model, the cuckoo search
algorithm, the Tent chaotic mapping function, the out-bound-
back mechanism, the VMD method, and the SR mechanism,
namely VMD-SR-SVRCBCS model, to receive more satis-
fied forecasting performances. Another six alternative mod-
els, ARIMA, SARIMA, BPNN, GRNN, SVRCS, SVRPSO,
SVRBA, SVRFFA, SVRCBCS, SVRCBPSO, SVRCBBA,
SVRCBFFA, and SR-SVRCBCS models are employed to
compare the forecasting results. Experiment results indicate
that the proposed VMD-SR-SVRCBCS model has signifi-
cantly outperformed other six alternative models. The con-
clusions of this paper could be as the followings:

1) For the Ten chaoticmapping function, inTables 2 and 9,
they demonstrate clearly that the Tent function could
improve the forecasting performances of the SVRCS
models, i.e., to enrich the diversity of the popula-
tion to avoid premature problems. The forecasting
accuracy improves 1.164% (Queensland Example) and
2.223% (New York Example) in terms of MAPE,
respectively.

2) For the searching quality, also from Tables 2 and 9,
the eventually determined appropriate parameters of
the SVRmodel are all within the defined domains. And
the status is never occurred that the searching quality
deteriorates to the point where it can’t be cleaned up.

3) For the SR mechanism, it also can be revealed in
Tables 2 and 9, it could learn more recurrent infor-
mation from previous hidden layer of the SVRCBCS
models during the recurrent mechanism processes. The
forecasting accuracy improves 0.215% (Queensland
Example) and 0.319% (New York Example) in terms
of MAPE, respectively.

4) For the VMD effects, it can be revealed in Fig. 10
and 15 that each decomposed IMF and the resid-
ual demonstrate simpler tendency in both Examples,
which could be simulated by the SR-SVRCBCS model
more accurately. The forecasting performance demon-
strates in Tables 4 and 11, respectively, that the
forecasting accuracy improves 0.220% (Queensland
Example) and 0.171% (New York Example) in terms
of MAPE.

5) Eventually, the forecasting results for these two exam-
ples are shown in Fig. 6 to 9 and 11 to 14; the com-
parison results of the VMD-SR-SVRCBCSmodel with
other alternative models are shown in Tables 4 and 11.
The significant test results are shown in Tables 5
to 8 and 12 to 15. These findings all demonstrate the
VMD-SR-SVRCBCS models all significantly receive
the highest forecasting accuracy in terms of MAE,
MSE, MAPE and RMSE.

Based on the forecasting results illustrate in above sections,
it is significantly to indicate that the performance of the
VMD-SR-SVRCBCS model is superior to other alternative
models. It can also be applied in other forecasting fields,
such as stock price forecasting which heavily depends on the
embedded past information, i.e., the SR mechanism could
be extended to this field successfully. The VMD method
also could be employed to decompose the intrinsic mode of
the financial data set, to reduce the characteristics of mode
aliasing (mode mixing), false modes, and many IMFs with
similar frequencies. The out-bound-back mechanism could
also be applied to any meta-heuristic algorithm which suf-
fers from boundary handling problem. It is easily imple-
mented and could effectively to deal with these out-bound
behaviors. In the future, authors would like to apply these
novel proposed intelligent techniques to be hybridized with
other alternative algorithms to continue this interesting
exploration.
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