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ABSTRACT This paper proposes an efficient and accuracy inverse kinematic algorithm for 7-DOF redundant
manipulators with obstacles avoidance and singularities avoidance based on the hybrid of analytical and
numerical method (IK-HAN). Specially, the paper focuses on how to solve the inverse kinematics prob-
lem accurately and efficiently for a novel configuration, i.e. SSRMS-type manipulator. First, the elbow
orientation is introduced and the algebraic relationship between the elbow orientation and joint angles is
derived. Second, the optimization algorithm is designed to find the optimal elbow orientation based on
Particle Swarm Optimization. To improve the efficiency, the equivalent optimization model based on the
azimuth angle is investigated. Third, optimal models are developed to avoid obstacles and singularities and
improve manipulability in the constraint domain. Moreover, how to employ optimization resolution to solve
the inverse kinematics problem is discussed. Finally, the validity of the algorithm is verified via kinematics
simulations and the result illustrates that the algorithm performs well in accuracy, stability and efficiency.

INDEX TERMS Elbow orientation, obstacles avoidance, redundant manipulators, real-time inverse kine-
matics, singularities avoidance.

I. INTRODUCTION
The redundant manipulators have great advantages in deal-
ing with complicated problems than 6-DOF robots, such
as obstacles avoidance [1], singularities handing [2], arm
angle limits [3] minimum base disturbance [4], so they are
applied inmany fields including aerospace docking [5] bionic
arms [6] and medical robots [7]. However, the kinematic
control of redundant manipulators is a big challenge because
manipulators more than 6 DOF results in an infinite number
of solutions in the joint space which map the same pose in
the Cartesian space. Analytical solutions cannot be figured
out directly owing to the one-to-many relationship space.

Some additional constraints must be exploited to pick out
the optimal solutions of redundant manipulators. The con-
straints can be meet by adding instantaneous cost functions.
There are various methods to optimize cost functions includ-
ing weighted least norm (WLN) [8], nonlinear programming
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problem (NLP) [9] and the quadratic programming (QP) [10].
WLN is effective for the velocity limits, however, other tasks
cannot be guaranteed well except the main task. For multiply
tasks, the general weighted least-norm (GWLN) method was
proposed [11], [12] which is a method of modified WLN.
GWLN introduces a concept of virtual joints and assume that
each subtask could be formulated in terms of cost functions
about virtual joints. However, the performances of GWLN
subtasks are determined by weights and the Jacobian’s singu-
larity and meanwhile the computing efficiency is low. It is not
suitable for the real-time projections. The Jacobian’s pseudo
inverse-based technologies are adopted broadly to estimate
joint velocities of redundant manipulators to replace the real
solutions [13]. The velocity damping method is a classical
application of pseudoinverse of Jacobi matrixes. This method
limits joint velocities but massive iterations are need to get
accuracy solutions [14]. The pseudoinverse of Jacobian is
also used to figure out higher order inverse kinematics [9]
which can generate high order smooth trajectories and elimi-
nate vibrations of elastic components of the robot. The higher
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order inverse kinematics (IK) method adopts NLP to mini-
mize the terminal time and obtains the optimal solutions, but
this algorithm, on the expense of high computational load,
is not suitable for the real-time projects.

Although in most literatures the joint limits have been
avoided by changing joint velocities so far, it is difficult for
velocity-based method to plan positions exactly under region
constraints. In fact, the engineering robots control effector
velocity by changing step data derived from positions. There-
fore, a position-based inverse solution approach of kinematics
is necessary. The arm angle proposed byKreutz-Delgado [15]
is broadly utilized to solve the position-based inverse kine-
matics, especially for the redundant manipulator with 7 rev-
olute joints (R) configured as S-R-S(spherical joint). The
arm angle specifies the orientation of arm plane and is
equivalent to another kinematic constrain to the manipulator,
so the unique inverse resolution can be determined. However,
the algorithm exists singularities when the arm plane is par-
allel with the axis connecting shoulder and wrist. On another
hand, the arm angle, as a parameter defined dynamically,
is difficult to determine intuitively. Analogously, a redundant
angle was introduced to replace the arm angle as a new
kinematic constraint and they have the same fundamental
principle [16]. However, this method also has the same draw-
backs to the arm angle and both angles are defined between
the same dynamic plane and a static vector. Reference [17]
analyzed singularities of the algorithm and analytical meth-
ods of inverse kinematics for joint limit avoidances. Another
popular manipulator for 7R is Space Station Remote Manip-
ulator System (SSRMS) [18], which is a topological config-
uration of SRS but has more complex structures - additional
link offsets at the shoulder, elbow and wrist parts. However,
in previous studies, the most approaches to inverse redun-
dant solution are designed for SRS and are not available to
SSRMS. For this, given the configuration characteristics of
the SRS, the shoulder and wrist of SSRMS are reconstructed
as a virtual spherical-joint and inverse solutions for SSRMS
are figured out by the samemethod to SRS [19]. SSRMS-type
manipulators are reconstructed as a new 6-DOF manipulator
by locking one joint. And then the inverse kinematic analysis
of SSRMS can be performed by closing the loop with the
hypothetical joint. However, it is difficult for this method to
guarantee global optimal performance of manipulators, such
as flexibility and manipulability [20], [21]. Patchaikani [1]
utilized a Single Network Adaptive Critic (SNAC) to build an
optimal controller for closed-loop error discrete-time dynam-
ics. The controller formulates the inputs and cost function
by the TS fuzzy system and resolve the real-time optimal
redundancy resolutions. However, the accuracy of the resolu-
tions is subject to training data, computing time and the initial
position of the end effector.

Trajectory tracking is the primary task for redundant
manipulators. In addition, if robots meet with obstacles, addi-
tional tasks should be performed with the primary task simul-
taneously. In the respect of obstacles avoidance, plenty of
researchers have applied the artificial potential field methods

to avoid collisions in the last decades. However, the collision-
free trajectory in the Cartesian space is subject to the actua-
tion which is positive to distance from desire position and
also subject to the repulsion which is negative to the distance
from obstacles. If the actuation and repulsion are matched
badly with each other, the algorithm easily steps into the local
optimum and meanwhile the manipulator is lead to the poten-
tial basin and trapped in self-lock [10]. A method of internal
planning in joint space was proposed to avoid local optimum
for SRS [13]. This method proposes a virtual force concept,
which adjusts the redundant joints to avoid obstacles and self-
lock, but there are the angle abrupt changes. A three new
screw-based inverse kinematics (IK) sub-problems and their
corresponding models are presented and could be applied to
find the IK solutions for manipulators with rotational joints
without angle abrupt changes [22]. Given that the most of
collisions happen in arm links, the pose of arm links are
considered as the key factor to avoid obstacles. The redundant
angle can be utilized to find the angle range of collisions
free but the collision detection algorithm needs be carried
out many times for determining an optimal angle just in
one pose, so it weaken the real-time performance of the
algorithm [16]. Considering constraints including angle lim-
its, collisions avoidance, minimum disturbance and so on,
the inverse kinematics problem will become more complex
and constraints cannot be expressed in the same space. For
this purpose, the Neuro Networks (NN) are widely adopted
to solve this problem because of its generalization, versa-
tility, simplification and independence of models [23], [24].
However, NN needs large amounts of data to train the model
and improve learning rate and accuracy, so it is bad at the
accuracy, the manipulability and the computation cost even
worse in time-varying surroundings [10], [25]. The null-space
projection of Jacobian can guarantee the trajectory of end-
effector well and avoid obstacles by changing joints in the
null-space [26], [27], but also constraints the subtask perfor-
mance seriously and breaks down the high position accuracy
when any joint is close to limits [11].

The studies of inverse kinematics about SRS is adequate,
but about SSRMS is few. In the studies of inverse kinematics,
SRS is simplified as a two-link robot with the known pose,
while SSRMS is only simplified as a six-link robot owing to
joint offsets. That is to say that SSRMS has more unknown
parameters to be determined and more complex structures
than SRS. So, approaches to solve the inverse kinematics of
SRS are not available to SSRMS. This paper introduces a
novel notation - the elbow orientation (EO) as an additional
control parameter and proposes a hybrid of analytical and
numerical method (HAN) to solve the real-time inverse kine-
matics for SSRMS accurately and efficient. The proposed
algorithm is applied to a self-developed SSRMS-type manip-
ulator which is used in space activities including assem-
bling, repairing, upgrading a satellite or space station. The
elbow orientation is a three-dimension vector defined in the
static frame and represents the pose of redundant manipula-
tor. The inverse kinematics solution is determined uniquely
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after the elbow orientation is picked out by the optimal
algorithm. To improve efficiency of the algorithm, a one-
dimension optimal model is established to replace the opti-
mization for the elbow orientation and then the numerical
solutions are obtained. Additionally, the obstacles model and
free-singularity scheme are introduced into the algorithm
to avoid obstacles and singularities in real time. The main
highlights in this paper are

1) The efficiency and accuracy of IK-HAN. Most
researches on IK only focus on the theory studies and ignore
that the efficiency and accuracy are vital for engineering
applications.

2) A concept based on a hybrid of analytical and numer-
ical method is applied to solve the inverse kinematics for
SSRMS-type manipulators. It is the key to improve the
efficiency of the proposed IK-HAN.

The rest of this paper is organized as following. Section II
analyzes the kinematics model of SSRMS manipulator and
derives the analytical solution of the inverse kinematics based
on known EO. Section III proposes a novel optimization algo-
rithm which improves the computation efficiency. At first,
the optimization model for EO is transformed to be the model
for the azimuth angle. And then the PSO-based optimization
algorithm is designed to search the optimal numerical solu-
tion of EO. The additional subtasks case and its combination
are addressed in Section IV. The multiply-task optimization
model is established and employed to solve the cases for
the feasible combination of multiple subtasks. The novel
inverse kinematics algorithm based on the analytical and
numerical method (IK-HAN) is proposed. The simulations
are illustrated in Section V, where the accuracy, the conver-
gence and the consuming time are analyzed and compared.
As a realistic project, the inverse kinematics verified by the
simulation are be used in the self-developed SSRMS-type
manipulator which completes space activities in the future.
Finally, Section VI concludes the paper.

II. ANALYSIS OF INVERSE KINEMATICS
A. SSRMS CONFIGURATION
SSRMS is a topological configuration of SRS but has addi-
tional link offsets at the shoulder, elbow and wrist parts
respectively. Its joints are arranged as following

1) The shoulder consists of three joints, i.e. shoulder roll,
yaw and pitch joints.

2) The elbow is pitch joint.
3) Thewrist consists of three joints, i.e. wrist roll, yaw and

pitch joints.

The joint layout of SSRMS-type manipulators is display as
(Roll-Yaw-Pitch)-Pitch-(Pitch-Yaw-Roll), as shown in Fig. 1.
Analyzing the configuration, we can see that three joints of
the shoulder or wrist have link offsets respectively and their
axes are not intersected at one point. Axes of middle adjacent
joints (i.e. the 3rd, 5th joints and the elbow joint) are paral-
lel with each other. Although the SSRMS-type manipulator
loses spherical joints and its inverse kinematics solutions is

FIGURE 1. The configuration of SSRMS manipulator.

difficult, it has joints of lager movement range and can avoid
mechanical interference.

B. MODEL ANALYSIS
The modified D-H parameters of the SSRMS-type manipu-
lator are presented in Table 1. The base frame 6O0 is fixed
to the ground and subsequent variables are expressed in6O0.
The frames from6O1 to6O6 are established according to the
modified D-H standard and the frame 6O7 is attached to the
end effector so that the position and orientation of the target
is convenient to be expressed. The pose (position and orien-
tation) of 6O7 with respect to 6O0 is known all the time.
Fig. 1 shows the D-H frames and the home configuration in
which each joint is zero off-set.

TABLE 1. The modified D-H parameters of the SSRMS-type manipulator.

The arm plane is defined as a plane passing through the
midpoint of link ‘a4’ and perpendicular to the axes of 4th joint,
shown as Fig. 2. By analysis, we can know that the arm plane
can rotate for a fixed pose of the end effector and this rotation
forms self-motion and results in the redundancy and multiply
solutions [17]. However, the rotation is about a dynamic axis
and its position cannot be derived by the known information.
Motivated by the inspiration for human arm motions, this
paper adopts the elbow orientation as a redundant parameter
to control the manipulator moving.

C. ELBOW ORIENTATION (EO)
zi is a z-coordinates unit vector in the D-H frame and
represents the orientation of the ith joint. We define the
z-coordinate of 6O4 as the elbow orientation (EO) denoted
as eo, the z-coordinate of 6O7 as the end effector orien-
tation denoted as ee and the z-coordinate of 6O1 denoted
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FIGURE 2. The arm plane passes through O4M and is perpendicular to the
axes of 4th joint, where O4M is the midpoint of link ‘a4’. The plane
4O3O4

′O5
′ is used to figure out the interior angles.

as eb, The EO indicates the orientation of arm plane and is
independent of positions of the shoulder and the wrist, that
is O3,O′5. For a fixed shoulder in space along with a given
pose of the wrist, the manipulator can be fully determined
if only the EO is specified. So, it is chosen as an additional
control parameter to figure out unique joints. The specific
geometrical relationships between the EO and the position of
joints are shown as following.

At any time, three geometric relationships are always
obeyed. First, in the shoulder joint,

z1 = eb (1)

and z2 is always perpendicular to its adjacent joints z1, z3, so

z2 = [[z3 × z1]] (2)

where [[∗]] is defined as the operation of unitizing vectors.
Second, the axes of 3rd, 5th joint and elbow are always parallel
with each other and we can know

z3 = eo,

z5 = eo. (3)

Third, in the wrist joint, z6 is perpendicular to its adjacent
joints z5, z7, so

z6 = [[z5 × z7]] . (4)

The position of the point Oi with respect to the base frame is
denoted as pOi,

p01 = a0 ∗ z1 (5)

p02 = a1 ∗ z2 + p01 (6)

p03 = a2 ∗ z3 + p02 (7)

The position of the end effector is known and denoted as p07,
the position of latter three joints can be computed, as

p06 = −a8 ∗ ee + p07 (8)

p05 = −a7 ∗ z6 + p06 (9)

To compute the position of the elbow, O′4,O
′

5 are intro-
duced and establish a plane O3O′4O

′

5 parallel with the arm
plane, where the lineO′4O

′

5 is parallel with the link a5, shown
as Fig.2.

From now, we define pxy as the vector
−−−→
OxOy, such as

p34′ , p4′5′ , p35′ as the vectors
−−−→
O3O′4,

−−−→
O′4O

′

5,
−−−→
O3O′5 respec-

tively and define pxy as the magnitude of pxy. In O3O′4O
′

5,
obviously,

p34′ = a3, (10)

p4′5′ = a5, (11)

and

p35′ = p35 + p55′

where p35 = p05−p03 and p55′ is the vector of
−−−→
O5O′5 parallels

with the EO. So,

p35′ = p05 − p03 + (a4 + a6) ∗ eo. (12)

Fig.2 shows the initial configuration and the initial pose and
the orientation of the end effector z7 is express in the base
frame 6O0.

D. INVERSE KINEMATICS
1) FORWARD KINEMATICS
Based on the D-H notation, the pose of the ith D-H frame
in the (i− 1)th D-H frame can be denoted as the 4 × 4
homogeneous transformation matrix i−1Ti

i−1Ti =


cθi −sθi

sθicαi−1 cθicαi−1
0 ai−1

−sαi−1 −disαi−1
sθisαi−1 cθisαi−1

0 0
cαi−1 dicαi−1
0 1


(13)

where θ, α, d, a are listed in the Table 1 and Fig.1 is referred
to the home configuration where all links are parallel with
the arm plane. The forward kinematics 0T7 expresses the
pose of the end effector with respect to the base frame of the
articulated mechanism consisting of serial multi-links

0T7 = 0T11T22T33T44T55T66T7, (14)

2) INVERSE KINEMATICS
The method of picking up the optimal EO is analyzed in
Section III. Given that EO and the six constraints with the end
pose forming a total of seven constraints, the configuration is
fixed. So, all joint angles can be derived with the help of the
analysis in Section II-C.
In the base frame, we define zi as the positive rotation

direction of the ith joint. θ1 is formed by the rotation of z2
around z1, so

|θ1| =< −eb, z2 >, (15)

where < a, b > is defined as the angle norm between the
vectors a and b and can be calculated as follow

< a, b >= arccos
a · b
|a| · |b|

. (16)

The rotation direction of θ1 is

sgn1 = [[−eb × z2 · z1]] . (17)
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FIGURE 3. The plane 4O3O4
′O5

′ is used to figure out θ4
′ and p34’, p4’5’.

So, θ1 = sgn1 ∗ |θ1| and same as below. Similarly, θ2 is
also expressed as

|θ2| = < z1, eo >,

sgn2 = [[z1 × eo · z2]] ; (18)

θ6 is

|θ6| = < eo, ee >,

sgn6 = [[eo × ee · z6]] . (19)

In 4O3O′4O
′

5 shown in Fig.3, according to (10), (11), (12),
the interior angles θ ′3, θ

′

4, can be computed as

θ ′3 = arccos
a23 − a

2
5 + p

2
35′

2a3p35′
,

θ ′4 = arccos
a23 + a

2
5 − p

2
35′

2a3a5
. (20)

According to (7), (12) and (19), the position ofO′4 in. the base
frame can be derived as

p04′ = p03 + a3cosθ
′

3[[p35′ ]]+ a3a5sinθ
′

4/p35′ [[eo × p35′ ]].

(21)

Given (7), (12), (21), we can obtain

p34′ = p04′ − p03, (22)

and

p4′5′ = p03 + p35′ − p04′ . (23)

θ3 is formed by the rotation of link a3 around eo, so

|θ3| = < z2, p34′ >,

sgn3 =
[[
z2 × p34′ · eo

]]
. (24)

Similarly, according to (19), (22), (23),

|θ4| = π − θ
′

4,

sgn4 =
[[
p34′ × p4′5′ · eo

]]
(25)

and according to (8), (9), (23),

|θ5| = < p4′5′ , p56 >,

sgn5 =
[[
p4′5′ × p56 · eo

]]
. (26)

where p56 = p06 − p05.
So far, θ1 − θ6 have been derive as above and z7 has been

coincident with the desired pose after the former six joints
rotate their corresponding angles, that is, θ1 to θ6, respec-
tively. The last operation is to rotate the current end effector
around z7 to get to the desired pose. We define the desired

x-coordinate of 6O7 as xd7 and the current x-coordinate of
6O7 as x7. According to (14), we can obtain

x7 = 0T7 (θ) · [0; 0; 1; 0] , (27)

where θ = [θ1, θ2, θ3, θ4, θ5, θ6, 0]. According to (27), θ7 is

|θ7| = < x7, xd7 >,

sgn7 = [[x7 × xd7·z7]] ; (28)

III. EO OPTIMIZATION
A. CONSTRAINT MODEL OF EO
For the fixed end effector pose, any self-motion corresponds
a unique EO, so there are numerous EOs satisfying tip
constraints. However, not all the orientation vectors can be
considered as the EO which achieves the tip pose. To find a
reasonable configuration of the self-motion, an optimization
model need be established to pick up the optimal EO. The
searching ranges of redundant parameters are easy to be spec-
ified for one-dimension parameters such as the arm angle,
redundant angel, but it is difficult for the EO because the EO
distributes irregularly in the Cartesian space. A novel optimal
model is introduced to solve these problems. Two aspects are
discussed about the model, the constraint model and the cost
function.

1) CONSTRAINT MODEL
In the Cartesian space, a 3-dimension vector can be optimized
by adjusting each component iteratively in the global set so
that the cost function can approach to the expected value.
Although this algorithm is simple and intuitive, it has a large
computation cost and deteriorates the real-time performance
of the inverse kinematics. In this paper, the constraint model
is established according to the geometry relationship and sim-
plifies the searching range from 3-dimension to 1-dimension.
In addition, this model is able to specify the searching set of
the EO precisely and improve the searching efficiency.
p16⊥ is defined as the projection perpendicular to the arm

plane of p16, so p16⊥ is parallel with eo and

p16⊥ = p16·eo. (29)

According to the configuration of the manipulator, we can
know that link a2, a4, a6 are parallel with eo, so

p16⊥ = a2 + a4 + a6. (30)

The equivalent condition of existence of eo is derived by
substituting (30) into (29)

p16·eo = D, (31)

where D = a2 + a4 + a6 and eo is a unit vector

eo = 1. (32)

Constraint conditions (31), (32) are combined as the con-
straint model.
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FIGURE 4. Equivalent optimal model based on the azimuth angle.

2) AZIMUTH ANGLE
In terms of geometry, the constraint model is considered as
the intersection of the unit sphere’s surface and the constraint
plane whose orientation vector is p16. The distance d is
measured between the plane and the origin, shown in Fig.4.
eo can be decomposed as ed and er,

eo = er + ed , (33)

and ed is parallel with p16

ed = d · [[p16]], (34)

where d = D/p16 is the distance between the origin and the
constraint plane.

To reduce optimal dimensions and improve the efficiency
of the constraint model, the azimuth angle ϕ is introduced to
express er. The azimuth angle ϕ represents the angle between
er and its initial value er0. Assuming eo = [eox , eoy, eoz],
we define dynamically the initial value of er as er0 =
[eoy,−eox , 0]. If p16 is fixed, the ed is a constant vector and
er is the function about the azimuth angle

er(ϕ) = Lϕ(er0), (35)

where Lϕ (∗) is the operator achieving a rotation from
er0 to the desired orientation er through the angle ϕ.
Here, the quaternion algebra is introduced to solve (35)
and define the unit quaternion η (ϕ) =

[
η0, ηv

]
=

[[[cos(ϕ/2), sin(ϕ/2) · ed ]]]. According to the quaternion the-
ory [28], for the vector er0, the rotation can be achieved by

Lϕ (er0) = η ⊗ er0 ⊗ η∗, (36)

where η∗ is the conjugate of η and ⊗ represents the quater-
nion product. The product acts on the quaternion η as η⊗ =

η014+�(ηv), where�
(
ηv
)
=

[
−[ηv×] ηv
−ηTv 0

]
. Further, (36)

can be expressed as

Lϕ (er0) = A (ϕ) ∗ er0, (37)

whereA (ϕ) =
(
2η20 − 1

)
13+2η0

[
ηv×

]
+2ηvη

T
v . Substitute

(34), (37) into (33), eo can be obtained

eo = d ·[[p16]]+ A (ϕ) ·er0, (38)

where ϕ ∈ [0, 2π ).
The constraint model can be express by (38) equivalent to

simultaneous constraint conditions (31), (32). The mapping

relationship between eo and ϕ is established, so the optimal
problem of eo is transformed as the optimal problem of ϕ.

B. OPTIMIZATION ALGORITHM
Because of the iteration of T (ϕ) in (35), analytic solutions
of the optimal problem are unavailable and an optimization
algorithm need be chosen to solve the problem. There are
plenty of methods applied to optimize the redundant param-
eter, including NN [29], the least square problem (LSP) [30]
and the predictive task-scaling technique (PTS) [31]. How-
ever, it is difficult for NN and LSP to obtain the high accuracy
and the low complexity simultaneously. For PTS, it is hard
to cope with the noise happened in the high order sensors
in engineer projects. This paper proposes a novel algorithm
based on particle swam optimization (PSO) and the algorithm
can guarantee the accuracy and the efficiency.

1) PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) was a discipline rising
in the 1990’s and proposed by Kennedy and Eberhart [32].
The basic concept of PSO is illustrated in Fig.5. The scheme
of PSO to approach to the target is shown as Fig.6. PSO has
many advantages including fast convergence, high efficiency,
no limitation to the scale of population. In addition, PSO
is good at global searching and suitable for non-linear or
multi-extremum problems.

FIGURE 5. Illustration of the swarm’s random feeding behavior.

FIGURE 6. Schematic diagram of PSO.

According to the analysis in Section III-B, the design
variable is the azimuth angle ϕ. Suppose the position and the
velocity of the nth particle is denoted as ϕn and vn respectively
and their updates can be expresses as

vn+1 = wvn + h1r1(ϕbn − ϕn)+ h2r2(ϕgr − ϕn)

ϕn+1 = ϕn+1 + vn+1 (39)
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FIGURE 7. The configuration jump of the self-motion. During the
self-motion, there always exist two configurations satisfying the fixed EO.

where h1, h2 are acceleration constants and r1, r2 are random
distributed values between [0,1]. ϕbn, ϕgr are the local opti-
mization of the nth particle and the global optimization after
the r th generation respectively andw is the inertial weight fac-
tor which can change the searching range. According to (39),
the updated velocity of the nth particle is composed of the
inertial velocity, the velocity increasement towards the global
optimization and the velocity increasement towards the local
optimization.

2) FITNESS FUNCTION
The fitness function is applied in PSO to describe the quality
of particle and lead the swarm to get to the target, so it can
be designed to minimize the cost function. To smooth the
trajectory in the joint space and avoid the configuration jump
as shown in Fig.7, a good choice is

0 = λ1
(
ϕn − ϕj−1

)2
, (40)

where ϕj is the optimal azimuth angle corresponding the
previous (jth) joint command θ j.
More generally, other functions can be achieved by add

cost functions to (39), so the general fitness function is

0 = λ1
(
ϕn − ϕj−1

)2
+

∑
k>1

λkXk , (41)

whereXk is the k th additional task and λk is the corresponding
weight and X1 =

(
ϕn − ϕj−1

)2. The analysis about Xk is
shown in Section III.

Inverse Kinematics Using EO.

IV. ADDITIONAL TASKS
Using the self-motion of EO, the SSRMS-type redun-
dant manipulator can deal with more complicated prob-
lems than smoothing trajectory and limiting joints’ jump.
Notice that the SSRMS-type manipulator is different from
the hyper-redundant manipulators and is aimed to guide the
end-effector to accurately track and capture in the position
and orientation in space services. So, at least 6 joints are
employed to achieve the desired pose of the end-effector. The
only remained degree of freedom, EO, is applied to control
the arm plane to avoid obstacles. The problems is formulated
as additional tasks Xk and substituted into the fitness func-
tion (41) to evaluate the quality of each particle in the swarm.

According to the quality, the particle will be driven to the
target stepwise. In this paper, the fitness function is designed
to avoid obstacles and singularities and then optimizes EO in
the manipulability.

A. OBSTACLES AVOIDANCE
To avoid the collision between obstacles and the whole
manipulator, this paper establishes an obstacle avoidance
model. By analyzing the configuration of SSRMS, we can
find the different part of SSRMS have different function,
such as the shoulder responsible for orientation of the arm
plane, the elbow responsible for locating the tip and the wrist
responsible for orientating the tip. The workspaces of the
shoulder and the wrist are small, when the elbow pose is
fixed. The collision always happens in the wrist and adjacent
links a3, a4, so they are considered as objects of obstacles
avoidance in this paper. Because of the complex outlines
of link bodies and obstacles, this paper adopts a minimum-
volume enclosing method which can achieve the obstacle
avoidances simply and efficiently and do not deteriorate the
real-time performance. Briefly speaking, the method lumps
the complex surface of the object into the single and regular
geometry intuitively.

For the obstacles, the Lowner-John ellipsoid method is
adopted to formulate the obstacle model establishment as a
convex optimization problem [33]. In this paper, we apply
εm(c,C) to represent the Lowner-John ellipsoid, where m is
the dimension and c,C are the center coordinate and the
characteristic matrix of the Lowner-John ellipsoid respec-
tively. To simplify the obstacle model, three main axes of the
Lowner-John ellipsoid are constrained to be the same length
and the ellipsoid degenerated into a sphere, denoted as,

ε3(pb, ϒ), (42)

where pb is the position of the sphere center and ϒ is a
diagonal matrix. The computation of ε3(pb, ϒ) can be found
in reference [33].

For the manipulator, a cube is employed to cover the
objects of obstacles avoidance, shown as Fig.7. The cube’s
subfaces are parallel with the arm plane and one of them
is composed of O3O′5 and the corresponding height in
4O3O′4O

′

5. The distance between the two subfaces is a4. The
proposed model can avoid solving the inverse cosine function
during iterations and improve the real-time performance.

The obstacles and manipulator bodies have been simpli-
fied as regular geometries. The obstacles avoidance can be
regarded that the arm plane keeps enough distances from each
sphere when the arm plane moves following the manipulator
simultaneously. The distance between the ith sphere and the
arm plane is denoted as di

di =
p34 − p45∣∣p34 − p45∣∣pb, (43)

and the safety distance is denoted as ds,

ds = (ξ0 + ξ ), (44)
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FIGURE 8. a) Model of the obstacle avoidance. b) The equivalent model
by a spring damper.

where ξ0 is the collision distance and ξ is the safety margin,
shown as Fig.8. According to (41), if di ≥ ds, the additional
task does not work, that is

X2 = 0; (45)

If di ≤ ξ0, the solution is infeasible and the additional task is
defined as

X2 = INF, (46)

else that

X2(di) = 1/(di − ξ0)2 − 1/(ξ − ξ0)2, (47)

where INF = +∞ and is assigned as a large value. The
performance criterion of X2 is shown in Fig.9.

FIGURE 9. Fitness value of X2 with varying distance between the
obstacle and 4O3O4

′O5
′.

B. SINGULARITY AVOIDANCE
The singularity avoidance can improve the manipulability
and motion stability, so it is significant to analyze the singu-
larity. There are two kinds of singularities totally including
the algorithm singularity and the configuration singularity.

1) CONFIGURATION SINGULARITY
SSRMS-type manipulator is composed of three parts includ-
ing the shoulder, the elbow and the wrist. In the shoulder part,
three orthogonal rotation axes are composed to achieve the
function of the sphere joint. While two of them are parallel
with each other, the shoulder loses one degree of freedom
and this phenomenon is called as ‘‘gimbal lock’’ [34], shown
as Fig.10. The same problem also happens to the wrist part.
In addition, the algorithm generates singularity when eo is
parallel with eb or ee, because there are infinite solutions
to (2) and (3). This paper adopts θo, θe rather than traditional

FIGURE 10. The gimbal lock happens when θ1//θ3 or θ5//θ7. The
freedom degree is lost when the gimbal lock happens.

‘‘manipulability’’ [28] to indicate the singular degree of the
manipulator and

θo = < eb, eo >,

θe = < ee, eo > .

To avoid the gimbal lock and the algorithm singularity,
eo need to be far from eb and ee, so the third additional task
is introduced

X3 = 1/θo + 1/θe. (48)

However, the computation of angles weakens the efficiency
owing to solving the inverse cosine function. Actually,
X3 works in the fitness function (41) only if θo or θe is close
to zero. So, (48) is simplified as

X3 =
1

|eb − eo|
+

1
|ee − eo|

. (49)

Furthermore, the optimal eo is to be perpendicular to eb and
ee simultaneously so the fourth is defined as

X4 = [(eb + ee) · eo]2 . (50)

2) ALGORITHM SINGULARITY
According to (2), (3), when eb is parallel with ee, it can be
derived

z2 = ±z6. (51)

When the singularity happens, the arm plane can rotate freely
around

−−−→
O3O5. All arm planes have the same fitness value and

the optimization algorithm is invalid. For this problem, (40) is
adopted to be added to the (41) to determine the unique EO
and avoid configuration jumps.

C. WRAPPING UP
Above all, this section shows the optimal method of obsta-
cles avoidance and singularity avoidance. These requirements
are formulated as the additional tasks X1,X2,X3,X4 listed
in (40), (46), (49), (50) respectively. Each task plays different
role in the fitness function (41). X1 is used to improve the
dynamic performance of the manipulator motion including
smoothing the trajectory and eliminating vibrations. X2 is
activated to specify a new steady EO by regulating the objec-
tive value of the fitness function when the manipulator over-
steps the safety margin. And then the manipulator is led to
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reach to the updated EO. X3 is activated to deteriorate the
objective value only if the gimbal lock happens. When X2,X3
do not work, X4 can improve the manipulability by regulating
the EO to approach to the optimum but the regulating effect
depends on the weight λ4. The fitness function (41) combines
four additional tasks with four weights to find the optimal
solution. The flow framework and more details of the inverse
kinematic algorithm for the SSRMS-type manipulator are
shown as Fig.11.

FIGURE 11. The inverse kinematic algorithm for 7-dof redundant robots
based on a hybrid of analytical and numerical method. θ7 can be
computed directly by x07; Optimization algorithm flow is shown in Fig.12.

The flow diagram of the optimization algorithm based on
PSO is shown in Fig.12.

FIGURE 12. The flow diagram of the optimization algorithm.

V. NUMERICAL SIMULATIONS
To verify the availability of the proposed algorithm of
the inverse kinematics, simulations are conducted on a
SSRMS-type manipulator in this section. As a realis-
tic project, the proposed algorithm is be applied to a
self-developed SSRMS-type manipulator which is used in
space activities including assembling, repairing, upgrading
a satellite or space station. This manipulator has the same
configuration as shown in Fig.1. The manipulator parameters
are given as follow: c0 = 0.21, c1 = 0.2515, c2 = 0.24,

c3 = 1.5, c4 = 0.2265, c5 = 1.5, c6 = 0.24, c7 = 0.2515,
c7 = 0.6245 and all units are meter. The involved parameters
of the PSO algorithm are list as follow: nmax = 15, rmax = 15,
ϕmax = 2π , ϕmin = 0, h1 = 1.532, h2 = 1.49, w = 0.79,
λ1 = 0.09, λ2 = 0.89, λ3 = 0.01, λ4 = 0.009. To verify
the effectiveness of the algorithm, this paper shows motion
performances of themanipulator in three cases including Free
Motion, Static Avoiding Obstacles and Dynamic Avoiding
Obstacles. In these cases, the manipulator end-effector is
commanded to move from its initial pose xini07 =

[
pini07, η

ini
07

]
=

[0.5969, 0.4214,−1.7, 0, 0.53,−0.848, 0] to the target pose,
where the corresponding configuration of xini07 is θ ini and
θ ini = [0.23, 1.57, 0.66,−2.41, 0.18,−1.34, 0.45], shown
as Fig.13.

FIGURE 13. The home configuration and the target position: (a) is front
view which shows home configuration of the SSRMS manipulator and the
target; (b) is side view which shows EO and the target.

The motion of the target differs among three cases. In addi-
tion, the computing time of the algorithm is listed and com-
pared with other methods proposed in [11].

A. FREE MOTION
In this case, the aim is to test the convergence,
accuracy and performance of the additional multi-task
model consisting of X1,X3,X4. The manipulator freely
moves towards the target fixed at xt =

[
pt , ηt

]
=

[0.625, 0.255,−3.422, 0, 0.5299,−0.848, 0] without the
constraints of obstacles, that is,X2 invalid in (41). The desired
poses xd07 of the end effector are generated by the linear
difference between the current pose and the target pose.
As this paper focuses on the inverse kinematics rather than
the trajectory planning, we assume without loss of generality
that the desired pose in each moment has been known. Led
by the desired pose in each moment, the manipulator searches
the optimal solution of the inverse kinematics in the feasible
joint space.

Fig.14(a), (b) displays the dynamic configurations of the
manipulator in two views and Fig.14(c), (d) display the opti-
mal values of EO and the solutions of inverse kinematics
respectively. The end effector gets to and then keep at the
target at ts = 35s. Constrained by X1, current posture is
updated as the closest posture according to the optimized EO.

According to Fig.14(c), the EO variation is small and stable
and that indicates the adjustment of the manipulator configu-
ration is stable without overturns. Fig.14(d) illustrates that the
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FIGURE 14. Simulation solutions of the inverse kinematics for SSRMS
manipulator. (a) shows the configuration motion in front view; (b) shows
the configuration motion in the side view; (c) shows optimal EO optimized
by X1; (d) shows joint inverse kinematics solution corresponding EO.

joints motion is smooth without the joint jumps. The smooth
joint trajectory is vital for the manipulator to achieve dynamic
control and suppress the noise of higher-order parameters,
such as velocity and acceleration.

The convergence index is introduced to describe the per-
formance of the inverse kinematics algorithm and defined as

c =
0 − 0opt

0ini − 0opt
, (52)

where 0ini is the initial fitness evaluation and 0opt is the
global optimal fitness evaluation. Equation (52) is a feature
scaling technique which normalize the fitness evaluation as
convergence indexes which ranges from 1 to 0 corresponding
from the initial value to the steady value [35]. The tech-
nique does not change the convergence tendency of fitness
evaluations. The convergence index represents the velocity
of a fitness evaluation determined by a randomly given EO
approaching to the optimal fitness evaluation. During the
100s simulation, the inverse kinematics algorithm executes
totally 50000 optimizations, generates 5000 local optimal
fitness values and picks out 1000 optimal solutions. The local
optimal fitness values are normalized as convergence indexes
according to (52) and collected to make a statistic, shown as
Fig.15. According to this figure, the convergence index after
the 12th generation is within 0.2%, so the inverse kinematic
algorithm is of good fast convergency.

The position error of the proposed inverse kinematics is
defined as

1ep = pd07 − p
e
07, (53)

where pd07 is the desired position and pe07 is the executive
position of the end effector. The error between the desired
orientation ηd07 and the executive orientation ηe07 is

1η = ηd07 ⊗ η
e
07
∗.

FIGURE 15. The convergence index of the local fitness evaluations.

However, the error is a quaternion which indicates the cou-
pling orientation relationship between two frames. To express
the orientation error intuitively, the axis angle 1η0 is
extracted to be defined the orientation error

1eη = arccos(1η0). (54)

Although the orientation error loses the information of the
rotation axis, it can represent the error magnitude between
two frames. The position error and the orientation error are
shown in Fig.16(a) and Fig.16(b) respectively. According
to the figures, we can know that 1epxmax = 0.257 mm,
1epymax = 2×10−12mm,1epzmax = 0.006mm,

∣∣1ep∣∣max =
0.257 mm and1eηmax = 1.19×10−12

◦

. For the position, the
error mainly happens in the period of dynamic approaching,
that is 0 ∼ ts. During this period, the inverse kinematics
algorithm with fixed parameters is employed to deal with
varying conditions, so the steady solution is always varying
and needs to be searched again starting from the previous
solution. However, during the period of the fixed pose, that is
ts ∼ 100s, the searching initial value is approximately same
as the steady solution, so the steady solution can be updated
more precisely on the basis of the previous searching solution.
For the orientation, similarly, owing to the little variation of
end effector posture, the steady solution is updated based on
the accurate initial value and hardly varies.

FIGURE 16. Errors of the position and orientation. (a) shows component
error of the position; (b) shows the angle error between the target normal
vector and z7.

B. DYNAMIC AVOIDING OBSTACLES
In this case, the multi-task model consisting of X1,X2,X3,X4
is employed to avoid obstacles dynamically. During the
obstacle avoidance process, the manipulator moves towards
the dynamic target. The trajectory of the dynamic target is
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FIGURE 17. Simulation solutions of the inverse kinematics for SSRMS
manipulator. (a), (b) show the configurations of free motion ts0, obstacles
avoidance ts1 and capturing the target ts in two views; (c), (d) shows the
varying configurations with the moving target; (f) shows joint inverse
kinematics solutions corresponding EO shown as (e); ts0 = 0.5s;
ts1 = 10s; ts = 24.9s.

defined as xt(t) =
[
pt (t) , ηt

]
. The shape of the dynamic

target is a circle located in xtc = [0.8260, 0,−2.799] and ori-
entated towards ntc = [−0.0995, 0,−0.9950]. The position
of the trajectory, pt(t)

ptx = −0.1760cos (fωt)+ 0.8260,

pty = −0.1769sin (fωt) ,

ptz = −0.0176cos (fωt)− 2.7398, (55)

where fω = 0.0088. The orientation of the trajectory
ηt = dcm2quat([[[eb×ntc×ntc]], [[eb×ntc]],ntc]). Obstacles
are fixed in xb1 = [−1.2297, 0.1267,−1.205] and xb2 =
[−1.5297, 0.1067,−1.505] respectively and they are set on
the way of freely moving trajectory. Compared with existing
methods [1], [3], [11] obstacles are enough. Both safety mar-
gins are the same ξ1 = ξ1 = 0.05 and both collision distances
ξ10 = ξ20 = a4/2. The visual model and the approaching
process are shown from two views as Fig.17. The manipu-
lator freely moves during 0s ∼ ts0 and then is optimized
to avoid obstacles by the multi-tasks model consisting of
X1,X2,X3,X4. During ts0 ∼ ts1, the optimal configuration
is searched to lead the manipulator to avoid collisions and
achieve minimum orientation variation. In this period, EO is
adjusted continuously to lead the manipulator to get to the
optimal configuration. During ts1 ∼ ts, the manipulator is
approaching the initial position of the target trajectory. After

that to 200s, the manipulator tracks the trajectory and avoids
obstacles simultaneously.
Notice that, the avoidance obstacle taskX4 does not work in

each moment, it only works when the manipulator is beyond
the safety margins of obstacles. During the whole simulation,
the inverse kinematics algorithm executes totally 450000
optimizations, generates 30000 local optimal fitness values
and picks out 2000 optimal solutions. Among them, there are
182 optimal solutions obtained by executing the avoidance
obstacle task, so the whole process consists of the free motion
and the avoidance obstacles. Their distributions are shown
by the step function in Fig.18(a), where ‘‘0’’ represents the
avoidance obstacles and ‘‘1’’ represents the free motion. The
convergence indexes of two cases are figured out by (52)
respectively and separately shown in Fig.18(b). According
to (45), the fitness value extremely deteriorates when the
collision happens, so the convergence index of the avoidance
obstacles coa converges slower than the convergency index
of the free motion cfm. The slow convergence results in the
low accuracy of the end effector and meanwhile the varying
convergence accuracy results in vibration. The tracking error
of the end effector are shown in Fig.19. According to the
Fig.19 (a), the position error 1emaxpx = −0.691mm,1e

max
py =

0.109 mm,1emaxpz = 0.343 mm,
∣∣1ep∣∣max = 0.731mm.

According to Fig.19(b), 1emaxη = 0.059◦. By analysis in
Section IV-A, the accuracy of dynamic searching is lower
than the stastic searching. Because the orientation of the
end effector varies all the time, the orientation error of the
avoidance obstacles is bigger compared with the free motion
in Section IV-A. The error distributions are shown in Fig.20.

FIGURE 18. (a) shows the enabling frequency of the additional task X2.
(b) shows the convergence index of the local fitness evaluations, where
cfm is convergence index of the free motion and coa is the convergence
index of the obstacles avoidance.

FIGURE 19. Errors of the position and orientation. (a) shows component
error of the position; (b) shows the angle error between the target normal
vector and z7.
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FIGURE 20. Frequency distributions of position errors and orientation
errors. The position errors, shown as Fig (a), (b), (c) are distributed
normally. Most errors of position and orientation distribute near zero.

The position error components epx , epy, epz display normal
distributions whose standard deviations are small. About
the orientation error, the frequency reduces quikly with the
increasing of the error. The mean position error is 0.1315mm
and the mean orientation error is −0.011◦.
The manipulability indicates the kinematics performance

of the manipulator and contains translational and rotational
velocity information. This paper adopts the Yoshikawa’s
method [36] to define the manipulability and it is shown
in Fig.21. X3,X4 computed by (49), (50) as shown in Fig.21.
Comparing these three variables in Fig.21, we can conclude
that the manipulability is correlated positively with X3 and
negatively with X4. According to Fig.21, the manipulability
is correlated with the linear combination of X3,X4 and opti-
mations to X3,X4 improve manipulability. The manipulator
keeps resonable configurations during the whole process of
approaching and tracking.

FIGURE 21. The Manipulability and the fitness values of additional tasks
X3,X4. The manipulability is correlation with X3,X4.

C. ANALYSIS OF EFFICIENCY AND ACCURACY
The proposed inverse kinematics algorithm (IK-HAN) is
designed in the Microsoft VS2010 software. The procedure
is executed on the Win7 operating systems which is installed
in a computer with an Inter(R) Core (TM)i5-6300HQ CPU

2.30GHz and Quad CPU kernels. The average consuming
time of the proposed algorithm is 2.917ms measured by
Multimedia Timer. It is vital for the proposed algorithm to
be integrated into the underlying hardware, such as DSP or
FPGA, to achieve the real-time kinematics control.

1) EFFICIENCY AND ACCURACY
According to past researches, the inverse kinematics for
7-dof manipulators can be classified in 4 categories includ-
ing IK based on AI (IK-AI) [10], closed-loop optimiza-
tion (IK-CLO) [1], [11], [12], Jacobian s pseudo-inverse
(IK-JPI) [3], [37] and attaching constraints. According to the
reference [37], the solution of the inverse kinematic problem
in the velocity level has the following form

θ̇=J+ (θ)
[̇
xd + Kp (xd−x)

]
+
[
I − J+(θ)J(θ)

]
θ̇0. (56)

where θ, x,xd , ẋd, J,J+ denote the vector of joint angles,
the position of the end-effector, the desired Cartesian point,
the desired velocity of the end-effector, Jacobian matrix and
Jacobian’s pseudo-inverse, respectively, and Kp > 0. The θ̇
denotes as an arbitrary vector in the null space of the Jacobian
matrix and to avoid joint angle limits, it is given as

θ̇ =
∂ϑ

∂θ
, ∂ (θ) =

∥∥∥∥∥ θ − θ̄

θM − θm

∥∥∥∥∥
p

, i = 1, . . . , 7

where θM (θm) is the maximum (minimum) of the joint
angles and θ̄ is themiddle value of the joint angles. According
to reference [3], a real-time inverse kinematics based on RBF-
NN (IK-RBF-NN) is proposed and its output function is

θ =

m∑
i=1

wiexp(−
1
2
(
‖i− oi‖
σi

)
2
), i = 1, . . . , 7. (57)

with the cost function

f = cTd +
1
2
dTHd

c =
∂f (w)
∂w

, d = 1w

where i, o is the input vector, the output vector of the hidden
layer and w,H is the connecting weight and an arbitrary
positive-definite matrix. The algorithm block diagram is
shown in Fig.22 a). According to the reference [1], an adap-
tive close-loop system is proposed and its output function is

X (k + 1) = h (X (k))+ g (X (k))U (k) , (58)

with the cost function

f =
1
2

∞∑
k=0

(XT (k)QX (k)+ UT (k)RU(k))

U (k) = −R−1gT (X (k))λ∗(k + 1)

where X,U,Q,R is the state, input, positive semidefinite
matrix, positive-definite matrix respectively and λ∗ is the
optimal costate vector of the discrete-time system. The algo-
rithm block diagram is shown in Fig.22 b).
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FIGURE 22. (a) The algorithm block diagram of IK-AI; (b) The algorithm
block diagram of IK-CLO.

Then comparations are made as below between above three
methods and the proposed inverse kinematics in this paper.
The efficiency is defined as the consuming time of calculating
the inverse solution between adjacent points in the planned
trajectory. So that different planned trajectory will not affect
the efficiency of the algorithm. The simulation results in [11]
show the ability of IK-JPI that the efficiency is 3.6ms and
the accuracy is 29mm. For IK-CLO in [3], the efficiency is
at least 30ms and the accuracy is 1mm. Similarly, another
method of IK-CLO in [1], the efficiency can be raised up to
75% of IK-JPI and the accuracy is 25mm. For IK-AI in [10],
an RBF-NN is employed to solve the inverse kinematics in
real time and consumes at least 100ms to calculate and the
minimum position error is 3.41mm.

Above all, the analytical method performs well in
efficiency and the numerical method does well in inverse
solutions of the redundant manipulators. However, one can
conclude that the accuracy is opposite to the efficiency and it
is difficult to improve them simultaneously except adopting
a hybrid of analytical and numerical method proposed in this
paper.

2) COMPLEXITY ANALYSIS
According to computational complexity rules, we can
figure out the complexity of IK-JPI, IK-CLO and proposed
IK-HAN as following.

There are three sections in the complexity of IK-HAN.
First, the computation of EO vector requires NH1nH order
flops for computing (1)∼ (12), where nH = 3 and NH1 is the
number of firing rules. Owing to calculating trigonometric
functions in the inverse kinematics, the local complexity
will get up to NH2nH log(nH ), where NH2 is the calculation
number of trigonometric functions [38]. The last part of
complexity for optimization isNHdNHgnAA, whereNHd = 10,
NHg = 5 are the iteration number and the population size of
PSO and nAA = 1 is the dimension of the azimuth angle. So,
the complexity of IK-HAN is

(nH log (nH ) ,nAA)

= NH1nH + NH2nH log (nH )+ NHdNHgnAA, (59)

For IK-CLO in [3], the computation of inverse solutions
(X-2) requires at leastNc(n+2n2) order flops, where n = 7 is
the degree of freedom andNC is the number of optimizations.

TABLE 2. Computational performance.

So, the complexity of IK-CLO is

oCLO(n2) = Nc(n+ 2n2), (60)

IK-JPI [11] involves computation of the minimum norm
motion for the primary task and the self-motion for accom-
plishing the additional task. The redundancy resolution
requires computation of Moore Penrose pseudoinverse. The
computation of Moore Penrose pseudoinverse involves sin-
gular value decomposition (SVD) and matrix multiplications
for inverse computation. The total computational cost of
IK-JPI is

oJPI (n3) = NJ (3mn2 + n3 + 1.5m2n− 0.5mn), (61)

where m = 6 is the dimensions of the workspace and NJ is
the number of corrections.

With the increment of degrees of freedom, the computa-
tional requirement increases rapidly for IK-CLO and IK-JPI
while it is approximate linear for IK-HAN, which makes it a
better approach for real-time implementation. More compa-
rations about efficiency and accuracy of above four methods
are listed in the Table 2.

The azimuth angle is optimized by the PSO in the
constraints model in real time. It will be shown that the com-
putational requirement of the proposed inverse kinematics
is low since the 3-dimensional optimization for the EO is
transformed as the 1-dimesional optimization for the azimuth
angle.

VI. CONCLUSION
This paper has proposed a novel inverse kinematic algorithm
for SSRMS-type 7-DOF redundant robots based on a hybrid
of analytical and numerical method. The algebraic relation-
ship between the joints and EO is studies. The proposed
algorithm transforms the inverse kinematics problem as the
optimization model of EO and the additional tasks are for-
mulated as fitness evaluation functions. To improve the algo-
rithm efficiency, EO is simplified as the unary function of
the azimuth angle according to the geometric constraints
and is optimized by employing PSO. With the algebraic
relationship, the optimal joints solutions are obtained in real
time. The simulations are executed on two cases and shows
that the proposed algorithm performs well in accuracy, effi-
ciency, avoiding obstacles, avoiding singularities, improving
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manipulability. The proposed algorithm also can be applied
to SRS-type manipulators. The further study will be required
for the joint limits.
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