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ABSTRACT The penetration of photovoltaic (PV) systems in power grids has substantially increased since
the recognition of renewable energies. In a high solar-integrated network environment, an accurate forecast
of the expected solar energy output is vital. One of the important factors that influence such forecast is the
failure rates of PV systems. Therefore, a new and realistic reliability model of the PV system is proposed in
this study. In contrast to the conventional reliability model, which uses fixed values of failure rates in a year,
the proposed model considers various weather conditions, detailed PV system architecture, manufacturing
quality and other necessary materials to determine the time-varying failure rates of the PV system. Results
reveal that the proposed model produces monthly failure rates that are considerably different from the fixed
yearly failure rate in which the difference in high latitude regions is more significant than that in tropical
climate regions.

INDEX TERMS Failure rate, PV system, reliability, time-varying.

I. INTRODUCTION
Increasing concerns regarding global warming and dwin-
dling fossil fuels have led to the development of renewable
energy (RE) systems. Amongst various RE sources, solar
energy is one of the most promising due to its large untapped
natural capacity for power generation. In 2018, the earth
received approximately 1.2 × 1017kWh of solar energy, but
the estimated energy consumption in the same year was only
1.6 × 1011 kWh [1]. This finding indicates that solar energy
matches the load demands by approximately 12,500 times on
a per-minute basis. Solar energy usage in domestic and indus-
trial power supplies has dramatically increased by seventy-
fold from 2007 to 2017, subsequently reducing the costs
of solar energy worldwide [2]. In the next two decades,
the share of photovoltaic (PV) systems is expected to increase
further, constituting 23% of the total global power generation;
such increase is mostly due to large-scale, grid-connected
PV farms, which cause significant changes in existing gen-
eration systems [3]. Therefore, understanding the reliability
of the PV system and providing accurate quantification are
crucial [4], [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Feng Wu.

The initial reliability modelling of PV systems neglects
the partial failures of the individual components [6], [7]. The
components of the PV system, such as panels, converters,
inverters, fuses and connectors, respond differently to various
environmental conditions [8]–[11]. Thus, weather and ageing
records have been used to determine the time-varying failure
rates of PV systems [12]. However, this simple approach
is solely based on specific statistical data and therefore not
repeatable for other conditions. Moreover, simple analytical
approaches have been used in the modelling of a solar power-
integrated distribution system [13]. A previous study has
incorporated the reliability effect of the PV system protection
device (i.e. fuse) [14]. The fault tree analysis has also been
used for systematic identification due to the various operating
states of the PV system [15].

Given the stochastic nature of solar radiation, a simulation-
based reliability study, especially a Monte Carlo simulation,
is more effective than the previously mentionedmethods. The
failure rates of various PV system components have been
modelled on the basis of weather conditions [16], such as
temperature and irradiance [17], [18]. Wind and load data are
also included to obtain an accurate PV power output model
for robust reliability analyses [19]–[21]. The PV system has
also been modelled on the basis of the clearness index, which
follows the beta probability distribution function [22].
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The aforementioned factors lay the foundation for the reli-
ability studies of smart grid systems integrated with various
forms of RE, especially solar energy, with the consideration
of the uncertainty in ambient temperature [23], [24] and
demand–response [25]. However, the modelling of internal
PV components is neglected, and the previous advances
in the corresponding reliability modelling have never been
improved. On this basis, various models have been proposed.
The effect of the mission profile resolution on the failure
rate of the PV system inverter was investigated to resolve
this issue [26]. The Markov model was utilised to identify
and model the various states of the PV components [27].
This technique has been extended to include the stochastic
property of solar radiation data and the effect of intermittent
faults on PV system components [28], [29].

However, several drawbacks have been identified in the
aforementioned methods. Firstly, these methods ignore the
reliability modelling of major PV system components (e.g.
panels, converters, inverters, fuses and connectors) despite
the unique failure rates and different responses to various
environmental conditions [11]. Ignoring these characteristics
and lumping the components into a single part is unrealistic
and results in a large bias in the reliability evaluation of
PV systems. Secondly, fixed failure rates of the PV system
components are arbitrarily used [8]. The fixed failure rate
assumes that theweather parameters are constant over time by
taking the average values. However, this assumption results
in the unrealistic evaluation of system reliability in which the
components are differently affected by the varying weather
conditions over the year. Moreover, the components show
higher failure probability under extreme weather in compari-
son with normal weather conditions.

To address the identified drawbacks, this study proposes a
new method for the reliability modelling of PV systems. The
proposed system details the modelling of the PV components
and considers all neglected factors identified in the second
drawback. Moreover, a realistic PV system structure is con-
sidered when determining the chronological state transition
sequence of the system. A new and robust solar radiation
model from previously published works is also utilised in
the reliability model of the proposed PV system. The main
outcome of the proposed reliability model is the time-varying
failure rates of the PV system, which is then used to determine
the PV power output.

The remainder of this paper is organised as follows:
Section II describes the proposed PV system reliability
model. Section III analyses the proposed model and presents
the results. Section IV provides the conclusions.

II. METHODOLOGY
A. PV SYSTEM STRUCTURE
The proposed three-phase grid-connected PV system is
shown in Fig. 1 [16], [30]. The maximum capacity of the
proposed system is 1 MW, which is generated by 4000
ND-R250A5 PV panels and separated into 10 arrays. Each

FIGURE 1. Structure of a typical PV power system.

FIGURE 2. Three-leg DC-DC converter.

FIGURE 3. Three-phase inverter.

array is further separated into 25 parallel strings in which
each string is a series connection of 16 PV panels. Each
panel has a connector, and each string is ended with a fuse
that is fitted into another connector. The fuse is connected to
the DC combiner box with an output voltage level boosted
by a three-leg DC–DC converter to match the input voltage
requirement of the three-phase inverter. The power capacity
of the converter is 100 kW, with nominal input and out-
put voltages of 500 and 620 V, respectively. The physical
structure of the three-leg converter is shown in Fig. 2. Each
leg comprises a transistor, a diode and a capacitor [8]. The
power capacity of the three-phase inverter is the same as that
of the converter and has nominal input and output voltages
of 620 and 380 V, respectively [8]. The physical structure
of the inverter comprises transistors only (Fig. 3). Through
the inverter, the DC power generated by the PV panels is
converted into AC form before injection into the grid via a
fully reliable busbar.
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Although the proposed PV system has a specific number
of components, the presented architecture in Figs. 1–3 repre-
sents a typical design of the PV system. Hence, the proposed
reliability model can still be applied to any PV system with
different numbers of components.

B. PV SYSTEM FAILURE RATE MODEL
As mentioned in the introduction, the failure rates used in the
current reliability studies of PV systems are fixed on the basis
of the statistical records of specific environmental conditions.
Hence, reusing the same failure rates in the modelling of
the PV system at different environmental conditions is not a
reflection of the actual reliability behaviour of the PV system.
As a countermeasure, this study uses physics-of-failure the-
ory used in the FIDES guide [9] as the methodology for mod-
elling the major components of the PV system described in
Section II.A. The guide considers physical and technological
factors, thermal and mechanical overstresses, manufacturing
properties and the mission profile, which is a systematic
manner of describing and organising all operations performed
by the system [31], [32]. An overview of the proposed PV
system failure rate model is shown in Fig. 4. Where solar
radiation (E), temperature (T) and humidity (H) are the three
major inputs of the proposed model.

Firstly, modelling the failure rates of the PV system
requires solar radiation, temperature and humidity data,
which are all obtained from the State University of New York
Project [33]. The data obtained from two locations, namely,
Aceh, Indonesia (5.05◦N, 97.45◦E) and Vancouver, Canada
(49.25◦N, 123.1◦W), from 2000 to 2014 are recorded hourly.
Solar radiation is modelled on the basis of the previously
published method [34] and simulated for 10,000 years. The
hourly average of the solar radiation data is obtained from this
model and grouped in accordance with the respective months.
The number of year simulated is to ensure that the variation
coefficient of the hourly solar radiation data is smaller than
5%. The obtained temperature and humidity data are constant
over the entire period and can be reasonably assumed for
repetition in the future.

In the second step, the mission profile of the PV system
is defined on the basis of the level of the generated PV
power. This basis is reasonable because the PV system is
only used to convert solar radiation into electrical power; no
mechanical movement in the system requires a sophisticated
mission profile. The PV power level and the mission profile
are separated into 11 levels of equal 10% intervals starting
from the dormant state where no power output is available
for each day. The PV power output of a single PV panel can
be calculated as

9α =
Eα

E0
Pm0

[
1+ γP(T α − T0)

]
(1)

where 9α , Eα and T α are the hourly PV power generation
from a single PV panel, the hourly incident solar radiation on
a PV panel, and temperature of the αth day, respectively; E0,
Pm0 and T0 are the solar irradiance, PV panel rated power

FIGURE 4. Proposed PV system failure rate model.

and temperature at standard test conditions; and γP is the
temperature coefficient of the power parameter [10]. At each
hour of the day, (1) is obtained, and the mission profile of the
day is identified. An example of the PV panel mission profile
of the 15th day in January is presented in Fig. 5, where Pmax
denotes the maximum PV power generated by a single PV
panel over the respective month. The values of 9α , T α and
humidity Hα from the same month are separately combined
to form the matrix below.

9m,Tm or Hm
=


x11 · · · x1j · · · x124
x21 · · · x2j · · · x224
...

. . .
...

. . .
...

xα1 · · · xαj · · · xα24

 (2)

where 9m, Tm and Hm are the matrices containing all values
of 9α , T α and Hα , respectively, in the mth month; x is either
9α , T α or Hα; and the subscript j denotes the hour position
of the input x.

From (2), all index pairs (α, j) between the power level L
and L − 1 are determined as

kmL =
[
α, j| (L − 1)

Pmax
10

< xαj ≤ L
Pmax
10

]
(3)
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FIGURE 5. Mission profile of the PV system on January 15 showing
(a) output power and (b) temperature profiles.

where kmL is the set of all index pairs between L and L − 1
for 9m, Tm and Hm. The functions 9m

(
kmL
)
, Tm

(
kmL
)
and

Hm
(
kmL
)
respectively represent all PV power output, temper-

ature and humidity values of the L th level in the mth month.
In the third step, several key parameters are derived.

From (3), the size of kmL , which is the number of elements
(numel), is obtained. Then, the number of hours, which is
denoted as hmL , is determined as

hmL = numel
(
kmL
)

(4)

From (2) and (3), the average values of the weather condi-
tions are calculated as

TmL,avg = mean
(
Tm

(
kmL
))

(5)

Hm
L,avg = mean

(
Hm (kmL )) (6)

where TmL,avg and Hm
L,avg are the respective average values

of the temperature and humidity of the L th level in the mth

month.
A cycle z is counted when the PV power output enters L−1

and exits L, or vice versa. Subsequently, the total number of
cycles of the L th level in the mth month Nm

L is determined by
summing all cycles of the respective level.

Nm
L = numel(Z) (7)

where 1 ≤ Z ≤ z. Then, the average cycle duration of the L th

level in the mth month is determined as

θmL =
hmL
Nm
L

(8)

where θmL is the average cycle duration of the L th level in the
mth month.
The temperature difference of the corresponding cycle

is determined and repeated for all cycles by tracing the
identified cycles onto the temperature curves. Subsequently,
the average temperature difference of the L th level in the mth

month is determined as

1TmL =
1
Nm
L

Nm
L∑

z=1

(max (tzL)−min(tzL)) (9)

where tzL is the temperature values of the zth cycle and L th

level.
From (7) and (9), the average maximum cycle temperature

of the L th level in the mth month T̂mL is calculated as

T̂mL =
1
Nm
L

Nm
L∑

z=1

max (tzL) (10)

Next, the average power output generated by a PV panel of
the L th level in the mth month 9m

L is determined as

9m
L = mean(9m (kmL )) (11)

In consideration of the converter and inverter of the PV
system running at efficiencies of X% and Y%, respectively,
with respective nominal output voltages of 620 and 380 V,
the corresponding output currents are determined as

ImL,conv =
9m
L × CP × CS

620
×

X
100

(12)

ImL,inv =
9m
L × CP × CS

380
×

X
100
×

Y
100

(13)

whereCP andCS are the total number of PV panels connected
in parallel and series forming an array, respectively.

Lastly, the junction temperatures of every diode and tran-
sistor in the transistors of all converters and inverters, denoted
as TmL,D_conv, T

m
L,Tr_conv and T

m
L,Tr_inv, are determined on the

basis of the methods in [35], [36]. The current in each string
ImL,str of the L

th level is determined to be equal to the PV panel
current output.

ImL =
9m
L

Vm
L

(14)

where Vm
L is the terminal voltage of the PV panel of the

respective level; this voltage is highly dependent on the level’s
temperature TmL,avg.

Vm
L = V0

[
1+ γV (TmL,avg − T0)

]
(15)

where V0 is the maximum power point voltage of the PV
panel under standard test conditions, and γV is the temper-
ature coefficient of the voltage parameter [37].
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In the fourth step, the failure rate of any PV system com-
ponent in the mth month, λm, is determined as [9]

λm = λmPhy5PM5Process (16)

where λm is the failure rate of either the transistors, diodes,
capacitors, connectors or fuses, which collectively form the
PV system structure in Section II.A, λmPhy is the physical con-
tributing factor of the reliability of the previously mentioned
component in the mth month, and 5PM and 5Process are the
quality and technical conditions of the manufacturing and
usage processes of the component, respectively.
λmPhy of the component is calculated for every month as

a function of the set of weather parameters �w and the set
of parameters associated with either the converter transis-
tor �conv

Tr , converter diode �conv
D , converter capacitor �conv

C ,
inverter transistor �inv

Tr , PV connector �Con, fuse connector
�Fcon or fuse �F .

λmPhy = f
(
�w,

(
�conv
Tr , �conv

D , �conv
C , �inv

Tr ,

�Con, �Fcon or �F

))
(17)

where

�w = f
(
hmL ,T

m
L,avg,H

m
L,avg,N

m
L , θ

m
L ,1T

m
L , T̂

m
L

)
(18)

�conv
Tr = f

(
Vm
L,conv, I

m
L,conv,T

m
L,Tr_conv

)
(19)

�conv
D = f

(
Vm
L,conv, I

m
L,conv,T

m
L,D_conv

)
(20)

�conv
C = f

(
Vm
L,conv

)
(21)

�inv
Tr = f

(
9m
L , I

m
L,inv,T

m
L,Tr_inv

)
(22)

�Con, �Fcon and �F = f
(
ImL,str

)
(23)

where Vm
L,conv is the voltage at the converter terminal. Equa-

tions (16) to (23) are long and therefore not expanded in this
work due to page limitation, but the details of these equations
can be found in [9]. The repair rates of all components spec-
ified in (19)–(23) from [8] are considered constant because
these rates are rarely affected by environmental conditions.

C. PV SYSTEM POWER OUTPUT MODEL
Based on the failure rates obtained in Section II.B, the step-
by-step process for determining the hourly PV system output
is presented in Fig. 6 and described as follows.
Step 1: The sequential Monte Carlo Simulation (SMCS) is

initialised at y = 1 and t = 1, which represent the simulation
year and hour of the year, respectively.
Step 2: At the t th hour, the failure rate of a component is

denoted as λ(t). An example of the failure rate propagation of
the converter transistor is shown in Fig. 7. Considering that
the failure rate follows an exponential distribution, the prob-
ability density function (PDF) and cumulative distribution
function (CDF) of the component are determined as

f (t) = λ (t) e−λ(t)t (24)

Ft (T ) =
T∑

t=hr i

f (t) (25)

FIGURE 6. Failure rates of the PV system array in Aceh and Vancouver.

At the start of the simulation, when t = 1, the input range
of f (t) is 1 ≤ t ≤ 8760 or generally hr i ≤ t ≤ hre.
However, when t = hr i = 50, the input range is broken down
into two parts when t has progressed beyond the final hour:
50 ≤ t ≤ 8760 and 1 ≤ t ≤ 49. The second part restarts from
the beginning as the first interval exhausted from all hours of
the year to maintain a full period of 8760 h. Then, T is defined
as

T =

{
1 ≤ t ≤ 8760 hr i = 1
hr i ≤ t ≤ 8760+ 1 ≤ t ≤ hr i − 1 hr i > 1

(26)

Step 3: A random number Uf is generated. The d th time-
to-failure (TTF) of the component is determined by applying
the inverse transform method on the CDF obtained in the
previous step, as the following:

TTFd = F−1t
(
Uf
)

(27)

Moreover, the time-to-repair (TTR) of the component is
always directly determined using another random numberUr
because the repair rate of the component µ is considered
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FIGURE 7. Example of the time-varying failure rate of a transistor
operating in Aceh.

constant over time [38], as the following:

TTRd = −
1
µ
ln (Ur ) (28)

Step 4: After each cycle (TTFd + TTRd ), a new TTF is
generated on the basis of the new CDF of the failure rates.
Take the sample in Step 2 as an example; if the component
is restored at t = 50, then the new TTF is generated on
the basis of the new CDF determined from the failure rates
ranging from the 50th to the 8760th hour and restarts from
the 1st until the 49th hour. Then, a new TTR is generated
on the basis of (28) using a new Ur . The entire process in
Step 3 is repeated until the complete status of the component
is obtained for 8760 h.
Step 5: The chronological states of all PV components in

the sampling year y are obtained on the basis of the up–down
cycles generated in Step 4. The processes from Steps 1–5 are
repeated until the number of the sampling year N is achieved.
N should be sufficiently large to ensure that the variation
coefficient of the expected PV power output is less than 5%
before ending the SMCS.

The power capacity of the PV system is determined on the
basis of the status combinations of all components. In con-
sideration of which component is not functioning, the fail-
ure category of the nonfunctioning component is identified
(Table 1) on the basis of the PV system structure presented in
Fig. 1. Table 1 shows that a fuse, connector or fuse–connector
failure only disconnects the respective string of the PV sys-
tem, whereas a converter or inverter failure disconnects an
entire array of the PV system. Moreover, the latter two are
considered failures if a single component in the respective
systems is not functioning (Figs. 2 and 3).

The total power generation of the PV system is a function
of the internal structure of the system. The proposed PV
system has 10 arrays and 25 strings; thus, the fraction of
power loss Ploss based on the failure category is determined
by considering that the total capacity of the PV system is
equally shared amongst the strings. Then, the hourly power

TABLE 1. Failure categories of the PV system components.

output of the PV system PPV is determined as

PPV =

∑
i∈�A

(
1− Ploss,i

)
+

∑
j∈�S
�S 6⊂�A

(
1− Ploss,j

)
×9 × CP × CS × CA (29)

where 9 is the hourly PV system power output determined
in (1), �A is the set of array failure categories, �S is the set
of string failure categories in which the arrays containing the
affected strings do not entirely fail, and CA is the number of
arrays in the system.

III. RESULTS AND DISCUSSIONS
The proposed time-varying failure rate model is applied
using the weather conditions in Aceh and Vancouver, and the
results are compared with the conventional yearly failure rate
model [8]. The results from the two locations are compared in
terms of failure rate values, availability, PDF and solar output
energy. Sensitivity studies are also performed by varying
the solar radiation, temperature and humidity to evaluate the
response of the failure rate.

A. FAILURE RATE AND AVAILABILITY
On the basis of the PV system structure and failure rate
model presented in Sections II.A and II.B and the collected
weather data, the failure rates of the PV arrays for every
month (assuming that all arrays are identical) are obtained
using (30) and (31) [39].

When the PV components are connected in series,
the equivalent series system failure rate is expressed as

λs =

Ns∑
i=1

λi (30)

where λs is the failure rate of a series system, and Ns is the
number of components in the series system.

When the PV components are connected in parallel,
the equivalent parallel system failure rate is determined as

λp =

Np∏
i=1

λi

(
Np
2 )∑
j=1

1j (31)

where λp is the failure rate of the parallel system, and 1 is
the multiplication of the repair durations (reciprocal of µ) of

14372 VOLUME 8, 2020



H. Abunima, J. Teh: Reliability Modeling of PV Systems Based on Time-Varying Failure Rates

FIGURE 8. Failure rates of the PV system array in Aceh and Vancouver.

the two-element combination drawn from Np, which is the
number of components in the parallel system.

On the basis of the various combinations of (30) and (31),
the equivalent monthly (proposed model) and yearly [8] fail-
ure rates of the PV array are depicted in Fig. 8. Considerable
differences are observed in the failure rates of both locations
every month. These differences indicate that the environmen-
tal conditions of the PV system exert a considerable influence
on the reliability of the components. Neglecting the effects of
the environmental conditions results in the same failure rates
for both locations despite the distinctive weather conditions.
This phenomenon might eventually lead to a drastic misrep-
resentation of the actual failure rates of arrays. On average,
the failure rates in Vancouver are lower than those in Aceh by
approximately 87%. Fig. 8 also shows the yearly failure rates
of both locations. The comparison of these values with those
of the monthly failure rates indicates that the proposed model
can accurately represent the array failures at various months
in a year. On the one hand, although the yearly failure rate
in Aceh approximates the monthly failure rate in July, this
value is significantly different from that of the other months,
especially that in December, which is the largest at approxi-
mately 62%. In addition, the percentage difference between
the monthly and yearly failure rates in Aceh is approximately
28% on the average. On the other hand, the largest deviation
between the monthly and yearly failure rates in Vancouver
is observed in July at approximately 305%. The average
percentage difference is approximately 85%, which is 57%
higher than that in Aceh. The comparison of the overall
percentage difference between the monthly and yearly failure
rates in Vancouver and Aceh shows that the weather condi-
tions in Aceh fluctuate less and are more stable than that in
Vancouver, resulting in an overall low percentage difference
in Aceh. This phenomenon can be attributed to Aceh’s tropi-
cal climate, which fluctuates less than the seasonal weather in
Vancouver. The PDF of the failure probability of the two loca-
tions is plotted in Fig. 9. The average percentage difference
between the PDFs calculated from the monthly and yearly
failure rates in Vancouver is approximately 0.016%, whereas

FIGURE 9. Failure probability of the PV system array in Aceh and
Vancouver.

FIGURE 10. Availability of the PV system array in Aceh and Vancouver.

that in Aceh is approximately 0.006%, which is lower than
Vancouver by approximately 62.5%. This trend is consistent
with the results illustrated in Fig. 8.

The availability values of the PV array in both locations
are calculated in accordance with the failure rates (Fig. 10).
The availabilities in Vancouver are higher than those in Aceh
regardless of the calculation based on the monthly or yearly
failure rates. This result is reasonable because the failure rates
in the former are lower than those in the latter. On average,
the availabilities in Vancouver are higher than those in Aceh
by approximately 138% compared with the monthly values.
When the yearly and monthly availabilities in each location
are compared, the average percentage difference in Aceh is
larger than that in Vancouver by approximately 21% and
15%, respectively. This finding is in contrast to the previously
mentioned comparison results based on failure rates. The
average percentage difference in Aceh is lower than that in
Vancouver due to the stable tropical climate in Aceh. This
finding indicates that the characteristic of availability is not
necessarily similar to that of failure rate due to the additional
influence of the repair rate [39] when determining the overall
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FIGURE 11. Energy outputs of the PV system generated on the basis of
the monthly and yearly failure rates.

availability of the PV array.

µs =
λs

Ns∑
i=1
λiµi

(32)

µp =

Np∑
i=1

µi (33)

whereµs andµp are the repair rate of the series- and parallel-
connected systems, respectively. Furthermore, the repair rate
of a series system is affected by the failure rates.

B. EXPECTED ENERGY OUTPUT
In this section, the output solar energy of the considered
1 MW PV system (Section II.A) in both locations is deter-
mined on the basis of the respective monthly and yearly
failure rates. The probability distribution of all simulated
output energies and the expected values after the convergence
of the SMCS are presented in Fig. 11. The results demonstrate
that the expected energy output in Aceh is higher than that
in Vancouver by approximately 43% and 64% based on the
monthly and yearly failure rates, respectively. The difference
between the two values indicates that using the yearly rates,
instead of the proposed monthly failure rates, overestimates
the difference of the expected solar energy output between
the two locations by approximately 21%.

The comparison of the expected energy output based on the
proposed monthly and yearly failure rates for each location
implies that the proposed model has an expected energy
yield increment of approximately 3.4% if the conventional
yearly failure rate is used in Aceh. By contrast, the difference
in Vancouver is prevalent at approximately 18%. In other
words, using the yearly failure rate underestimates the energy
output capacity of the PV system, especially in high-latitude
locations, such as Vancouver, where the weather conditions
often change. Although the weather conditions in Vancouver
are more desirable than those in Aceh in terms of the reliable
operations of the PV system (Fig. 8), the expected energy

FIGURE 12. Effects of solar radiation, temperature and humidity on the
failure rates of the PV system.

output in Vancouver is approximately 30% lower than that
of Aceh based on the proposed monthly failure rate due to
the high intensity and availability of solar radiation in Aceh.

C. SENSITIVITY STUDY
In this section, the threemajor inputs of the proposedmonthly
failure rate E, T and H are individually varied by a factor
of 0.5 until 1.5 with an increment of 0.25 to identify the crit-
ical input. The monthly failure rates of the PV array in Aceh
and the average values are presented in Fig. 12. The results
clearly demonstrate that E has the greatest effect on failure
rate, followed by T and H. At 1.5 times the original value
of E, the failure rate increases by approximately 14 times.
When the same factor is applied to T and H, the failure rate
increases by approximately 1.6 and 0.27 times, respectively.
In conclusion, E is the most critical influencing factor of the
failure rate of the array and the entire PV system.

IV. CONCLUSION
This study presented a new failure rate model for PV systems
by considering environmental weather conditions, PV system
architecture, interactions of PV components with the weather
conditions, manufacturing quality and materials used. The
key weather parameters included solar radiation, temperature
and humidity. The monthly failure rates of the components
of the PV system (e.g. fuses, connectors, transistors, diodes
and capacitors) were determined and combined to identify
the final failure rate of the entire PV system. Results from
the proposed model showed that the failure rates in most
months were significantly different from the conventional
yearly failure rate. In addition, the monthly failure rates fluc-
tuated above and below the yearly failure rates. Hence, using
a fixed failure rate for the entire year could yield inaccuracy
and bias in the reliability analyses. The proposed model was
also tested under two different climate locations: tropical
and seasonal. The comparison emphasised that the difference
between the monthly and yearly failure rates in locations with
seasonal climate is more significant than those with tropical
climate. Moreover, similar outcomes were observed when
the expected energy outputs of the same PV system used in
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the two locations were compared. Sensitivity analyses were
performed to identify the critical weather parameters that
affect the failure rates of the PV system. The analysis result
indicated that solar radiation demonstrated the greatest effect
amongst the three parameters.
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