
Received November 18, 2019, accepted January 3, 2020, date of publication January 15, 2020, date of current version January 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2966757

Real-Time Cloud Visual Simultaneous Localization
and Mapping for Indoor Service Robots
YALI ZHENG 1, (Member, IEEE), SHINAN CHEN 2,
AND HONG CHENG 1, (Senior Member, IEEE)
1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2Netease Company, Shenzhen, China

Corresponding author: Yali Zheng (zhengyl@uestc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61971106, Grant 61603077, and Grant
61573084, in part by the China Postdoctoral Science Foundation funded project under Grant 2016M600732, and in part by the UESTC
Fundamental Research Funds for the Central Universities of China under Grant ZYGX2016J076.

ABSTRACT Unlike traditional industrial robots, indoor service robots are usually required to possess
high intelligence, such as the skills of flexible moving, precise spacial perceiving. And high intelligence
is always accompanied by consuming complicated and expensive computation resources. One solution for
indoor service robots is centralization of expensive computation resource so that it is possible to design a
low cost client with a high-intelligence brain. However, as a fundamental intelligence function for mobile
indoor robots, if a real-time visual Simultaneously Localization and Mapping (vSLAM) system is split
into client and brain, it will be confronted with new challenges, such as the barrier of instant data sharing
and performance degradation brought by network delay inbetween. To solve the problem, we focus on a
framework and approach of cloud-based visual SLAM in this paper, and provide an efficient solution to
offload the expensive computation and reduce the cost of robot clients. The integrated system is distributed
in a 3-level Cloud with light-weight tracking, high precision dense mapping, and map sharing. Based on
recent excellent algorithms, our system is able to run a real-time sparse tracking on the client, and a real-time
dense mapping on the cloud server, which outputs an explicit 3D dense map. Only keyframes are sent to the
local cloud center to reduce the network bandwidth requirement. Dense geometric pose estimation besides
feature-based methods is computed to make the system resistant to feature-less indoor scenes. The camera
poses associated with keyframes are optimized on the local computing cloud center, and are sent back to the
client to decrease the trajectory drift. We evaluate the system on the Technical University of Munich (TUM)
datasets, Imperial College London and National University of Ireland Maynooth (ICL-NUIM) datasets, and
the real data captured by our robot in terms of visual odometry on the client side and dense maps generated
on the server cloud. Qualitative and quantitative experiments show our cloud visual SLAM system is able
to bear the network delay in Local Area Network (LAN), and it is an efficient vSLAM solution for indoor
service robots with high intelligence from a centric brain.

INDEX TERMS Visual SLAM, cloud framework, service robots.

I. INTRODUCTION
Indoor service robot is a robot to assist human beings in
indoor environments, such as cooking, cleaning, shopping,
home maintenance in house, or doing guidance in exhibi-
tion room. The demands on indoor service robots in public
or private spaces are rapidly increasing recently. Compared
with traditional industrial robots, service robots are relatively
required to have human-like intelligence. As a fundamental

The associate editor coordinating the review of this manuscript and

approving it for publication was Seok-Bum Ko .

ability for mobile robots, autonomous navigation integrates
a wide variety of processes from low-level actuator control
to high-level strategic decision making. One critical issue is
to develop techniques helping service robots to perceive the
surrounding and localize itself in space using different kinds
of sensors including LiDAR, Radar, sonar, inertial measure-
ment unit (IMU) and camera, called SLAM technique. In the
past decades vision-based SLAM has highly attracted lots
of researchers, which takes videos as input, and computes
the camera position and 3D maps as output. There are three
main advantages for vision used in SLAM [1]: 1) camera is

16816 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2906-7984
https://orcid.org/0000-0001-5831-342X
https://orcid.org/0000-0003-2742-9037
https://orcid.org/0000-0002-9287-317X

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

compactness and power saving which can be embedded in
any robot; 2) vision allows to develop a variety of essential
functionalities in robotics via vision perception techniques,
such as obstacle detection, human tracking, visual servo-
ing; 3) vision easily helps to implement relocalization and
bounded errors on the position estimates of robot in low cost
via loop detection and correction. Moreover, dense map is
not only full of important geometric structure information but
also offering potentials for detailed semantic scene under-
standing, which is usually accompanied by dense SLAM
algorithms and is used to remote control, navigation, vir-
tual reality and so on. However, dense mapping extremely
consumes computing resource and storage resource. Most
of recent map-centric dense visual SLAM algorithms even
require to use expensive and big GPU to have real-time
performance. For a practical indoor service robot setup, if we
distribute vSLAM systems in cloud framework, the service
robots could benefit from the use of Cloud brain to possess
stronger computing and storage ability for producing precise
indoor mapping and localizing but with a small and compact
size.

Several groups have recently made preliminary trials, and
made partial progress in the cloud-based visual SLAM. These
work followed the tracking and mapping framework [16],
which split tracking and mapping into two separate tasks.
So it seems easy to distribute the whole systems in a 2-level
cloud framework [2], [3]: the tracking thread runs on clients,
and collaborative 3D mapping and map fusion is conducted
by exploiting multiple clients in the cloud. The effect of
network delay were not taken any account to the system
in the works, since only keyframes were sent to the Cloud
to build 3D map, so tracking and mapping are separated
completely. The robot clients are only data collector for the
server, so mapping could be done offline in their cases. How-
ever, when tracking and mapping are completely separated
between threads, the tracking would suffer from drifting eas-
ily. As they discussed in the paper, the crucial problem of
cloud SLAM is that procedure is very sensitive to the network
delay and network bandwidth.

As all we know, more precise mapping requires more pre-
cise localizing, and more precise relocalizing requires more
precise mapping in reverse, and SLAM algorithms are highly
constrained by real-time requirement. Recently one state-of-
the-arts of vSLAM algorithms on a single board computer
was published, called ORB-SLAM, and it benefits signifi-
cantly from the fact that the tracking and mapping threads
are sharing a map model and optimized camera poses [11].
However, if this algorithms is transplanted into cloud frame-
work, the most difficult thing is to handle network delay
brought to the real-time system. It is even too hard to provide a
comparable result. So the problemwhat we are trying to solve
in this paper is: 1) when tracking is separated from mapping,
how can we keep the performance of tracking; 2) even if the
optimized camera pose can be sent back to the robot easily,
but it will not be real time, so how could it affect the position
of the robot.

We present a framework and approach which takes advan-
tage of the powerful cloud computing and storage to not
only reconstruct dense maps, but also estimate robust visual
odometry for indoor service robots. Our system has real-time
tracking with CPU on robot clients, and dense mapping on
the local computing cloud with GPUs, and dense map shar-
ing on the central computing center. The system is applied
to a local area network (LAN). LAN refers to a network
that interconnected computers within a limited area such as
a neighborhood, school, laboratory, office buildings, or a
house, which usually has a relative low network delay. To the
best of our knowledge, this is the first work of real-time
cloud visual SLAMwhich produces the comparable results of
visual odometry on a single board computer. Beyond a cloud
vSLAM, it generates high precision dense maps in the local
cloud, which can be shared among private cloud. The main
contributions of this paper are: a cloud framework of visual
SLAM system with sparse tracking and dense mapping,
which runs robust tracking on ARM cores of robot clients
in real-time, and does accurate mapping on GPU cores of
local computing servers. Camera pose optimization based on
keyframes runs on local computing servers in real time, then
optimized camera poses are sent back to correct the tracking
poses of robots via local optimization. Experimental results
demonstrate our system is able to tolerate the network delay
of local area network(LAN), for instance, a domestic WiFi.

The remainder of this paper is organized as follows:
in Section II, we provide a brief background vision-based
SLAM technique in related applications. In Section III,
we give the system overview for our cloud vSLAM.
In Section IV, V, VI, we describe the details of the system
with respect to the parts in the client side and the cloud
side. The experimental results and extensive evaluations are
reported on the TUM datasets, ICL-NUIM datasets and our
real scenes in section VII. Finally, we give the conclusion in
Section VIII.

II. RELATED WORK
Visual SLAM has been paid much attention in the computer
vision and robotics community for the past few decades.
In robotics field, visual odometry is the process of incremen-
tally estimating the pose of vehicles from image streams cap-
tured by the onboard cameras, which is quite fundamentally
related to visual SLAM. But visual SLAM does not only aim
to the camera trajectory, but also the global consistent map.
So far visual SLAM systems is evolved into complete and
complicated systems, and usually consists of different tech-
niques, including 3D geometric reconstruction, loop detec-
tion and closure, non-linear optimization, to improve the
performance of systems and algorithms.

From the early beginning, monocular video was first used
in visual SLAM system [8]. Davison and Murray tried sparse
Harris features, and considered Extended Kalman Filtering to
solve the visual SLAMproblem.MonoSLAMwas a real-time
visual SLAM algorithm, which took videos from single
cameras as input, and created online sparse but persistent

VOLUME 8, 2020 16817

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

map of features in the probabilistic framework [15], [38].
Planar patch features [10] and line features [9], [46] were con-
sidered in visual SLAMapproaches beside key point features.
And as the development of sensors, stereo video [44] and
RGBDvideo [45] are utilized to compensate for the weakness
of monocular vision methods in different applications.

Klein and Murray [16] presented a seminal work in visual
SLAM, which splits the system into two parallel tasks, track-
ing and mapping. This framework is widely applied to speed
up real-time visual SLAM systems [11], [18], [19], [26], [45],
and is extended to the use of computationally expensive opti-
mization techniques. Grisetti et al. explained a graph SLAM
approach in [17], in which involved to build a graph to con-
strain the connect camera poses from sensor measurement,
and optimized in a nonlinear framework.

Not only the sparse features extraction was used in visual
SLAM, but also the dense pixels were used in [5], [18], [19].
Newcombe et al. assumed a dense model of scenes, and
proposed dense tracking and mapping with whole image
alignment against that model [18]. The system was imple-
mented in real time as well. A dense RGB-D SLAM algo-
rithm by minimizing both the photometric and the depth
error over every pixels was proposed by Kerl et al. [5].
And they selected keyframes and detected loop closure using
entropy based similarity measurement, and optimized the
pose graph in g2o framework. In the work of [20], Kerl et al.
focused on the problem brought by rolling shutter RGB-D
cameras to the dense SLAM. The continuous trajectory
representation was used to compensate the rolling shutter
effect, and showed superior quality in tracking and map-
ping. Engel et al. utilized dense tracking, semi-dense map
estimation and map optimization for large-scale SLAM in a
probabilistic method [19]. No matter sparse or dense SLAM,
loop closing is demonstrated to improve significantly the final
SLAM results, and is utilized by most of the recent visual
SLAM work [5], [6], [11], [14], [47]. And deep learning
technology is explored in visual SLAM [21], [22] in the most
recent literatures.

Cloud computing is a technique that provides shared com-
puter processing resources and data through Internet connec-
tion to computers and other devices on demand. The most
important benefit of cloud computing is data and comput-
ing resources sharing, so using cloud computing is a trend
in applications such as social robots [23]. Visual odome-
try [25], vision based 3Dmapping [13], [26], [37], robot nav-
igation [27], [36] and multi-robots collaboration [30], [31]
are the typical applications for cloud robotics. Limosani et al.
presented a system in the cloud robotics paradigm to
help autonomous robots navigating in indoor environment.
ARTags and QR codes were applied to mark rooms,
corridors, entrances, and atriums for localization. The
references [28], [29] provided different cloud computing
frameworks for robotics. In this paper, our purpose is to
develop a cloud visual SLAM system not only offloads the
expensive computing and storage, but also keeps performance
without any loss for indoor service robots.

III. SYSTEM OVERVIEW
In this section, we provide a system overview for our cloud
visual SLAM. Our purpose is to present a cloud visual SLAM
system, not only offloading the expensive computing and
storage, but also keeping high performance as on stand-alone
system even better for indoor service robots. We follow the
tracking and mapping framework [16]. We implement the
tracking with CPU in order to keep clients low cost, and
the dense mapping on the local cloud computing center in
LAN using the NVIDIA Compute Unified Device Architec-
ture (CUDA) and Open Graphics Library (OpenGL) to obtain
a high precise map. The CUDA and OpenGL API enables
us to implement temporal filtering, point fusion on a GPU
to reach real-time performance. For indoor service robots,
the tracking part provides the camera simultaneous poses.
While real-time tracking runs on the client, keyframes are
selected and sent to the cloud server, once the corresponding
camera poses are optimized, then the data will be sent back
to the robot client to rectify trajectory drift of the robot in the
local optimization. Fig. 1 shows the chart of our proposed sys-
tem overview. Our system is a 3-level framework, including
a robot client, a local computing cloud in LAN, and a private
cloud onWide Area Network (WAN). The cloud in our paper
consists of the local computing server and the private cloud.

When frame is captured, we first extract ORB features, and
estimate local camera pose initially after guidedmatching and
optimize the camera pose in a local optimization. Keyframes
are selected under some specific conditions, and sent to the
local computing cloud with the corresponding robot state
(if we have good feature matching and good estimation for
camera poses, visual tracking succeeds, and denoted by 0,
otherwise visual tracking fails, which means the robot is lost,
and denoted by 1). When a keyframe is received by the local
computing cloud, visual tracking and dense map fusion based
on the keyframe is executed when the corresponding robot
state is 0, otherwise visual relocalizing is launched. When
relocalizing fails, a dense tracking based on depth images is
utilized to estimate camera poses to enhance the robustness of
the system. Loop detection and optimization is always carried
out once a keyframe is received. When the dense map is built
completely, it is first compressed and upload to a private cloud
for storage and sharing.

IV. LIGHT-WEIGHT TRACKING ON THE CLIENT
In our robot system, we use RGB-D cameras to capture
images. To build light-weight tracking in the client side,
we use the Oriented FAST and Rotated BRIEF (ORB) fea-
tures [12]. This is a binary descriptor based on FAST keypoint
detection, which enables feature matching on low-power
devices without GPU acceleration. We take the first 3D
depth measurements D1 associated with 2D sparse features
to initialize the 3D map when camera starts to move. The
first camera pose is assumed at the origin of the coordi-
nate. Once 2D ORB features are extracted from each color
image, and the corresponding 3D points in the local map
are projected by a predictive motion model, the most similar

16818 VOLUME 8, 2020

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

FIGURE 1. The overview of our proposed system.

features are searched in a local area in the current frame via
guided matching. The pose estimation is computed by EPnP
algorithm from detected correspondences [39], the quantity
and quality of correspondences in fact indicates if we have
a good pose estimation. The quantity of correspondences
between the current frame and the last frame is low, that
means we have a bad matching, then the state of the robot
is thought of being lost. We maintain a local sparse model
to improve the consecutive tracking estimation. Our sparse
model consist of 3D local map points and a local covisibility
graph, which is continuously updated while a new keyframe
is creating and culling. If the optimized camera pose of the
last keyframe is received from the local computing cloud and
if it is in the covisibility graph, the connected camera poses
and 3D map points will be optimized in local Bundle Adjust-
ment (LBA). In the following subsection, we will describe
the details of keyframes selection, local model update
and LBA.

A. KEYFRAME SELECTION
The framerate of stream from RGB-D cameras is about
25 frames per second. These frames contain a number of
redundant information, so a lot of visual SLAM algorithms
are based on keyframes, which are selected in an appropriate
way. In our system when a frame is selected as a keyframe,
it will be sent to the local computing server, so the keyframe
selection is a crucial step. If too many frames are selected,
it would bring much pressure to network transmission. If too

few frames are selected, we can not have an effective recon-
struction for the whole system. So it is not an uniform time
selection, and we need to balance keyframe selection and
network transmission. Under the demand of limited network
bandwidth, we select keyframes as many as possible by the
following rules:
C1: ID of current frame is δ1 greater than ID of last

keyframe;
C2: The ratio between the number of inliers and the number

of all ORB features in current frame is less than δ2;
C3: The difference of the camera pose vectors between

current frame and its closest keyframe in Euclidean space is
greater than δ3;
C4: Tracking fails.
Where δ1, δ2, δ3 are three thresholds set in advance.

We take the following rule to select keyframe:
If (C1 and C2) or C3 or C4, then selected.
In the above expression, we can see for two consecu-

tive keyframes, they will not overlap much controlled by
C1 and C3. Condition C2 controls the matching quality
of two consecutive keyframes. Once the rule is satisfied,
the keyframe is used to build a local model on the robot side,
at the same time it is sent to the local computing center for
dense mapping.

B. LOCAL MODEL UPDATE
Our local model L includes 3D map points LP and a local
covisibility graph LG. The covisibility graph is a undirect

VOLUME 8, 2020 16819

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

weighted graph built on the keyframes [11], in which each
node represents a keyframe, and each edge between nodes
represents if points can be observed in both nodes, weighted
by the number of points. If the edge with a weight greater than
a threshold β is regarded as a valid edge, and retained in the
graph, otherwise deleted, to reduce complexity of the graph.
Assume client robots have limited space and limited compu-
tation ability. It only allows to keep a local covisibility graph
and local map points from a limited number of keyframes.
Once a keyframe is determined, it will be added into the
covisibility graph. And we also take some strategies to cull
keyframes from the covisibility graph. Instead of taking the
consecutive frames in a sliding window, we employ a flexible
way to cull a keyframe in a dynamic window by the following
steps:

1) when a new keyframe is determined, a counter C[n]
is set for the keyframe (initially set as 0), where n is the
index of the keyframe in LG. New local map points from
the nth keyframe are created by triangulating ORB fea-
tures from the connected keyframes in the local covisibil-
ity graph [11]. Before doing LBA, let C[i] = C[i] +
1, i = 1, . . . , n, we will give the details of LBA in the
subsection IV-C.

2) If 3D points and keyframes optimized in LBA can be
seen by K keyframes, assume S is the index set for the K
keyframes, then after doing LBA, the count numbers associ-
ated with the K keyframes do C[k] = C[k]−1, for all k ∈ S.

3) When the count number C[r] is greater than a thresh-
old δ4, then culling the r th keyframe from the covisibility
graph, and also culling these map points can be seen uniquely
in the r th keyframe.
In fact, the count numbers measure how important

keyframes to the current frame. If the number is big, it indi-
cates less important, since we do not optimize the keyframe
in LBA for a while, when it is bigger than the threshold
δ4, then culling from the covisibility graph. This strategy is
useful to keep the local map and the covisibility graph in
a limited size, and it is also able to handle the loopy case
easily.

C. LOCAL BUNDLE ADJUSTMENT
When the optimized camera pose T ot1 corresponding to the
keyframe Tt1 is received by the client, assume the current
frame Ttc is selected as the keyframe at the moment. Then
keyframe Ttc is added to the covisibility graph. Before doing
LBA, if the keyframe Tt1 still exists in the covisibility graph
(one case is that it may be culled out from the covisibility
graph in subsection IV-B), all poses from the keyframe Tt1
to the current keyframe Ttc in the covisibility graph multiply
the transformation matrix T−1t1 T ot1 . Then LBA [40] helps to
optimize camera poses of the current keyframe with its con-
nections in covisibility graph, and 3D points in sparse map.
This step enables the tracking thread to reduce the trajectory
drift. Even if there are some optimized poses lost due to the
network loss, the optimized camera poses will help since we
maintain the local model.

V. DENSE MAPPING ON LOCAL COMPUTING SERVERS
Dense map is full of appearance and geometric information
beyond sparse map, and it is meaningful for many applica-
tions, for example, robot path planning, indoor navigation.
Once keyframes are received continuously from the robot
clients, the dense map is incrementally built in the computing
center cloud. In order to implement real-time dense mapping,
we apply CPU-GPU hybrid programming.

We maintain a sparse model S , a dense model D and
a visual database B through the whole processing on the
local computing cloud. The sparse model is mainly from
feature-based estimation, includes a global sparse point
map Sp, a covisibility graph SG, and a color images Sc. It is
denoted as follows,

S = {Sp,SG,Sc} (1)

The sparse model will be updated continuously in the local
mapping and the loop correction parts.

The dense model is used for dense mapping, which
includes a global dense map M, a dense normal map N,
a confidence map C and key depth images Dd , and it is
represented as,

D = {M,N,C,Dd } (2)

The depth images are accumulated into the dense map with
the normal map and confidencemap. The densemodel will be
updated incrementally in the 3D dense map fusion and dense
map update parts.

The visual database is built incrementally for relocalization
and loop closing, which records where the robot client has
gone [32]. It includes a vocabulary tree and inverse index
table for fast searching images according to words, where a
ORB vocabulary dictionary is learnt ahead.

A. KEYFRAME TRACKING
Our keyframe is a RGB-D frame, we consider motion track-
ing on both RGB keyframe and depth keyframe in this paper.
When a keyframe is received by the local computing cloud
and the attached flag is detected as 0, features are first
extracted from RGB frames, and matched with the previous
three keyframes. Then the current camera pose is estimated
by EPnP algorithm [39].

If the attached flag is detected as 1, that means the camera
tracking on the robot client is lost. Further, if it can not find
a reliable candidate from visual relocalization, that means
visual relocalization fails, then depth tracking is employed
to register the depth keyframe with the dense model. This
happens when there are few visual features or images with
low quality features. If we know the last camera pose, wemay
project the last depth frame from the global depth map.
Assume the current depth frame is transformed into the global
coordinate with T , we take the following function as the
objective to minimize the point-to-plane error metric [48]:

Eicp =
∑
u

||(TMi(u)−Mg
i−1(u)) · N

g
i−1(u)||

2, (3)

16820 VOLUME 8, 2020

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

where T is the transformation matrix to the global coordinate.
Mi(u) denotes the depth at u of the current ith image, and
Mg

i−1(u) denotes the depth at u of the (i − 1)th projective
image in the global coordinate. Ng

i−1(u) denotes the normal
map ofMg

i−1(u). And once T is optimized over by the objec-
tive function, the camera pose associated with visual lost
keyframe is estimated. Then the camera depth image can be
registered with the dense map through the pose. And the pose
would be sent to the client as well if it has a low error value.

B. LOCAL MAPPING
When the keyframe with a zero flag is received, a new node
will be created in the covisibility graph for the keyframe.
In the local mapping part, we optimize the current keyframe
with its connect keyframes in the covisibility graph, and all
3D points observed in these keyframes by local BA. To keep
the 3D points in the sparse map as accurate as possible,
we take the similar strategies as the processing in [11] in
term of map points culling, new point creation and keyframe
culling. The optimized camera pose associated with the cur-
rent keyframe would be sent back to the robot client to correct
the localization of the robot.

C. LOOP DETECTION AND CORRECTION
Loop closing is always a critical step in SLAM, it is able to
effectively suppress the trajectory drift with loop constraints.
When a keyframe is received, it would be detected if it is
a loop in parallel by DBoW2 [32]. If it has multiple loop
candidates, it is determined as a loop stably, the loop cor-
rection is activated. Assume the keyframe is denoted by Ki,
and the matching candidate from the database is denoted
by Kc. The relative transformation Tic between Ki and Kc is
used to correct the current keyframe, all its neighbors in the
covisibility graph and the 3D points seen by the keyframe
and all its neighbors. When the loop frame is detected and
added to the covisibility graph, the covisibility graph would
be updated by adding more edges if the keyframes satisfy
the condition of covisibility graph. In order to speed up the
optimization, we build Essential graph as in [11]. All 3D
points and the camera poses in Essential graph are optimized
in global BA.

D. DENSE MAP FUSION
In our dense map fusion part, the depth image is incremen-
tally fused into a dense map frame by frame in real-time
performance. For the dense map fusion, we not only add
more points in the dense map, but also process point ghosts.
We set a confidence number ck for each point in the global
map, which is initially set as 0. When a point u merged with
the point pk in the global model, we increase the confidence
number ck . We first project the points of the global modelM
with the current camera pose estimated from subsection V-A,
where the point index k is recorded, and associate the points
in the current frame with the global map by nearest neighbor.
In order to create a precise dense map, we also discard the

points with large distance or large angle between the point
and merged candidates, and remain the points with high
confidence number. Then we take the point averagingmethod
of the work to fuse the new depth image with the dense map
incrementally with a strict outlier removal strategy [7]. If a 3D
point observed across multiple depth frames, it would have a
big confidence number, and the point fusion in the global map
would be effected by theweighted sum of all these points. The
main map fusion steps are as follows,

Mp
k =

ckM
p
k + αM

c
k (u)

ck + α
,

Np
k =

ckN
p
k + αN

c
k

ck + α
,

ck = ck + α, (4)

Mp
k denotes the kth point in the current depth projection from

the dense map M, and Mc(u) denotes the current depth at
position u, ck is the confidence weight stored in the confi-
dence map, and α is the update weight set as a gaussian func-

tion e−
(γ 2+d2)

2δ2 , in which γ is the normalized radial distance of
the current depth measurement from the camera center, and d
is a normalized effective distance factor.N denotes the normal
map, which is used in the keyframe tracking as well. As the
points in Mp and Np in Equ.4 are updated, then the current
depth image are fused into the dense modelMp, and the dense
model becomes larger gradually.

E. SPARSE AND DENSE MODEL UPDATE
Since the loop correction significantly improves the camera
pose estimation, so the camera poses in our sparse model
are optimized with the global constraints while a loop is
detected, then the sparse map is updated accordingly. When
the optimization of camera poses reaches a stable state finally,
the dense map is rebuilt according to the final optimized
camera poses and the depth keyframes in the dense model.
We use subsection V-D to recreate a more precise dense map
with GPU in a single thread.

VI. DENSE 3D MAP COMPRESSION AND SHARING
ON PRIVATE CLOUD
Once a 3D dense map reconstruction finishes on the local
cloud, it is uploaded to the private cloud for storage and
sharing. This holds two benefits: 1) reduce the storage con-
sumption on computing servers; 2) easy to share the 3D dense
map with other clients. In fact uploading and downloading
of dense maps between local computing cloud and private
cloud does not require the real-time performance. In order to
reduce the pressure of network communication and storage
space, we compress the 3D maps with the Octree point cloud
compression algorithm [49], then the compressed dense map
is uploaded and stored on the private cloud. The Octree
compression algorithm is a 0-1 coding algorithm, which is
based on an octree decomposition of space, and achieve high
compression rate.

VOLUME 8, 2020 16821

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

FIGURE 2. The structures defined for data transport between the client
and the server. The network consumption of the data is mainly from
image data uploading.

VII. EXPERIMENTAL RESULTS AND ANALYSIS
We evaluate our system on the indoor datasets, and also test
our system in five different real indoor scenarios. We take
the robot ’Hori’ built by ourselves as the client, which has
a laptop with Intel Core (i5-3210, 2.5GHz, 4G RAM, and
no GPU). Our local computing cloud is a server with Intel
Core (i7-4790, 4GHz, 16G RAM) and a stand-alone GPU
(NVIDIA GTX970). The robot and the local cloud are con-
nected via WiFi-5G network. The whole system is built on
ROS. We keep the parameters the same in all experiments
(δ1 = 10, δ2 = 0.55, δ3 = 0.25, δ4 = 150, β = 50). For our
real scenarios, an ASUSXtion RGB-D camera is equipped on
Hori to capture RGB-D data and perceive its surrounding. Our
cloud SLAM system runs online to reconstruct dense maps.

A. DATA TRANSMISSION BETWEEN THE ROBOT
AND THE LOCAL CLOUD
We first introduce the structure for data transmission between
the client and the local cloud. Time stamp is utilized as
identification, then color image and depth image are attached.
A 7D vector represents pre-estimate pose includes rotation in
quaternion and translation. The last flag represents the state
of the robot. Fig. 2(a) and (b) shows the data structures used in
our system. As we can see, network bandwidth is consumed
mainly by image data. Since we only send keyframes, so the
network burden is reduced significantly as the work [2], [3].

B. VISUAL ODOMETRY EVALUATION ON THE
TUM RGB-D DATASET
TUM dataset is a RGB-D SLAM benchmark, provided
by Computer Vision Group of Technique University
Munchen [33]. It consists of RGB-D data captured by
Microsoft Kinect sensor (the first generation) and ground
truth obtained by a high-accuracy motion-capture system
with eight high-speed tracking cameras for evaluating visual
odometry and visual SLAM system. We first test visual
odometry of our system on the robot side.

ORB-SLAM2 is a real-time state-of-the-art system run-
ning on a single computer [11]. We compare our system
with ORB-SLAM2 on 20 sequences of the TUM RGB-D
benchmark to evaluate camera tracking. And we also report
camera tracking on the robot without the optimized poses
received from the computing cloud, because camera tracking
without the optimized poses was employed in the existing

TABLE 1. Tracking error comparison on the robot client in TUM RGB-D
benchmark (Unit: m).

cloud SLAM frameworks [2], [3]. The table 2 reports the
root-mean-square error (RMSE) of trajectory recovery on
the robot client. In all sequences, the tracking in our system
provides comparable results with ORB-SLAM2. And ORB-
SLAM2 and our system show better performance than the
results without the local cloud optimization. Because we have
keyframe optimization on the local computing cloud, and the
drift of trajectories is controlled effectively.

We also report the camera localization for keyframes of
our system running on the local computing cloud server
in Table 2. From the table, we can see that our system achieves
comparable performance with ORB-SLAM2. Although we
have more keyframes generated, this part in our system runs
on the local computing cloud, so the processing speed is not a
problem at all. Moreover, our algorithm requires less memory
and less computing consumption on the robot, which can
be implemented on embedded system. We will evaluate the
memory requirement in the subsection VII-E.

C. MAP EVALUATION ON ICL-NUIM DATASET
We evaluate 3D map reconstruction generated from our sys-
temwithDVOSLAMsystem [5], RGB-DSLAMsystem [33]
and ElasticFusion [6] on ICL-NUIM dataset. The ICL-NUIM
dataset is a resent released dataset by Handa et al. of Imperial
College London and National University of Ireland [42].
This dataset does not only provide ground truth poses for
benchmarking visual odometry but also for the 3D surface
reconstruction to evaluate surface reconstruction accuracy.
Because only the four sequences of Living room have 3D sur-
face ground truth, and the rest four sequences in office room
scene do not have 3D model with it. So all four sequences
in the living room scene are used to evaluate mapping in

16822 VOLUME 8, 2020

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

TABLE 2. Camera pose estimation comparison for keyframes in TUM
RGB-D benchmark (Unit: m).

TABLE 3. Comparison of 3D reconstruction accuracy on the evaluated
synthetic datasets of [42].

our system. Table 3 summarizes 3D map reconstruction
result. The numbers in the table are the mean distances from
each point to the nearest in the ground truth model. It is seen
that our 3D reconstruction results are superior to all other
systems in the four sequences. The ’lr kt3’ triggers a global
loop closure in our system, so the results from our system is
significantly improved compared with other methods. Note
that the number of map points from our system might be less
than ElasticFusion due to the fact that the dense mapping
running on the local cloud server not on the sequential frames
but on keyframes.

D. PERFORMANCE ON THE REAL DATA
The five real scenes data captured by our robot includes
Exhibition room, Apartment 1, Apartment 2, Workspace, and
Lab. The details of the datasets are reported in Table 4. The
first row shows the duration of the sequences, the second row
shows the total number of frames. The last row reports the
number of keyframes selected and sent to the local comput-
ing cloud by our system. Fig. 3 (a)(b)(c)(d)(e) shows some
example images from the real data in the view of the robot.
Since we do not have ground truth, we only qualitatively

TABLE 4. Details of our real sequences.

FIGURE 3. Example images of five real scenes.

compare the dense mapping results with ElasticFusion [6].
Fig. 4, Fig. 5 and Fig. 6 shows the dense maps reconstructed
by ElasticFusion and our proposed system in three different
views. The first row of Fig. 4(a)(b), Fig. 5(a)(b) and Fig. 6(a)
shows the results of ElasticFusion in three different views.
The second row in each are produced by our systems in top
view, horizontal side view and tilted view, respectively. From
the details of the maps we can see, our method produces more
accurate dense maps than ElasticFusion, because we have
flatter floors, andmore square rooms for all of five sequences.
We print robot trajectories produced by our method on the
dense maps in green as well.

E. MEMORY EVALUATION ON THE ROBOT
One benefit of our system is that we only require a very low
memory load in the robot client since we remove the comput-
ing and memory consumption to the local computing cloud.
In the subsection, we analyze the memory load on the client
side to demonstrate the advantage of our system. We com-
pare our memory consumption with ORB-SLAM2 algo-
rithm on the longest sequence of the real data Apartment 2,
which has 15545 frames totally. Fig. 7(a) shows the memory
load comparison result. The axis x denotes the frame ID,
the axis y denotes the number of points. The red line is
from ORB-SLAM2, and the green line is generated from our
system. Aswe can see, thememory load goes up as the frames
processed in ORB-SLAM2 algorithm, but the memory load
always keeps in a limited size in our system since we only
maintain a local limited model with local constraints. But our
system does not suffer from the performance degeneration,
that is because the optimized camera poses from the local
cloud server exert the effect on the trajectories on the robot
client.

VOLUME 8, 2020 16823

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

FIGURE 4. 3D dense map generated by ElasticFusion and our proposed system on Exhibition Room and Apartment 1 in three different
views. (a) shows the comparison results on Exhibition Room, (b) shows the comparison results on Apartment 1. The first row
of (a)(b) show the results of ElasticFusion in three different views. The second row of (a)(b) are produced by our systems in top view,
horizontal side view and tilted view, respectively. The green trajectories in the dense map are the camera poses generated by our
system.

16824 VOLUME 8, 2020

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

FIGURE 5. 3D dense map generated by ElasticFusion and our proposed system on Apartment 2 and Workspace in three different views.
(a) shows the comparison results on Apartment 2, (b) shows the comparison results on Workspace. The first row of (a)(b) show the
results of ElasticFusion in three different views. The second row of (a)(b) are produced by our systems in top view, horizontal side view
and tilted view, respectively. The green trajectories in the dense map are the camera poses generated by our system.

VOLUME 8, 2020 16825

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

FIGURE 6. 3D dense map generated by ElasticFusion and our proposed system on Lab in three different views. The first row show the results
of ElasticFusion in three different views. The second row are produced by our systems in top view, horizontal side view and tilted view,
respectively. The green trajectory in the dense map is the camera poses generated by our system.

FIGURE 7. Memory load comparison for sequence Apar. 2 between
ORB-SLAM2 and ours.

F. NETWORK DELAY ANALYSIS BETWEEN THE
ROBOT AND THE LOCAL CLOUD
One of the big problems for the cloud visual SLAM is to treat
network delay between the robot and the local computing
cloud server. In this subsection, we analyze the network delay
of our system in detail for the application of indoor service
robot. In our experimental setup, the robot client is connected
with a 5G WiFi router, and the router is connected with
the local computing cloud server with a cable, which is a
very common LAN. We observe that the most network delay
comes from the robot and the router via wireless transmission,
and there only exists very few network delay between the
router and the local cloud server. Our system has a real-time
tracking on the robot (around 25 fps), and optimized camera
poses associate with keyframes from the cloud are used to

correct tracking trajectory through the optimization in local
BA. As long as the optimized camera pose is in the local
sparse model, it exerts an effect on the tracking. The ratio
between the keyframes and the frames in five real data is
reported in the last row of Table 4, which shows it is nearly
2 keyframes selected per second. In most of the time, assume
we maintain about 100 keyframes in the local model on the
robot, which means the optimized camera pose could be
the keyframe sent about 50s− ago. Of course, the closer to
the current keyframe in the local sparse model is, the bigger
effect it has.

In order to demonstrate how our system is able to bear
the network delay of LAN, we do the experiments as fol-
lows. We measure the keyframe processing time on local
computing cloud denoted by T2 and the duration denoted by
T1 between the moment of a keyframe being sent and the
moment of an optimized pose received on the robot client.
So T1 − T2 is the total data transmission time between the
robot and the local server, includes the time of a keyframe
uploading and the time of the pose downloading. Fig.8 shows
the measurement results in the five real dataset. The biggest
of keyframe processing time T1 on local computing cloud is
below 25 ms with GPU, and the most of data transmission
time between the robot and the local cloud is about 200 ms,
which is thought of as an approximated estimation of the
network delay. As we can see, there are few keyframes with
a very high network delay in most of the data. The network
delay on Exhibition Room is much lower than the rest of the
data, this is because the Exhibition Room is a single room

16826 VOLUME 8, 2020

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

FIGURE 8. Network delay measurement and analysis. T1 denotes the duration between the moment of a keyframe being
sent and the moment of a optimized pose returning on the robot client. T2 denotes the keyframe processing time on the
local computing cloud. T1 − T2 can be thought of as an approximation for network delay.

TABLE 5. Map compression comparison.

with 8 × 9 m2. Apartment 1, Apartment 2 and Workspace
have multiple rooms, so WiFi signals could be not good as
the in Exhibition Room. Lab is a much bigger open space but
it is not a standard rectangle, so WiFi signal in part of the
space could be blocked somehow. The network delay in Lab
is bigger than Exhibition Room, but shorter than the scenarios
with multiple rooms. However, even the network delay is up
to 1.8s, our system is still able to bear and run successfully.

G. MAP COMPRESSION AND TRANSMISSION BETWEEN
THE LOCAL CLOUD AND THE PRIVATE CLOUD
We use Octree point cloud compression algorithm before
data transmission. We set three different compression res-
olution parameters for the algorithm — 1 cm3 resolution,

5mm3 resolution, and 1mm3 resolution. 1mm3 is the highest
resolution, it produces the highest compression ratio with
the highest reconstruction precision. Table 5 shows the map
compression comparison results. Even the number of points
is up to 1 million, it only takes less than 1s of compression
time. And through the compression processing, the map size
is reduced significantly compared with the original map size
with limited reconstruction error. The compressed map is
used to upload to the private could and store.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we present an online cloud visual SLAM sys-
tem which is suitable for LAN environment. Our system
is different from ORB-SLAM2 in the following aspects:

VOLUME 8, 2020 16827

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

1) ORB-SLAM2 is a real-time system on single PC, while
our system, considering the network delay, is a real-time
system on a network framework. It distributes the sparse
tracking and dense mapping separately in the robot client
and the local computing cloud. 2) ORB-SLAM2 does not
output dense map explicitly, but our system does. 3) We have
different keyframes selection strategies. More keyframes are
sent to the local cloud,more accuratemap is built, but requires
more bandwidth for the real-time performance. Our keyframe
selection is denser, and we balance the bandwidth volume
and 3D map reconstruction accuracy. 4) In the tracking of
the robot client, we maintain a local model for local opti-
mization with the updates from cloud side to reduce drift of
tracking part, and provide a dynamic selection strategy for the
local model. 5) In the dense mapping, we apply not just the
feature-based reconstruction, but also a depth registration to
enhance keyframe tracking.

Moreover, the map centric method — ElasticFusion can
build dense map with the consecutive depth frames, but we
build dense map only up to depth keyframes, and the accu-
racy of our dense map is higher than ElasticFusion from the
quantitative evaluation.

With a robust visual odometry running on the robot,
an accurate dense map is generated on the local computing
cloud, our system can be used to reduce the cost of the robot
client potentially. And it is easy to share the dense map on
the private cloud with different clients. As all we know, our
system is resistant to the network delay of LAN, so it provides
an effective vSLAM solution for indoor service robots. Our
future work is to extend our cloud SLAM system to outdoor
environments, and make the system applicable to a larger
scale area, which can be used in such as intelligent vehicles.

ACKNOWLEDGMENT
(Yali Zheng and Shinan Chen contributed equally to this
work.) Shinan Chenwaswith the School of Automation Engi-
neering, University of Electronic Science and Technology of
China, Chengdu 611731, China.

REFERENCES
[1] T. Lemaire, C. Berger, I.-K. Jung, and S. Lacroix, ‘‘Vision-based SLAM:

Stereo and monocular approaches,’’ Int. J. Comput. Vis., vol. 74, no. 3,
pp. 343–364, Jul. 2007.

[2] L. Riazuelo, J. Civera, and J. Montiel, ‘‘C2TAM: A cloud framework for
cooperative tracking and mapping,’’ Robot. Auto. Syst., vol. 62, no. 4,
pp. 401–413, Apr. 2014.

[3] G. Mohanarajah, V. Usenko, M. Singh, R. D’andrea, and M. Waibel,
‘‘Cloud-based collaborative 3D mapping in real-time with low-cost
robots,’’ IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 423–431,
Apr. 2015.

[4] H. Bistry and J. Zhang, ‘‘A cloud computing approach to complex robot
vision tasks using smart camera systems,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Oct. 2010.

[5] C. Kerl, J. Sturm, and D. Cremers, ‘‘Dense visual SLAM for RGB-D
cameras,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Nov. 2013.

[6] T. Whelan, S. Leutenegger, R. Salas Moreno, B. Glocker, and A. Davison,
‘‘ElasticFusion: Dense SLAM without a pose graph,’’ in Proc. Robot., Sci.
Syst. XI, Jan. 2016.

[7] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb,
‘‘Real-time 3D reconstruction in dynamic scenes using point-based
fusion,’’ in Proc. Int. Conf. 3D Vis., Jun. 2013.

[8] A. Davison and D. Murray, ‘‘Simultaneous localization and map-building
using active vision,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 865–880, Jul. 2002.

[9] P. Smith, I. Reid, and A. J. Davison, ‘‘Real-time monocular SLAM with
straight lines,’’ in Proc. Brit. Mach. Vis. Conf. (BMVC), 2006.

[10] N. Molton, A. Davison, and I. Reid, ‘‘Locally planar patch features for
real-time structure from motion,’’ in Proc. Brit. Mach. Vis. Conf. (BMVC),
2004.

[11] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, ‘‘ORB-SLAM: A versa-
tile and accurate monocular SLAM system,’’ IEEE Trans. Robot., vol. 31,
no. 5, pp. 1147–1163, Oct. 2015.

[12] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ‘‘ORB: An efficient
alternative to SIFT or SURF,’’ in Proc. Int. Conf. Comput. Vis. (ICCV),
Nov. 2011.

[13] D. Zou and P. Tan, ‘‘CoSLAM: Collaborative visual SLAM in dynamic
environments,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 2,
pp. 354–366, Feb. 2013.

[14] C. Mei, G. Sibley, and P. Newman, ‘‘Closing loops without places,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2010.

[15] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, ‘‘MonoSLAM:
Real-time single camera SLAM,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 29, no. 6, pp. 1052–1067, Jun. 2007.

[16] G. Klein and D. Murray, ‘‘Parallel tracking and mapping for small AR
workspaces,’’ in Proc. IEEE ACM Int. Symp. Mixed Augmented Reality,
2007.

[17] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, ‘‘A tutorial
on graph-based SLAM,’’ IEEE Intell. Transp. Syst. Mag., vol. 2, no. 4,
pp. 31–43, 2010.

[18] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, ‘‘DTAM: Dense
tracking and mapping in real-time,’’ in Proc. Int. Conf. Comput. Vis.,
Nov. 2011.

[19] J. Engel, T. Schöps, and D. Cremers, ‘‘LSD-SLAM: Large-scale direct
monocular SLAM,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014,
pp. 834–849.

[20] C. Kerl, J. Stuckler, and D. Cremers, ‘‘Dense continuous-time tracking and
mapping with rolling shutter RGB-D cameras,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015.

[21] X. Qi, S. Yang, and Y. Yan, ‘‘Deep learning based semantic labelling of 3D
point cloud in visual SLAM,’’ in Proc. IOP Conf. Ser., Mater. Sci. Eng.,
vol. 428, Oct. 2018, Art. no. 012023.

[22] S. Milz, G. Arbeiter, C. Witt, B. Abdallah, and S. Yogamani, ‘‘Visual
SLAM for automated driving: Exploring the applications of deep learn-
ing,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Work-
shops (CVPRW), Jun. 2018.

[23] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, ‘‘A survey of research on
cloud robotics and automation,’’ IEEE Trans. Autom. Sci. Eng., vol. 12,
no. 2, pp. 398–409, Apr. 2015.

[24] J. Zhang and S. Singh, ‘‘Visual-lidar odometry and mapping: Low-
drift, robust, and fast,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2015.

[25] M. Wu, F. Huang, L. Wang, and J. Sun, ‘‘Cooperative multi-robot
monocular-SLAM using salient landmarks,’’ in Proc. Int. Asia Conf.
Inform. Control, Autom. Robot., Feb. 2009.

[26] P. Benavidez,M.Muppidi, P. Rad, J. J. Prevost,M. Jamshidi, and L. Brown,
‘‘Cloud-based realtime robotic Visual SLAM,’’ in Proc. Annu. IEEE Syst.
Conf. (SysCon), Apr. 2015.

[27] R. Limosani, A. Manzi, L. Fiorini, F. Cavallo, and P. Dario, ‘‘Enabling
global robot navigation based on a cloud robotics approach,’’ Int. J. Soc.
Robot., vol. 8, no. 3, pp. 371–380, Jun. 2016.

[28] D. Hunziker, M. Gajamohan, M. Waibel, and R. D’andrea, ‘‘Rapyuta:
The RoboEarth cloud engine,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 2013.

[29] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran,
F. F. Kong, A. S. Kumar, K. D. Meng, and G. W. Kit, ‘‘DAvinCi: A cloud
computing framework for service robots,’’ in Proc. IEEE Int. Conf. Robot.
Autom., May 2010.

[30] P. Zhang, H. Wang, B. Ding, and S. Shang, ‘‘Cloud-based framework for
scalable and real-time multi-robot SLAM,’’ in Proc. IEEE Int. Conf. Web
Services (ICWS), Jul. 2018.

[31] H. Yu, H. Li, and Z. Yang, ‘‘Collaborative visual SLAM framework for a
multi-UAVs system based on mutually loop closing,’’ in Proc. Int. Conf.
Wireless Satell. Syst., 2019, pp. 653–664.

16828 VOLUME 8, 2020

Y. Zheng et al.: Real-Time Cloud vSLAM for Indoor Service Robots

[32] D. Galvez-López and J. D. Tardos, ‘‘Bags of binary words for fast place
recognition in image sequences,’’ IEEE Trans. Robot., vol. 28, no. 5,
pp. 1188–1197, Oct. 2012.

[33] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, ‘‘A bench-
mark for the evaluation of RGB-D SLAM systems,’’ inProc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Oct. 2012.

[34] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. Mcdonald,
‘‘Robust real-time visual odometry for dense RGB-D mapping,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2013.

[35] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof, ‘‘Dense
reconstruction on-the-fly,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2012.

[36] A. Favenza, C. Rossi, M. Pasin, and F. Dominici, ‘‘A cloud-based approach
to GNSS augmentation for navigation services,’’ in Proc. IEEE/ACM 7th
Int. Conf. Utility Cloud Comput., Dec. 2014.

[37] D. Portugal, B. D. Gouveia, and L. Marques, ‘‘A distributed and multi-
threaded SLAM architecture for robotic clusters and wireless sensor net-
works,’’ in Cooperative Robots and Sensor Networks. 2015, pp. 121–141.

[38] A. J. Davison, ‘‘Real-time simultaneous localisation and mapping with a
single camera,’’ in Proc. 9th IEEE Int. Conf. Comput. Vis. (ICCV), 2003.

[39] V. Lepetit, F. Moreno-Noguer, and P. Fua, ‘‘EPnP: An accurate O(n) solu-
tion to the PnP problem,’’ Int. J. Comput. Vis., vol. 81, no. 2, pp. 155–166,
Feb. 2009.

[40] M. I. A. Lourakis and A. A. Argyros, ‘‘SBA: A software package for
generic sparse bundle adjustment,’’ ACM Trans. Math. Softw., vol. 36,
no. 1, pp. 1–30, Mar. 2009.

[41] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, andW. Burgard, ‘‘G2o:
A general framework for graph optimization,’’ in Proc. IEEE Int. Conf.
Robot. Automat., May 2011.

[42] A. Handa, T. Whelan, J. Mcdonald, and A. J. Davison, ‘‘A benchmark for
RGB-D visual odometry, 3D reconstruction and SLAM,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2014.

[43] R. Schnabel and R. Klein, ‘‘Octree-based point cloud compression,’’ in
Proc. Eurograph. Symp. Point-Based Graph., 2006.

[44] P. Liu, L. Heng, T. Sattler, A. Geiger, and M. Pollefeys, ‘‘Direct visual
odometry for a fisheye-stereo camera,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2017.

[45] A. Concha and J. Civera, ‘‘RGBDTAM: A cost-effective and accurate
RGB-D tracking andmapping system,’’ inProc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2017.

[46] X. Zuo, X. Xie, Y. Liu, and G. Huang, ‘‘Robust visual SLAM with point
and line features,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Sep. 2017.

[47] L. Han, G. Zhou, L. Xu, and L. Fang, ‘‘Beyond SIFT using binary features
in loop closure detection,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017.

[48] S. Izadi, A. Davison, A. Fitzgibbon, D. Kim, O. Hilliges, D. Molyneaux,
R. Newcombe, P. Kohli, J. Shotton, S. Hodges, and D. Freeman, ‘‘Kinect-
Fusion: Real-time 3D reconstruction and interaction using a moving depth
camera,’’ in Proc. 24th Annu. ACM Symp. User Interface Softw. Tech-
nol. (UIST), 2011.

[49] R. Schnabel and R. Klein, ‘‘Octree-based point-cloud compression,’’ in
Proc. 3rd Eurograph. Symp. Point-Based Graph., 2006, pp. 111–121.

YALI ZHENG (Member, IEEE) was born in 1980.
She received the Ph.D. degree from Chongqing
University, China, in 2012. She joined the School
of Automation Engineering, University of Elec-
tronic Science and Technology of China, in 2013.
She is currently an Associate Professor and leads
the Vision Measuring and Learning Laboratory,
UESTC. Her research interests include computer
vision, machine learning, and pattern recogni-
tion, especially on multiple-view geometry theory,

graph matching, deep learning, and their applications in industry fields.

SHINAN CHEN was born in Hainan, China,
in 1995. He received the B.S. and M.S. degrees
in automation engineering from the University
of Electronic Science and Technology of China,
Chengdu, China, in 2014 and 2017, respectively.
Then, he joined Netease Company, China, as a
Software Algorithm Engineer. He is interested in
computer vision, especially in visual SLAM.

HONG CHENG (Senior Member, IEEE) received
the Ph.D. degree in pattern recognition and intel-
ligent systems from Xian Jiaotong University,
in 2003. He was a Visiting Scholar with the School
of Computer Science, CarnegieMellon University,
USA, from 2006 to 2009. He has been an Exec-
utive Director of the Center for Robotics, since
2014, has been with UESTC, since 2010, and has
been an Associate Professor with Xian Jiaotong
University, since 2005. He is currently a Full Pro-

fessor with the School of Automation and Engineering, University of Elec-
tronic Science and Technology of China (UESTC). He has over 100 academic
publications, including two books: Digital Signal Processing (Tsinghua
University Press, 2007) and Autonomous Intelligent Vehicles: Theory, Algo-
rithms and Implementation (Springer, 2011). His current research interest
includes machine learning in human–robot hybrid systems. He served/is
serving as a General Chair of VALSE 2015, a Program Chair of CCPR 2016,
and a General Chair for CCSR 2016.

VOLUME 8, 2020 16829

