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ABSTRACT This study focuses on stabilization problem of a class of nonlinear systems. Generally,
Lyapunov stability-based sliding mode technique is widely used to design controllers for nonlinear systems
with uncertainties. In this paper, however, based on contraction property and sliding surfaces, the sliding
mode control is suggested to provide incremental stability for nonlinear systems with uncertainties. The

effectiveness of the method is illustrated by numerical simulations.

INDEX TERMS Sliding mode control, contraction theory, robust control, incremental stability.

I. INTRODUCTION

Stability theory plays an important role in system theory
and engineering, including the well-known equilibrium point
stability (EPS) and input-output stability (I0S), as well as
the incremental stability (INS) that has a complicated devel-
opment process. A simple explanation of the EPS is that
all solutions starting near the equilibrium point close to this
point [1]. IOS is a system stability property which can be
examined from the external characteristics of the system [2].
INS is a stronger property comparing arbitrary trajectories
with themselves, rather than with an equilibrium point or with
a particular energy function. There are some evidences that
EPS, IOS and INS are related [3]-[5]. Compared only on
the concepts of EPS and INS stability, researchers more
inclined to the stability of some particular solutions nearing
the equilibrium points in the early years. However, in some
cases it is more important to focus on the stability properties
of all solutions independent of equilibrium points. Especially,
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the stability conditions of all solutions are more general when
there are multiple equilibrium points in the systems, or when
dealing with synchronization problems of complex networks.
As another example, the construction of the energy function
for some systems with physical properties might be easy,
but it’s hard to find a pattern to follow in the cases of the
exceptions. The relationships (such as a distance) between
trajectories exist objectively, in other words, incremental
stability provides an analysis method for those unexpected
situations.

To recall the history of incremental stability, an important
concept is the Demidovich condition [6], [7], which provides
sufficient conditions for the convergence of incrementally
stable systems. A simple explanation of the Demidovich
condition is that the system is convergent if all system tra-
jectories converge to one trajectory on the whole time axis.
In general, however, the reason for the explosive growth
in the study of incremental stability is that Lohmiller and
Slotine introduced the Riemannian metric into the control
systems and defined the contraction properties (a generaliza-
tion of the Demidovich condition) of incremental stability [8].
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The contraction properties can be simply interpreted in
Riemannian geometry as: requires the decrease of a dis-
tance, defined through a Riemannian metric, along trajec-
tories. The number of applications of incremental stabil-
ity has increased in the past decade. Examples in stability
analysis of nonlinear systems [9]-[11], complex networks
for time-delayed communications [12], concurrent synchro-
nization [13], [14], switched networks [15], coupled iden-
tical nonlinear oscillators [16], construction of symbolic
models [17], observer design [18]-[20], nonlinear control
design [21]-[26].

From previous literature of authors’ knowledge, where in
terms of the control scheme, it involves feedback control
[17], [23], [26], matrix inequality condition [24], [25], and
backstepping design [14], etc. Motivated by above discus-
sions, a control scheme combined sliding mode technology
and incremental stability has not yet been investigated and
still remains a big challenging issue. Another motivation is
to expand the application of incremental analysis methods
on uncertain systems. A common technique for processing
uncertainties by contraction is the semi-contraction technique
[27], which does not require accurate estimates for uncertain
parameters, but the structure of the systems must be known.
A newly developed technology called robust control contrac-
tion metrics [5] can guarantee robust stability of arbitrary
trajectories via small gain arguments, but its calculations are
complex and even require software assistance.

It is well known that the sliding mode control has a good
robust performance for uncertain systems. In this technical
note, by investigating the design method of incremental slid-
ing control, the main contributions can be stated as following
two aspects.

o Developed a sliding design method for second-order
systems and provided controllers enforcing an incre-
mental asymptotic stability and not an equilibrium point
stability;

« Expand the application of incremental analysis methods
on uncertain systems. The advantages are uncomplicated
calculations and do not require a known structure;

However, the present technology is relative to the second-
order nonlinear systems. In other words, in the case of higher-
order [28]-[30], new technologies need to be developed. And,
research on contraction analysis in finite-time control [31]
is rare, one of the challenges in the future is the finite-time
control, especially with an incremental sliding technology.
Another challenge is the case of time-delayed systems [32],
[33], whether the incremental sliding technology can be intro-
duced.

The organisation of this paper is structured as follows.
The concept of incremental stability and contraction are dis-
cussed in Section II. The incremental sliding mode problem
is described in Section III. In Section 1V, firstly, a sliding
surface is designed for a second-order uncertain system. Sec-
ondly, a sliding control method with incremental stability is
proposed. Thirdly, the case for interference of sliding surface
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is discussed. Then, the problem of chattering on switching
delay is discussed. The results are described to verify the
effectiveness of the proposed distributed control algorithm in
Section V. Finally, some characterizations are pointed out in
Section VI.

Il. INCREMENTAL STABILITY AND CONTRACTION
Considering a manifold M and a system

x =fx.0), ey

where f is a nonlinear vector field which maps each (¢, x) €
R x M to a tangent vector f (¢, x) € Ty M.

Let C C M and denote by v,(-, xo) the solution to (1)
from the initial condition xyp € M at time fy. According to
[34], we can get following definition.

Definition 1: System (1) is incremental asymptotically
stability in a positively invariant set C C M, if there exists a
function &« € KL such that for any x1, xp € C and ¢ > 1,

Wi (2, x1) — Yo (2, x2) || < ee(lx1 — x2D).

In the case C = M we say that (1) is globally incrementally
stable, or just incrementally stable.
Let (1) be a differential form

Af (x, 1)
ax(t)

where §x(t) denotes an infinitesimal displacement at a fixed
time. According to [8], there exists following definition (a
contraction property) and lemma.

Definition 2: The metric G is a contraction metric and 8
is a contraction rate, if there are a Riemann metric 8x”G(x)8x
and a strictly positive constant 8 € R™ in (1), such that

8x(t) =

3x(2),

d ar T 9
= (6xTGsx) = 6xT o G+ G—f
dt X 0x

; + G)ax < —8xTBGéx,

when G is independent of state, it is called a flat contraction
metric, which is similar to Demidovich condition.

Lemma 1: Given the system equations (1), any trajectory,
which starts in a ball of constant radius with respect to the
metric G(x, t), centered at a given trajectory, remains in that
ball. The distance of any trajectory within the ball is gradually
shortened until it is unified into the given trajectory.

Remark 1 [8]: If Amax(BG) is the largest eigenvalue of the

symmetric part of the Jacobian %G +G % + G, then
18x]| < [|8x]|eo Amax(0dr

Remark 2: The purpose of given the definition of INS is
to distinguish it from EPS. We mainly use the concept of
contraction properties in this paper. A detailed explanation of
a contraction system is also an incremental stability system,
can refer to [35].
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lll. PROBLEM FORMULATION
Considering a nonlinear system of the following form
X =f(x,1)+ g(x, t)u, (2a)
{ s = s(x, 1), (2b)
where x € R” is the state, u € R is the control input with
respect to state x, and f(x, #) and g(x, t) are unknown smooth
nonlinear functions. The sliding variables s and § = % are
assumed to be known.
Lets = gf be a differential form
8§ = —é8x + —du. 3)

Considering a contraction metric G and further to calculate
(3) with Definition 2, it yields

d .
E(asTcas) = 857G8s + 8sTGos + 85T G8s

9 s\ s
= —8 +—3u Gés + 65" Gés

7058 as
+05°G 8—8 +8—8u

05 05 0 .
= —SSx + —sSu G—S(Sx +8sTGss
ox ou 0x

(% TG 05 s+ B 4)
ax ax Tt

If there exists a control signal u(x, sgn(s), t) to cause (4) to
shrink, we can get a conclusion §x — 0 = §s — 0, that is,
system (2a) is incremental stable.

Remark 3: There are several well-known conventional
Lyapunov methods that can be used to analyze reachability
of sliding surface. However, it is not from an incremental
perspective. The conjecture in equation (4) illustrates the
possibility of incremental stability analysis for sliding mode
surfaces.

IV. CONTRACTION ANALYSIS OF SLIDING SURFACE
This section will follow four sequences to illustrate the next
work.

A. SLIDING SURFACE DESIGN
Considering a class of second-order systems, they can be
described as

X1 = hi(x, 1),

X2 = ha(x, 1) + g, u +d(x, 1), )
where x € R? is the state, u € R is the control input. h(x, t)
is known smooth nonlinear function, 4> (x, ) and g(x, r) are
unknown smooth nonlinear functions, d(x, t) is a bounded
interference.

Defining a sliding surface related to the state x, it yields
s=ax1 + hx,t), (6)

where a is a positive constant. Considering a sliding surface
that satisfies the following equation

§=aty + hy = ahy + hy = y(x1, x2, u, 1). @)
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Amplitude

P(x,0)+p(x,1)

0 x(t)

FIGURE 1. Graphical representation of Assumption 1.

Taking the differential form of system (7), it yields
88 = A18x1 + Ardxy + Béu,

where A| = %,Az— aaxy,B
Remark 4: The reason of demgned the sliding surface (6)

for system (5) can be explained by a formula

ohy ahy
85 = adx) + —8x) + — 8x,, ®)
ax1 ax2
8x1
it can be see clearly that
s =0 = 6x1 = —adx.

In [8], equation (8) is a contraction case of linear time-varying
system.

B. CONTROLLER DESIGN
Assumption 1: There exists a function p(x, t) that satisfies
the following inequalities

‘A1+A2

< p(x, 1), &)

8

A A
‘L < 8p. (10)

Remark 5: As shown in Figure 1, there are some details of
sliding mode dynamics (7), it is that function |A1§A2 | with
respect to the tangent line satisfies a bounded condition p(x).
And § | f% | < §p can be explained as

Al +A a| At 9
S A1+ 42 — 80 = | ‘ _'O(gx
B 0x ox
A1+ A
=90 — 0
‘ B g
< 0.

Theorem 1: Under Assumption 1, if there exists a function
B(x, t) greater than p(x, t) to that satisfies the controller

_ —B(x, t)sgn(s),
B(x, t)sgn(s),

B >0,
B <0,

VOLUME 8, 2020
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1, s >0,
sgn(s) = {0, s=0, (1)
-1, s<0O.

Then, the sliding mode dynamics (7) is shrink to zero,
the second-order system (5) is a contraction system. |
Proof: Consider the adjacent trajectories in the sliding
surface § = ax] + x2. According to Definition 2, the metric
between the adjacent trajectories can be defined as 857 Gés.
Choose a flat contraction metric G = I, the change rate of
8sT8s between the adjacent trajectories can be defined as

d
E((ssTss) = 285785

_ 28sT<A15X1 + Aréxn

B+ 28s"Bsu.
B >+ Ky u

Since the increment éx is an infinitesimal displacement at
a fixed time, the following inequality is obviously

A+ Ay
B

=

A18x1 +Axéx2
B

According to (9) in Assumption 1, we can get an inequality

d
E(asTas) = 285T(A18x1 + A28x2) + 285 Bdu

B > 0,

T T
< 2|8s" |8pB + 285" Bdu, (12)
B < 0.

—218sT16pB + 28sTBdu,
To take B(x, t) = p(x, t) + Bo, Bo > 0, it yields

B >0,
B < 0.

(13)

—3[(p + Bo)sgn(s)],
8[(p + Po)sgn(s)],

To merge (12) and (13), it yields
218s7|8pB — 2|8sT|BS(p + Bo),
—218sT|8pB + 2|85 |BS(p + Bo),

—2185|B8o,
21851B8Bo,

d
E(asTss) < {

B >0,
B < 0.

(14)

According to Lemma 1, since %(SST(SS) < 0, there exists a
Amax ($) that is uniformly strictly negative, it yields

1
18511 < Nl8sollefo Hmax(.
It is not difficult to see that the incremental sliding surface

3
85 = adx] + —Lox; + Lsxy = 0 at 1 — oo, that is, all
8x1 8)62

8k
trajectories of system (51) shrink to zero at t — oo. O
Remark 6: As described in the problem description in
Section III, we performed a contraction analysis on the sliding
surface. Note that we used the flat metric G = I (independent
of state), so G is implied during the derivation.
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C. SLIDING SURFACE WITH UNCERTAINTIES

The Theorem 1 stabilized h; and g with uncertainties, the next
is to stabilize #; with uncertainties. Considering the case that
hy is affected by the bounded interferences w(x, ) and the
system (5) is changed to the following form

X1 =hi(x, 1) + ox, 1),
X2 = ho(x, 1) + glx, Hu + d(x, 1). (15)

As mentioned above, Theorem 1 used the standard sliding
surface s = ax; + hi(x,t). However, the sliding surface
fluctuated as the addition of w(x, ¢), and it changed to

S=ax; +hi(x, 1)+ olx, 1).
Now, § is a disturbed sliding surface and its rate of change is
§ = adx) + &1 + w(x, 1). (16)

Taking the differential form of system (16), it yields

3 ow ow
85 = A16x1 + A2éxo + Béu+—238x1 + —dxp.
0x] 0x2
Theorem 2: If there exist a function B(x) satisfies the
inequality

ow ow
A1+A o T oy A
L2120 90 ) o e )+, 1) < B, 0, (17)
B B
o o
where % < pw(x, t), then the sliding mode dynamics

(16) is shrink to zero by a controller

P —ﬁ(x, t)sgn(s), B >0,
N ,3(x, t)sgn(s), B <0,

and the second-order system (15) is a contraction system. H

Proof: Considering the adjacent trajectories in the slid-
ing surface § = ax| +x2 +w(x, r). According to Definition 2,
we also choose a flat contraction metric G = I, the change
rate of 85785 between the adjacent trajectories can be defined
as

u =

(18)

d
E((S&TS&)
= 28(s + w) 8 + W)
(A1 + 298x1 + (A2 + 22)5x,
= 28(s + w)T( dx1 9x2 )B
B
+28(s + w) BsiL. (19)

Taking ,3()6, t) = p(x, t) + pw(x, t) + Bo and to derive (19) to
get an inequality
28(s +w)T8(5 + W)

_ |2185718(0 + pu)B — 21857 |BS(p + pw + Po).

= | —2185718(p + pu)B + 2[857[BS(p + pw + Bo),

—2185|B8Po,
218518580,

B >0,
B < 0.
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According to Lemma 1, since %(8?53) < 0, there exists a
Amax ($) that is uniformly strictly negative, it yields

”8§” < ”85‘0”9/(; )‘mux(s‘)dl‘. (20)
So the sliding surface §5 = adx; +%8x1 + %8x2+ %5351 N
B%(sz = 0, that is, all trajectories of system (15) shrink to

zero at t — 0. O
Remark 7: The boundary of standard sliding surface s with
an interference w can be expressed as

8511 = lldsll + 3wl

fl’lﬁxr‘r?—wﬁxz
A constraint( “— 52 )B < py(x,1) in (17) is like to
provide a bounded space to negatively determine the maxi-

mum eigenvalue )Lmax(gT”l', gTV;), such that

1 A
183]) < (1850 | elo Amax(®rdr

it eventually forms incremental stability ||85] — ||8s|| — O.

D. REDUCTION OF CHATTERING

Although the above theorems showed that a sliding mode
controller with incremental stability can be designed, but
the symbol switching controller has a switching delay. It
is generally known that zero-delay switching is difficult to
implement in practical systems, and the delay causes the chat-
tering of input. The disadvantage of chattering is obvious, it
may reduce control accuracy of system, increase energy con-
sumption, and other unfavorable factors. The conventional
saturation function sat is applicable in this paper, it reserves
enough reaction time for the control law u to reduction chat-
tering. The chattering reduction control law of the system (5)
can be rewritten as

B >0,
B <0,

—B(x, t)sat(s/k),
B(x, t)sat(s/x),

S/K’ |S/K|§17

(21)
sgn(s/x), |s/k| > 1.

sat(s/k) = :

As shown in Figure 2, sat function is approximately sgn

function in case of x — 0. To analyze the performance

of the incremental sliding mode controller, we perform the

following two-step analysis. The first is outside the boundary

layer, that is, |s|] < k. According to (14), we can get an
inequality

—2185|B8o,
2185B5Bo,

B >0,

d .7
—(8s"8s5) <
dt B < 0.

Therefore, as long as [s(0)| > «, 3s(¢) are strictly decreasing,
until shrinking to set {|s| < «} within a limited time, and then
remain in it. The second is inside the boundary layer, that is,

X1 = —axy + s, |s| < k. (22)

utilizing a flat metric (Sx]T Géx1 to check the contraction prop-
erty in (22) and derive the rate of change, it yields.

d T T T
. (0x{Gox1) = 26x{(—aG)sm +28x{Gds. (23)

20112

A sat(s) Asat(s/ x)

s/K Ki slk

-1 - -1

FIGURE 2. Sgn(s) and Sat(s/«).

Since inside the boundary of sliding surface has |s|] < «,
we can get

—Kk <s4+38s<k,|s+5s] <«k.
Taking the boundary value of s, then §s should satisfy
—2Kk < &s <2k, |6s| < 2k. (24)
This also means (23) can be change to
d
E(leTGchl) < 28x1(—aG)sxy +2[8xT|G2k.  (25)

After reaching the sliding surface, & is close to a small value

to ensure the stability of x1, here, let A = g—i’;le + %sz ~
01in (8), we can get
—A =2k <adx1 <2k + A, |adxi| <2k + A.

This also means (25) can be change to

d 42T + ATHG

—(6x{Gox) < 28] (—aG)x + 42 FA)CGE 96

a
Remark 8: Taking k = 0, it is easy to see that x; will

shrink to the boundary x = 0, which is robust for x,. But
k = 0 1is equivalent to a sgn function, the switching delay
cause chattering to be inevitable.

Remark 9: Taking « > 0 and a sufficiently large a, then
(26) can be negative definite inside the boundary. Theoreti-
cally a larger gain a will have better convergence, it is shown
as Figure 3 (noted that this figure comes from Example 2).
Since a sat function inside the boundary no longer frequently
switches, the contraction inside the boundary reduces the
chattering.

Remark 10: Any trajectory within the boundary of the
sliding surface can be think that to be restrict by «, so the
increment of any trajectories is limited from (24).

V. NUMERICAL SIMULATION
In this Section, two examples are performed to illustrate
the advantages. Firstly, compared with sliding mode control
based on Lyapunov stability theory, the advantages of sliding
mode based on contraction are explained. Then, compared
with the control contraction metrics technology, which illus-
trates the advantages of the sliding mode based contraction
technology.

Example 1: (The variable-single pendulum [36]) A
variable-single pendulum can be shown in Figure 4, R is the
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%10
20 a=6
0 -—-a=2
-2
-4
5.085544557
4 5 6 7 8 9 10
Time
—a=6
104 —-—-a=2
ol
0
2t
5.91089 §.01 0898
4 5 6 7 8 9 10

Time

FIGURE 3. The effect under the changing of a.

\ 0.4 \
u

X R(1)

FIGURE 4. Sketch of pendulum in Example 1.

distance from O to the mass m. x is the oscillation angle. The
pendulum is driven by an engine installed on the top side,
which is called control torque u. The mathematical model of
the pendulum can be described by

R 1 1
o R, L , 27
X Rx gR sin(x) + —mRzu 27
where m = 1Kg, g = 9.8m/s? is the gravitational constant,
and R = 1 — 0.2 sin(z). The task here is to design the control
law u such that the oscillation angle x will track a given signal
Xe=%.
Let s = a(x — x¢) + X, to take the derivative of s yields

1 R
y=5§=alx —x;) — gk sin(x) — 21_?5( + Ww, (28)
to take the differential form of system (28) yields
85 = A16x1 + A28x2 + Béu, (29)
with
0 1
Al = % = —gE cos(x) + a,
d R
Ay = LA 1
0x R
0 1
B==
du  mR?
Choosing u = — (A‘,+A2) + 20)sgn(s) and considering a

bounded interference d(x, t) = 2 sin(x) into (27) yields
t= 2Re gL ino - L u 26in00
X=-2=Xx—g—=sin(x) + —u sin(x),
R °R mR?
and simulating with a = 5.

VOLUME 8, 2020
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—CS
---QS

Desired
&
5.575 5.58 5.585
1.5 :
0 1 2 3 4 5 6 7 8 9 10

Time

FIGURE 6. Pendulum: the state for 6.

In order to illustrate the advantages of the proposed control
method, we compared with the controller proposed in [37].
The so-called quasi-continuous 2-sliding mode algorithm in
[37] is

Is1* + B} 151?

= — 4 5_ Y . 1 _ _~
u (4 + 5a(x)) 1+ P

, (30)

where § = x — x., a(x) = $[| + 3¢, B1 = 1.5 and [x]" =
|x|Vsgn(x), Vv > 0.

Numerical simulation for the variable-single pendulum as
shown in Figure 5 to Figure 8, where CS denotes proposed
method in this paper, QS denotes proposed method (30) in
[37]. From Figure 35, it is clear that the reference signal can
be tracked with a good dynamical performance by CS and
QS. However, the convergence time of CS is 0.5s faster than
QS, the tracking error only has 0.005 and it can be irrelevant
almost. From Figure 6, it is clear that QS is about 0.05 higher
than CS on the fluctuation value of state x. From Figure 7, it is
clear that the controllers have the property of sliding mode
control, namely the chattering. However, the input overshoot
of CS is 30 lower than QS. From Figure 8, it is clear that
finite-time reachability of sliding mode dynamics, and the
reach time of CS is 1.5s faster than QS.
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10 cs
@® 5
0
_5 L
0 1 2 3 4 5 6 7 8 9 10
Time
3
A B
\\
@ o1F N
\\
0 L \\\ 7777777777777777777777777777
4 . . . . . . . . . )
0 1 2 3 4 5 6 7 8 9 10
Time

FIGURE 8. Pendulum: the sliding surface s.

Example 2 (The Moore-Greitzer Model [38]): A model of
Moore-Greitzer was a simplified model of surge-stall dynam-
ics based on a Galerkin projection of the partial differential
equations on to a Fourier basis. The following reduced model
of the surge dynamics was described as

. 3, 1,
¢=-¢—3¢" -3¢,
¢ =¢+u,

where u is the input as a sensor on ¢. ¢ and ¢ are a mea-
sure of the mass flow and pressure rise in the compressor,
under a change of coordinates. The source of difficulty is the
nonlinearity —%452 — %¢3 which does not satisfy any global
Lipschitz bound, and affects the dynamics of the variable ¢,
which is not directly controlled or measured.

To take hy = —¢ — %4)2 — %¢3,h2 = ¢,g = 1 and let
s = a¢ + hy, referring to the design steps in Example 1,
it yields

€1y}

3 3 2 3

g By
4 4 ’
3
Ay = —a+3p+ 247,
B=-1.

20114

TABLE 1. CS compared to QS.

Term CS QS
Average Errors z¢>5 0.005 0.0002
Convergence time © 0.38s 1.8s
Average of absolute input (Pendulum)  20.7934 51.3449
TABLE 2. CS compared to CCM.
Term CS CCM
Average Errors ¢¢>5 0 0.05
Convergence time ¢ 3.2s 4s
Average of absolute input (Greitzer) — 4.6494 0.4551

Time

FIGURE 9. Greitzer: the state ¢, ¢.

Considering a bounded interference w(x, t) = 2 sin(f)g into
(27), it is clear that |g_;; /B| < 2. Then (31) is changed to

. 3 1 .
¢=—¢-— 5¢2 - 5¢3 + 2sin(t)p,

6 =o+u

and simulating with u = |%| + 8) sat(s).

In order to illustrate the advantages over other contraction
methods, we compared with the contraction-based method
in [25]. The so-called control contraction metrics (CCM)
algorithm in [25] is

*
u=w—%m¢wmmnm*ﬁwmnﬁ_¢i,em
(2l
where, u*, ¢* and ¢* are target trajectories. To use Matlab
sum-of-squares tools [39] to set up a two decoupled convex
feasibility problems, that is, p and W.

Numerical simulation for the Moore-Greitzer model as
shown in Figure 9 to Figure 11, where CS denotes proposed
method in this paper (21), CCM denotes proposed method
(32) in [25]. As shown in Figure 10, the tracking task can be
completed by CS and CCM, but the CCM has a large error,
about 0.04. As shown in Figure 9, it is clear that CS has a
higher input overshoot, but it is stable in 0.2 seconds. As
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FIGURE 11. Greitzer: the sliding surface s.

shown in Figure 11, it is clear that finite-time reachability of
sliding mode dynamics, and the reaching time is about 0.6s.
In summary, the proposed method (11) has two advantages,
the first is a smaller control signal, the second are a faster
reach time and a fast convergence time. The proposed method
(21) has a extremely small error, although the initial input is
large, it can be quickly stabilized. The performance index of
above examples are shown in Table 1 and Table 2. It also illus-
trates the advantages of the method proposed in this paper.

VI. CONCLUSION

A methodology for incremental sliding mode controller with
a simple structure for a class of second-order nonlinear
uncertain systems is proposed. The controller is able to steer
the initial trajectory of dynamic system with uncertainties
to the given trajectory at a short time, the initial trajectory
is generated in the contraction domain of the manifold s.
There are several perspective generalisations of interest to
be addressed in next researches among which dealing with
high-order systems, time-delayed systems. New chattering
reduction mechanism based on our method is also worth
considering.
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