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ABSTRACT Estimation of Remaining Useful Life (RUL) is a crucial task in Prognostics and Health
Management (PHM) for condition-based maintenance of machinery. In order to transmit and store the
sensor data for archiving and long term analysis, data compression techniques are regularly used to reduce
the requirements of bandwidth, energy and storage in modern remote PHM systems. In these systems the
challenge arises of how the compressed sensor data affects the RUL estimation algorithms. Amain drawback
of conventional statistical modeling approaches is that they require expert prior knowledge and a significant
number of assumptions. Alternative regression based approaches and deep neural networks are known
to have issues when modeling long-term dependencies in the sequential data. Recently Long Short-Term
Memory (LSTM) neural networks have been proposed to overcome these issues and in this paper we create
a LSTM network and data fusion approach that can estimate the RUL with compressed (distorted) data. The
experimental results indicate that the proposed method is able to estimate RUL reliably with narrower error
bands compared to other state-of-the-art approaches. Moreover, the proposed method is able to predict RUL
from both the raw and compressed datasets with comparable accuracy.

INDEX TERMS
Machine health monitoring, remaining useful life (RUL), long-short termmemory, recurrent neural network,
data compression.

I. INTRODUCTION
Prognostics and engineering maintenance of complex
machinery, such as aero-engines, gearboxes or power gen-
eration systems, are crucial and expensive tasks. Failures
in machine structural integrity can be a significant con-
tributor to increased running costs, unplanned outages and
even catastrophic events in machines. With increasing sys-
tem complexity, conventional scheduled preventive mainte-
nance processes are becoming less capable of meeting the
increasing industrial efficiency demands. Condition-based
monitoring using intelligent prognostic and health manage-

The associate editor coordinating the review of this manuscript and

approving it for publication was Nagarajan Raghavan .

ment (PHM) technologies is capable of reducing risks and
maintenance costs and increasing the reliability, availability
and efficiency of machines. The estimation of remaining
useful life (RUL) in machines is essential in PHM systems
to improve the efficiency of maintenance schedules, avoid
engineering failures and implement cost savings.

In general, the major task of RUL estimation is to pre-
dict the time left before the machinery losses its operational
ability based on the information of the historical time-series
sensors data which is obtained by the condition monitoring
system [1], [2]. The existing methods of RUL estimation
can be categorized into four groups: physics model-based
approaches, statistical-based approaches, machine learning
based approaches and hybrid approaches. In order to facilitate
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these approaches, continuous streams of raw data are rou-
tinely captured by the condition monitoring systems with
high precision requirements. The storage of high precision
floating point data is costly, and a high bandwidth data
throughput is required to transfer the data from the sensor
to the central monitoring station. This is currently addressed
by applying algorithms that produce low bandwidth condi-
tion indicators in the process discarding raw data. However,
failure understanding and RUL estimation resulting from
transient events in retrospect becomes more difficult if the
reduced sampling frequency means that valuable information
has been lost. An alternative approach is to apply efficient
data compression algorithms [3] that can adapt its acquisition
conditions and compression ratio to themachine state without
loss of critical information.

This paper proposes a deep learning end-to-end Long-short
Term Memory network with data fusion (LSTM-Fusion)
method for RUL estimation in prognostics. Raw sensor mea-
surements with normalization are directly used as inputs to
the neural network. This means that no prior expertise in
prognostics, physics model assumptions or signal processing
is required and this facilitates the industrial application of the
proposed method. By utilizing variable time window sizes,
data normalization, LSTM and fusion techniques it is pos-
sible to capture the latent hierarchical structure in the time-
series sequence by encoding the temporal dependencies with
different timescales using a novel fusion update mechanism.
The proposed method is expected to obtain better (higher
accuracy) and reliable (lower error-band) RUL estimation
not only at the end of the machine life but also during the
healthy status of the machine. Comprehensive analysis of the
proposed approach and comparisons with existing methods
are presented in this study.

The main contributions of this paper are as follows:
• Anovel RUL estimationmethod is proposed that utilizes
LSTM-Fusion techniques. Experimental results demon-
strate the superiority of the proposed network after com-
parison with seven state-of-the-art methods using the
same datasets.

• An in depth evaluation that explores the number of layers
of the proposed neural network which influence the
performance of the proposed method. The performance
is analyzed from both a reliability and computational
complexity point of view.

• A thorough evaluation is performed on how the per-
formance of the proposed LSTM-Fusion method is
influenced by compressed/distorted sensor data using
the publicly available C-MAPSS dataset. Experimen-
tal results indicate the optimum compression/distortion
levels which can be tolerated by the proposed
method.

This paper starts with an overview of the related work in
RUL estimation methods in Section II, along with brief intro-
ductions of Long-short Term Memory (LSTM). Section III
presents the proposed LSTM-Fusion network architecture
in detail. Section IV presents descriptions of the experi-

mental dataset, while Section V presents the effectiveness
and superiority of the proposed method after comparisons
with other methods and different testing conditions. Finally,
Section VI concludes this study and suggests potential future
work.

II. RELATED WORK
In the past ten years, several papers and standards have
reviewed RUL prediction approaches and categorized them
into four groups according to their techniques and method-
ologies: physics model-based approaches, statistical-based
approaches, hybrid approaches and machine learning based
approaches [2], [4]–[6]. In the following subsections,
we review state-of-the-art RUL estimation approaches based
on conventional physics/statistical model approaches and
machine learning based approaches.

A. PHYSICS/STATISTICAL MODEL-BASED APPROACHES
Physical and statistical model-based approaches utilize
empirical physical models and mathematical modeling
approaches of failure mechanisms to interpret machine dam-
age and degradation processes [5], [7].

Physics model-based approaches are correlated to mate-
rial characteristics and stress levels, which are described by
experiments, finite element analysis or empirical models.
The famous physics model of fatigue crack growth, named
the Paris-Erdogan (PE) law, has been first proposed in [8]
for RUL estimation of machinery. Over the last few years,
many different versions of PE models were developed and
utilized in the field of prognostics and RUL prediction of
machinery [9]–[13]. Other physics models for RUL estima-
tion of machinery include the Forman crack growth law [14]
that has been utilized to estimate the RUL of cracked rotor
shafts in [15].Moreover, particle filtering has been employed,
in conjunction with the Norton law to characterize the tur-
bines creep evolution and RUL estimation [16], [17]. In order
to obtain accurate estimation of RUL, the physics models are
developed with prior knowledge of the failure mechanisms
and empirical estimation of model parameters. The drawback
of physics model-based approach is that it is difficult to
understand and model the physics of damage for complex
mechanical systems and parameters such as material incon-
sistencies, imperfect boundary conditions, loads and uncer-
tainty are generally disregarded.

Statistical data driven approaches work by building sta-
tistical models based on available past observed data in a
probabilistic way [18]. The RUL estimation models have
been constructed by utilizing the available data to fit a
probabilistic model without relying on any physics or engi-
neering assumptions. Statistical model-based approaches
are effective in describing the uncertainty of the degrada-
tion process and RUL estimation. Therefore statistical data
driven approaches have become the most popular among the
four categories (including physics-, statistical-, hybrid- and
machine learning-approaches).
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Particularly effective are statistical data driven approaches
for RUL estimation based on condition monitoring data (CM)
modeling in conjunction with the estimation of the distance
between the CM data and predefined threshold levels of the
model. Previous papers have reviewed statisticalmodel-based
approaches systematically [2], [18], [19].

Regression-based methods are commonly used for RUL
estimation due to their simplicity. Autoregressive models
assume that the future state value of machines depends lin-
early on its previous observations and on a stochastic term [6].
In [20], the autoregressive model is combined with a particle
filter algorithm to predict the RUL of machinery. An autore-
gressive integrated moving average and polynomial regres-
sion method are employed in [21] for RUL estimation in
the wavelet domain. The limitation of the regression-based
method is that the model mainly depends on the trend of
historical observations, which could lead to an unreliable
RUL estimation over time. A random coefficient regression
method is proposed for RUL estimation in [22], which char-
acterizes the stochastic variability of degradation processes
by adding random coefficients. The proposed method used a
nonlinear mixed-effects model to characterize the machinery
degradation processes and estimated the RUL probability
density functions by utilizing Monte-Carlo simulation. Other
variants of the random coefficient models combined with
Bayesian filtering algorithm for machinery RUL estimation
have been proposed in [23]–[25]. The random coefficient
regression models can work out probability density function
of the machinery for RUL estimation. However, the mod-
els assume a Gaussian distribution for the random coeffi-
cients that can only achieve accurate results in some special
cases and cannot model the temporal variability of RUL
estimation [26].

Wiener processes have been proposed for machinery
degradation process modeling, which are appropriate for the
case that the degradation process varies bi-directionally with
Gaussian noises over time [27]. Wiener processes for charac-
terizing the machinery degradation the distribution of the first
passage time (FPT) can be formulated as the inverse Gaussian
distribution [27]. In [28], a time-varying degradation drift of
Wiener process models is transformed into a constant degra-
dation drift by a time-scale transformation method, where
the RUL estimation can be represented by the FPT cross-
ing the certain thresholds. The advantage of Wiener process
models is that they can represent the temporal variability of
the degradation processes. However, the drawback of these
previous researchworks is that theWiener processes are types
of regression models, which are based on the assumption that
the future state only depends on the current state and it is
independent of the past state as it is the case with the Markov
property. In order to solve this drawback, Si et al. in [29], [30]
employed a particle filter to smooth out the non-Gaussian
degradation state and random-effect parameters from previ-
ous measurements. The experimental results show that this
approach can improve the model fitting and the accuracy of
the RUL estimation.

Gamma process models work under the assumption that
machine degradation is monotonic and evolving only in one
direction. In this case the increments of the degradation
processes are modelled with independent random variables
with a gamma distribution [31]. In [32], stochastic filtering
with the Gibbs algorithm is proposed to find the hidden
degradation state of the gamma process. The RUL can be
estimated based on gamma process probability distribution
with a predefined failure threshold. The shortcoming of the
Gamma process models is that they are also restricted to the
assumption of the Markov property which has been men-
tioned in Wiener processes.

Markov models underlying assumptions mean that the
machine degradation processes should evolve in a finite
state-space following the principle of the Markov property.
Kharoufeh et al. proposed a hybrid RUL estimation method
based on Markov models and stochastic failure models to
compute the RUL distributions numerically along with their
moments status. The number of the states in a Markovian
model was estimated by a K-means clustering analysis which
implied that there must be sufficient data on failures and
degradation to estimate the model parameters [33]. The draw-
back of the Markov models is that they cannot model the
hidden health states of the degradation processes. In order to
overcome this, the Hidden Markov Model (HMM) has been
employed for machinery prognostics [34]–[36]. Furthermore,
hidden semi-Markov model was employed to improve the
flexibility of the HMMs for representing complicated state
transition processes in machinery degradation processes for
prognostics and RUL estimation [37]–[39]. It is worth not-
ing that the Markov models based methods suffer from the
Markov property limitation, which may lead to an approxi-
mation for the true process.

Covariate-based hazard models have been employed for
lifetime modeling to describe the degradation processes
caused by one or more factors in the conditioning monitoring
(CM) information. The Proportional Hazards Model (PHM)
was proposed by Cox in [40], and has been widely used to
relate the system’s CM variables and external factors to the
failure of a system. The PHM assumes that the hazard rate of
a system is composed of two multiplicative factors, a base-
line hazard function and a function of covariates. The PHM
with the Weibull distribution was employed in conjunction
with the condition monitoring process for RUL estimation
of machinery in [41]. Tran et al. proposed a hybrid system
including autoregressive moving average model, PHM and
support vector machine to assess the machine health degrada-
tion and predict the RUL of the machine [42]. The limitation
of the PHM is that it requires sufficient failure event data and
associated CM information simultaneously. However, these
two types of data may not always be available in practice.

B. MACHINE LEARNING BASED APPROACHES
In the past years, machine learning techniques, espe-
cially deep neural network-based approaches have been
developed to model the highly nonlinear, complex and
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multi-dimensional systems without prior knowledge of the
system and machinery physical behaviors [43]. Machine
learning approaches attempt to learn the machine degradation
characteristics using optimization techniques from sensor
raw data instead of building physics- and statistical-models.

Artificial Neural Network (ANN), and Multi-layer Per-
ceptron (MLP) are employed for modeling the RUL of the
bearings in [44], [45]. The proposed neural network takes
the multiple CM measurement values at the present and past
observations as the inputs and RUL as the output. Zhang
et al. proposed a multi-objective deep belief networks (DBN)
ensemble method for RUL estimation [46]. An evolutionary
algorithm is integrated with the conventional DBN training
method to evolve multiple DBNs, which are combined to
establish an ensemble model for NASA’s turbofan engine
RUL estimation [47]. Bektas et al. proposed a neural net-
work based method by learning a similarity model that is
fed by the use of data normalisation and filtering methods
for operational trajectories of complex systems for RUL
estimation [48].

In the last few years, Deep Neural Networks (DNNs)
are emerging as a highly effective neural network architec-
ture for object recognition, classification tasks [49], speech
recognition [50] and other applications for image quality
assessment [51]. All of these tasks demonstrate that the
performance of DNNs can overcome conventional methods
significantly. DNNs utilize a stack of multiple layers of non-
linear processing units for feature extraction and transfor-
mation. The ‘‘deep’’ in ‘‘deep neural network’’ refers to the
number of layers through which the data is transformed. Each
successive layer uses the output from the previous layer as
input to fully capture the representative information from raw
input data [52]. The performance improvement may benefit
from high-level abstractions of input data which can be mod-
eled with the help of the complex deeper structures, leading
to more efficient feature extraction compared to shallower
networks.

In order to investigate the capability of DNNs for prog-
nostics and RUL estimation for machinery, Babu et al. pro-
posed a Convolutional Neural Network (CNN) to estimate
the RUL of system based on normalized variate time series
signals from sensors [53]. Two convolutional layers, two
average pooling layers and one fully connected layer are
adopted in the proposed DNN architecture. The experimen-
tal results indicate that the proposed CNN based method
can be used to outperform three other regression methods,
including the Multi-Layer Perceptron (MLP), Support Vector
Regression (SVR) and Relevance Vector Regression (RVR)
on publicly available datasets. Li et al. proposed a deep CNN
architecture for RUL estimation by using the raw collected
data with time window approach for sample preparation in
order to obtain better feature extraction by the CNN [54].
However, since the collected CM signals have complexmulti-
modalities and high heterogeneity, the CNN-based methods
have difficulties extracting heterogeneous features represent-
ing the variation from running until the point of machine

failure. Li et al. proposed an additional work by using Short-
time Fourier transform for time-frequency transformation and
applied multi-scale feature extraction with CNN to enhance
the network learning ability [55]. Li et al. in [56] proposed
a cross-domain fault diagnosis method for rolling element
bearing, where a deep generative model has been employed
for generating artificial fault signal in target domain based
on healthy signal. Then the generated artificial fault signal
has been used for domain adaptation. da Costa et al. [57]
proposed LSTM based domain adversarial neural network
approach to performing unsupervised domain adaptation for
RUL prediction, where a gradient reversal layer has been
employed to perform adversarial learning during training and
induce a domain-invariant representation.

Recurrent Neural Networks (RNNs) were proposed for
sequence learning, which have been employed in speech
recognition, machine translation, natural language processing
etc. and achieved state-of-the-art performance [58]. Partic-
ularly, unlike conventional multi-layer perceptron networks
that can only learn the representation from input data to target
vectors, RNNs are not limited to discrete internal states and
they allow for continuous, distributed sequence representa-
tions. This means that RNNs have the capability to learn
the latent representation from the entire history of previous
inputs to target vectors by building connections between units
from a directed cycle. The benefits of RNNs allow a memory
of previous states to be kept in the network’s internal state.
Malhi et al. proposed RNN based learning approach for long-
term prognostics of machine health status monitoring [59].
The Continuous Wavelet Transform (CWT) can be employed
for preprocessing of the vibration signals from a rolling bear-
ing. Gugulothu et al. [60] proposed a RNN based method
for RUL estimation, which embedded time series data using
RNNs as an encoder and drew a health index curve with it.
The RUL is predicted by comparing the latter curve with the
normal health index curve.

RNNs can be trained via backpropagation through time
for supervised tasks with sequential input data and target
outputs. However, due to gradient exploding and vanishing
problems during backpropagation of model training, training
a deep RNN is difficult and may not capture the long-term
dependencies from the sequential signal [61], [62]. Long
Short-Term Memory (LSTM) is a type of RNN, which was
designed to prevent backpropagated errors causing gradi-
ent exploding and vanishing issues in RNNs [63]. LSTM
employ input gates, forget gates and output gates, where
forget gates were introduced in LSTM to avoid long-term
dependency problems. Considering that the LSTM networks
can capture long period temporal dependencies and nonlinear
dynamics in sequential signal, LSTMs have achieved great
success on applications of speech recognition and machine
translation [64].

The characteristics of the LSTM make it a natural choice
for machinery RUL estimation due to the considerable time
lag between inputs and their corresponding outputs. A sim-
ple LSTM is employed in [65] and a bidirectional LSTM
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is proposed in [66] for RUL estimation. A hybrid deep
learning model combining CNN and LSTM is demonstrated
for machine health monitoring in [67], where a CNN is
employed for local features extraction and bi-directional
LSTM [68] is demonstrated and built on CNN outputs for the
temporal information encoding and representation learning.
Al-Dulaimi et al. [69] and Li et al. [70] proposed similar
approaches, where instead of a series connection which pro-
posed in [67], a hybrid network architecture by combining
CNN and LSTM network in parallel manner for RUL esti-
mation has been presented respectively. Particularly, in [70],
a directed acyclic graph network architecture is employed in
this hybrid design. The outputs from the LSTM and CNN
network are summed by elements-wise and fed into a second
LSTM network, then forwarded to a fully connected layer for
RUL prediction. However, these hybrid network architectures
could require a significant large number of network param-
eters for tuning and result in a large model, which may be
difficult for practical applications.

Malhotra et al. proposed a LSTM-based encoder-decoder
structure in [71], which is utilized to transform a multivariate
input raw sequence to a fixed-length vector, then the vec-
tor is used to produce the target sequence by the decoder.
The model learns to capture the behavior of a machine by
learning to reconstruct multivariate time series correspond-
ing to normal behavior in an unsupervised manner. Then,
the reconstruction error is used as a health index to estimate
the degradation, and in turn estimate the RUL of the machine.

In this paper, a LSTM-Fusion network for RUL estimation
is proposed. Furthermore, industrial CM systems usemultiple
sensors and generate continuous streams of raw signals for
machine health monitoring. Signal compression techniques
have increasingly significant roles in modern CM systems.
The effects of compression on the RUL estimation have
not been previously investigated although they could have
negative effects on the accuracy and robustness of themachin-
ery degradation modeling and RUL prediction. To bridge
this gap, we investigate the performance of the proposed
LSTM-Fusion network by using compressed/distorted sen-
sors data with different compression levels.

III. PROPOSED LSTM-FUSION NETWORK
FOR RUL ESTIMATION
In this section, the proposed LSTM-Fusion network for RUL
estimation is presented, including an overview of the standard
LSTM network, and the proposed hierarchical multiscale
fusion approach for better capturing the temporal dependen-
cies in the time series sequence signal. The implementation
details of our proposedmethod are presented in Section III-B.

A. LSTM NETWORK
LSTM as a special RNN structure has proven stable and
powerful for modeling long-range dependencies for sequence
modeling [62], [63]. The major novelty of LSTM is the inno-
vation of the memory ‘cell’, ct , which essentially acts as an
accumulator of the state information in the sequence signal.

FIGURE 1. Long short-term memory cell.

The memory cell is accessed, written and cleared by several
self-parameterized controlling gates. The information will be
accumulated to the cell if the ‘input gate’, it , is activated
when a new input comes. Then, the past cell status ct−1 could
be ‘‘forgotten’’ in this process if the ‘forget gate’, ft , is on.
Whether the latest cell output ct will be propagated to the
final state ht is further controlled by the ‘output gate’, ot .
In order to avoid the vanishing and exploding problem for
the traditional RNN model, the memory cell and gates have
been designed to control information flow so that the gradient
will be trapped in the cell and be prevented from vanishing
too quickly (also known as constant error carousels) [62],
[63]. In this paper, we follow the formulation of the Fully
Connected LSTM (FC-LSTM) as in [72]. The key equations
to define the hidden layer function,H, are listed in (1) below:

it = σ (Wxixt +Whiht−1 +Wci ◦ ct−1 + bi)

ft = σ (Wxf xt +Whf ht−1 +Wcf ◦ ct−1 + bf )

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc)

ot = σ (Wxoxt +Whoht−1 +Wco ◦ ct + bo)

ht = ot ◦ tanh(ct ) (1)

where σ is the logistic sigmoid activeation function, ‘◦’
denotes the Hadamard product, model parameters including
W ∈ Rd×k and b ∈ Rd are shared by all time steps and
learned during model training, d and k is the number of
sensors in each time step and dimension of hyperparameter
of hidden vectors, h. Multiple LSTMs can be stacked and
temporally concatenated to form more complex structures.
The output at the terminal time step is used to predict the
output by a linear regression layer, as shown in the equation
below:

ȳi = W rhTi (2)

where W r
∈ Rk×z and z is the dimension of the output. The

Euclidean loss has been employed as the model loss function
in this task.We use the following shorthand notation to denote
the recurrent LSTM operation as below:

(ht , ct ) = LSTM(xt , ht−1, ct−1) (3)

The following section describe in detail the proposed
LSTM-Fusion network.

B. PROPOSED LSTM-FUSION NETWORK
In order to estimate the RUL of machinery, an algorithm
must learn to predict the future given only a partial temporal

VOLUME 8, 2020 19037



Y. Zhang et al.: RUL Estimation Using LSTM Neural Networks and Deep Fusion

FIGURE 2. System overview.

context. This makes the RUL estimation challenging and also
differentiates it from fault detection of machinery by utilizing
discriminative classifiers. The proposed network models the
RUL estimation with a recurrent architecture which unfolds
through time. This allows us to train a single model that learns
to handle partial temporal context of varying time steps.
Furthermore, machinery RUL estimation is challenging
because the contextual information can come from multiple
sensors with different data modalities. In such applications
the way information from different sensors is fused is crit-
ical to the application’s final performance. In this section,
an end-to-end deep learning architecture which jointly learns
to model and fuse information from different sensory signals
with variable time window size is described. Figure 2 shows
the overview of the proposed RUL estimation method.

Particularly, for training an RUL estimation model,
we observe the time-series sequences and the labeled
remaining useful life {(x1, x2, ..., xt ), y}. The target is to
train a network which predicts the RUL given partial
temporal observation samples of the time-series sequence,
{(x1, x2, ..., xt ) | t ≤ T }, in a sequence-to-target prediction
manner, where T denotes the variable time window size.
In this experiment, T ranges between [10, 100] with 20 step
size. Given training examples, {(x1, x2, ..., xt )j, yj}Nj=1, where
j denotes the jth time window size in N , we train the LSTM
neural network to map the sequence of observations of the
sensors data, (x1, x2, ..., xt ) to the sequence of the labeled
RUL, (y1, y2, ..., yt ), such that yt = y,∀t . Trained in this
manner, the neural network will attempt to map all sequences
of partial observations (x1, x2, ..., xt )j,∀t ≤ T to the RUL
label yt . In this way, our model explicitly learns the character-
istics of the latent RUL representation with variable lengths
of the observation samples, (hTt , c

T
t ). In the next step we

describe how the proposed LSTM deep fusion method fuses
the latent representations.

The proposed LSTM-Fusion architecture must fuse mul-
tiple learned latent representations from training samples:
Si = {(x1, ..., xt )}j. An obvious way to fuse sensory data is by
concatenating the time series signal as input to the network.
However, we found that this simple concatenation performs
poorly. The proposed method is to add and train an additional
sensory fusion layer which combines the high-level represen-
tations of sensor data. In particular, the proposed architec-
ture first passes the sensor signals Si with variable window
size independently through a separate LSTM sub-networks

FIGURE 3. Proposed LSTM-Fusion network structure for RUL estimation.

defined as in (4). The high level representations from the
LSTM sub-networks {(hx1, ..., h

x
t )}j, are then concatenated at

each time step t and passed through a fully connected fusion
layer which fuses the high level representations output from
the sub-networks, the fusion layer can be obtained by (5). The
proposed LSTM-Fusion architecture is shown in Figure 3.
The output representation of the fusion layer, Ft , is then
passed to the softmax layer for RUL estimation by (6).

{(hxt , c
x
t )}j = {LSTMx(xt , hxt−1, c

x
t−1)}j (4)

LSTM-Fusion:

Ft = tanh(Wf [{hxt }j]+ bf ) (5)

yt = softmax(WyFt + by) (6)

where W∗ and b∗ are the learned model parameters,
{LSTMx∗}j denotes the sensor signals with variable window
size T and the above operations are performed from t =
[1,T ]. Particularly, for the neural network in our proposed
LSTM-Fusion architecture we use multiple LSTMs of size
100 with sigmoid gate activation and tanh activation for hid-
den representation. The fully connected fusion layer uses tanh
activation and outputs a 100 dimensional vector. Dropout is
also applied after each LSTM layer to control overfitting
(rate = 0.2). The final layer is a dense output layer with
a single unit and linear activation for RUL prediction. This
architecture can be extended to handle additional time series
signals from multiple sensors.

The main purpose of the training process is to optimize the
learned parameters, including weights and biases, such that
the loss function, L, is minimized. The loss function can be
obtained as follows:

L =
1
T

T∑
t=1

‖RULtEst − RULtTrue‖
2
2 (7)

where RULtTrue and RUL
t
Est denotes the labeled RUL and esti-

mated RUL at time t respectively. Particularly, the RULtTrue
is calculated as the difference between the current time t and
the end of useful time. The ‘‘RMSprop’’ optimizer has been
utilized in the training process, and dropout regularization
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has been employed to avoid model overfitting. The early
stopping in the training process has been employed when the
learned model does not show performance improvements on
the validation dataset.

A solution must be found for the issue that the multiple raw
sensor signals are in different units and magnitudes and the
corresponding data does not have equal contributions to the
neural network. Therefore, data normalization is necessary
to convert all of the sensors signals to a normalized space.
The Z-score standardizing method [73] has been employed
to solve this problem. The Z-score measures the distance
of the feature point from the mean in terms of the standard
deviation, so called standardization of data.

C. PERFORMANCE EVALUATION
In order to compare this work with state-of-the-art methods,
we employ two objective performance metrics, including
Scoring function and Root Mean Square Error (RMSE) [47],
[54], which are described in detail in the next paragraph.

The Scoring function is employed extensively for evalu-
ating the performance of the RUL estimation methods. The
metric can be described as follows:

S =


∑N

i=1
(e−

hi
13 − 1), for hi < 0∑N

i=1
(e

hi
10 − 1), for hi ≥ 0

(8)

where S is the estimated Score, N is the number of engines in
the test dataset and h is the difference between the predicted
RUL and the ground truth. The advantage of the scoring
function is that it penalizes late prediction more than early
predictions. This is beneficial since late RUL predictions
are more dangerous than early predictions since they could
result in delays of the maintenance operations needed by
the machine. However, the drawback is that a single outlier
estimation (such as a very late prediction) would dominate
the overall performance score. Therefore, a single evaluation
score cannot fully represent the performance of the algorithm.

Additionally, the Root Mean Square Error (RMSE) of
the estimated RUL to the ground truth has been utilized to
evaluate the performance of the algorithm. The RMSE has
equal weight to both early and late prediction of the RUL.
Therefore, the RMSE produces a better overall evaluation of
the performance of the RUL estimation algorithm. TheRMSE
can be obtained as follows:

RMSE =

√∑N
i=1 h

2
i

N
(9)

IV. C-MAPSS DATASET
The NASA C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) dataset has been employed
to evaluate the performance of the proposed method. The
C-MAPSS dataset contains 4 sub-datasets as listed in Table 1.
These datasets are widely used benchmark data and contain
simulated data produced using a model based Turbofan
engine degradation simulation program, C-MAPSS, devel-
oped by NASA [47]. The datasets include sensor data with a

TABLE 1. C-MAPSS dataset details.

different number of operating conditions and fault conditions,
as shown in Table 1. Each of these datasets have been further
divided into training and testing subsets. In each dataset,
the engine number, operational cycle number and operating
settings are listed corresponding to the sampled data from the
21 sensors. More detail of the data structure of the datasets
can be found in [47]. The engine is operating normally at the
beginning of each time series, and develops a fault at some
point in time which is unknown. In the training set, the fault
grows until a system failure. In contrast, the data in the test set
are provided up to some time prior to the system failure. The
objective is to estimate the number of remaining operational
cycles before the system failure based on the provided data
in the test dataset.

V. EXPERIMENTAL RESULTS
In this section, we have performed extensive experiments
to evaluate the proposed method. Firstly, a comparison is
performed of the proposed LSTM-Fusion method with seven
state-of-the-art methods, including Multi-layer Perceptron
(MLP) [74], Support Vector Regression (SVR) [75] and Rel-
evance Vector Regression (RVR) [76], CNN based regression
method [53], LSTM based RNN [77], deep convolution neu-
ral network basedmethod [54], on the raw C-MAPSS dataset.
Secondly, we evaluate our proposed method with multiple
LSTM layers, ranging from 1-6 LSTM layers, to show how
by increasing the number of LSTM layers it is possible to
extract better the high level representation. This experiment
is also designed to explore the computational complexity ver-
sus performance of the proposed LSTM-Fusion architecture.
Thirdly, the evaluation of the proposed LSTM-Fusion model
is performed on the distorted sensors data with different
compression levels.

A. EXPERIMENT 1: PERFORMANCE OF THE
PROPOSED METHOD
This experiment is designed to perform a comprehensive
evaluation of RUL estimation using seven different methods.
The results are listed in Table 2. We report the experimental
results with the same settings on the four sub-datasets. The
two stacked LSTM layer structure has been employed in this
experiment with 100 and 50 nodes in the first and second
LSTM layer respectively. We performed 10-fold cross val-
idation on the training and validation datasets to estimate
performance of the learned model and the best model has
been applied on the testing dataset. The train-test evaluations
have been shuffled 10 times and we report the averaged
results listed in Table 2.
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TABLE 2. Performance comparisons of the proposed method and state-of-the-art methods on the C-MAPSS dataset.

FIGURE 4. Averaged standard deviation of RUL prediction error (blue
bar), Normalized computational complexity (red bar) and error to runtime
ratio (green bar).

FIGURE 5. The rate-distortion performance (Compression Ratio (CR) vs.
Signal to Noise Ratio (SNR)) of four datasets. The distortion levels have
been generated by different bitdepth representation of the dataset, e.g.
higher bitdepth representation achieves better SNR with lower CR, but
lower bitdepth (4-bitdepth) achieves higher CR with lower SNR.

Table 2 shows the results of RMSE and Score.We compare
the proposed LSTM-Fusion results with other seven state-
of-the-art methods. The experimental results indicate that
the proposed LSTM-Fusion outperforms all other approaches
under RMSE metric evaluation, and comparable results of
the Score value are obtained compare to the state-of-the-
art methods. The experimental results show that our method
outperforms slightly the method proposed in [70], this sug-
gests that our core idea of fusing the extracted features which
have variable time window sizes has merit performance for
capturing the local and global characteristics of the signal for
the RUL prediction.

B. EXPERIMENT 2: INFLUENCE OF THE NUMBER OF
THE LSTM LAYERS
As shown in the literature, deep stacked LSTMs often obtain
better prediction accuracy than shallower models. However,

FIGURE 6. The average prediction error with variable bitdepth
compression (solid lines) and uncompressed raw data (dash lines) of four
datasets respectively.

FIGURE 7. The absolute difference of the RUL estimation on compressed
data and raw data.

simply stacking more layers of LSTMworks only to a certain
number of layers, beyond which the network becomes slow
and difficult to train, likely due to the exploding and vanishing
gradient problem [78]. This experiment is designed to illus-
trate the relationship among the performance, the computa-
tional complexity and the number of layers in our proposed
deep LSTM-Fusion architecture for RUL estimation.

Figure 8 and 9 shows a sample result depending on the
number of the layers stacked in our proposed architecture,
ranging between [1 6]. The x-axis is the actual RUL of
the test engine, y-axis is the predicted RUL. The green line
indicates the ground truth RUL values of the example test
dataset FD001 of the test engine ID: 49. The blue curve
indicates the averaged RUL prediction values by proposed
LSTM-Fusion architecture. The light blue region indicates
the standard deviation of all RUL predictions at each time
stamp. The orange curve indicates the difference between
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FIGURE 8. Performance evaluations of stacking LSTMs from 1-3 layers with proposed LSTM-Fusion architecture, including
averaged RUL prediction (blue line), averaged prediction error (yellow line) and ground truth (green line). Transparent regions
are error band accordingly.

predicted RUL values (blue curve) and ground truth (green
line). The light orange region shows the standard deviation
of the predicted errors.

As shown in Figure 8 and 9, the experimental results
indicate that stacking more LSTM layers can achieve

better prediction accuracy (smaller standard deviation val-
ues of light orange region), however, the vanishing returns
can be observed when the number of LSTM layers stacked
is higher than 4 layers. Specifically, Figure 4 shows that
the relationship between the averaged standard deviation of
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FIGURE 9. Performance evaluations of stacking LSTMs from 4-6 layers with proposed LSTM-Fusion architecture, including
averaged RUL prediction (blue line), averaged prediction error (yellow line) and ground truth (green line). Transparent regions
are error band accoringly.

the prediction errors (blue bars) and normalized running
time (red bars) for each LSTM layer setting. The green
bars are the ratio of the corresponding blue bars and red
bars to indicate the vanishing return effect of the stacking
of LSTM layers. In Figure 4, the blue bars show that the

accuracy of the RUL prediction can not be improved fur-
ther when the number of LSTM layers is higher than 4,
and the computational complexity increases linearly accord-
ing to the number of the layers stacked in the proposed
architecture.
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In summary, the experimental results indicate that the opti-
mal number of the LSTM layers for the proposed architecture
is 4 and this number achieves a good balance between the
RUL prediction accuracy and running time. It is difficult to
obtain benefits by stacking more than 4 layers in the proposed
method.

C. EXPERIMENT 3: INFLUENCE OF THE
COMPRESSION/DISTORTION TO THE
PROPOSED METHOD
This experiment is designed to evaluate the reliability and
robustness of the proposed LSTM-Fusion architecture in a
modern practical scenario that deploys lossy data compres-
sion - the bandwidth and storage requirements are reduced
using the state-of-the-art vibration signal encoder proposed
in [3] to compress the raw vibration signal. There are seven
distortion levels created by compressing the vibration sig-
nal with different bitdepth representations, from 4-bitdepth
(higher distortion, coarse accuracy) to 16-bitdepth (low dis-
tortion, high accuracy). All of the compression parameters
and conditions have been set as originally presented in [3].

Figure 5 shows the compression ratio (CR) results and the
corresponding value of signal-to-noise-ratio (SNR) for the
four evaluated datasets respectively. As shown in the figure,
the higher bitdepth representation (16-bitdepth) obtains better
precision in the vibration signal, thus it achieves approxi-
mately 80 dB reconstruction accuracy, but it obtains lower
compression ratio. On the other hand, the 4-bitdepth com-
pressor achieves less than 30 dB reconstruction quality, but
compresses the data significantly, achieving up to 1607:1 and
1721:1 compression ratio on FD001 and FD003 datasets
respectively.

In order to evaluate the influence of compression/distortion
on the proposed method, the averaged prediction errors
(RMSE) of the last 50 cycles of the test datasets have been
calculated corresponding to variable bitdepth representations,
as shown in Figure 6. In general, the averaged prediction
error decreases according to the bitdepth increment. The
prediction error can be reduced significantly when the bit-
depth increases from 4-bitdepth to 10-bitdepth. However,
the prediction error is largely unaffected when bitdepths are
higher than 10-bitdepth. Thismeans that the proposedmethod
can model the health status and estimate the RUL of the
machine with a 10-bitdepth compressed/distorted sensor data
accurately.We can also observe that the compressability of
the datasets is not constant. Accuracy RUL estimation with
the 10-bitdepth is calculated using on distorted/compressed
data that has approximately 60.24 dB signal-to-noise-ratio
(SNR) and 14.83:1 compression ration on the FD002 and
FD004 datasets. For the FD001 and FD003 dataset, the pro-
posed method can estimate the RUL accurately at 44.45 dB
and 46.12 dB SNR with 340.4:1 and 247.9:1 compression
ratios respectively. This may be cause by the higher com-
plexity of the data in FD002 and FD004 (see Table 1),
which contain six operating conditions while only one oper-
ating condition is present in FD001 and FD004. In addition,

Figure 7 illustrates the absolute difference of the RUL esti-
mation evaluated with compressed and raw data. A similar
effect to the previous result can be observed in Figure 7
where the difference of the estimated RUL on compressed
and raw data is reduced as the precision of the compression
process increases. Due the larger number of operating condi-
tions in FD002 and FD004 datasets, the result of 16 bitdepth
in Figure 7 shows higher difference on these two datasets
compared to others. The experimental results indicate that the
proposed approach is able to robustly predict the RUL under
challenging situations in which data has been dramatically
compressed/distorted due to limited bandwidth and storage
requirements in the condition monitoring system.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a deep neural network
approach for machinery health status modeling to per-
form remaining useful life (RUL) estimation. The proposed
LSTM-Fusion neural network architecture addresses open
challenges in the area of condition-based maintenance and
RUL estimation for rotational machines. The contributions
of this paper can be summarized in the following four
points:
• Firstly, the proposed LSTM-Fusion architecture can fuse
multi-sensors data with variable time window sizes,
which allows the neural network to be able to capture the
short-range (local) and long-range (global) characteris-
tics of the data from multiple sensors. The experimental
results show that the proposed LSTM-Fusion architec-
ture achieves the best RUL estimation performance and
outperforms other seven state-of-the-art methods.

• Secondly, in order to explore the optimum number
of layers of the proposed LSTM-Fusion architecture,
the Exp. 2 has been designed. The experimental results
indicate that stacking more LSTM layers can achieve
better RUL prediction accuracy, however the computa-
tional complexity increases linearly. Moreover, the van-
ishing returns of the RUL estimation performance can
be observed when the number of layers is higher than
4-layer.

• Thirdly, the proposed method is capable of achieving
robust health status modeling and RUL estimation on
the raw and compressed dataset. Particularly, the experi-
mental results presented in Section V-C indicate that the
proposed method can accurately estimate the RUL with
distorted/compressed data which has up to 340.4:1 com-
pression ratio with 44.45 dB signal-to-noise-ratio on
the FD001 dataset. This enables remote prognostic and
condition monitoring applications to be deployed with
lower bandwidth and storage requirements.

• Fourthly, the proposed novel end-to-end deep
LSTM-Fusion architecture for RUL estimation does not
require prior knowledge of the condition-based health
monitoring and does not rely on any empirical assump-
tions, such as ‘‘piece-wise linear RUL target function’’
as it was required in [53], [77].
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Future work involves the integration of the proposed method
in a power generation plant and its evaluation with stream-
ing multi-channel time series signals. To ensure that the
research done in this paper can be reproduced and encour-
age further work we have made the models available at
https://github.com/eejlny/LSTM_FUSION
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