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ABSTRACT This paper proposes a new active noise control (ANC) system based on a recursive least-squares
lattice (RLSL) algorithm by designing secondary-path innovation (SPI) and lattice-order decision (LOD)
algorithms. The SPI algorithm associated with the power spectral factorization of the secondary path is
designed to apply the RLSL algorithm to the ANC system without the filtered-input structure. The SPI
algorithm whitens the error microphone signals into the virtual error signals just ahead of the secondary
path to construct the virtual desired signals corresponding to the outputs of the lattice filter. The LOD
algorithm is designed to operate the ANC systemwithout knowing the tap length of the optimal finite impulse
response (FIR) filter. The decision algorithm using the initial and final estimation errors of the lattice filter
estimates the tap length of the optimal FIR filter by increasing the lattice order one-by-one until the final
estimation error reaches below a threshold value. Even in environments where the tap length of the optimal
FIR filter is unknown, the proposed ANC system with low computational complexity shows almost the same
performance as the ANC system based on a filtered-input recursive least squares algorithm.

INDEX TERMS Active noise control, lattice-order decision algorithm, recursive least-squares lattice
algorithm, secondary-path innovation algorithm, virtual error signals.

I. INTRODUCTION
Active noise control (ANC) systems suppress noises using
destructive interference signals. Various adaptive filtering
algorithms have been applied to ANC systems [1]. Among
them, the filtered-input least mean square (FxLMS) algorithm
is widely used owing to its simple structure for implementa-
tion in ANC systems [2], [3]. However, the FxLMS algorithm
uses a fixed step-size, which causes a trade-off between
convergence rate and steady-state error level. To mitigate the
drawback, various variable step-size FxLMS (VSS-FxLMS)
algorithms have been introduced [4]–[6]. VSS-FxLMS algo-
rithms provide faster convergence rate and better perfor-
mance for noise reduction than the FxLMS algorithm.
However, the performance of VSS-FxLMS algorithms
based on a stochastic gradient approach is degraded for

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Zia Ur Rahman .

correlated inputs [7]. The filtered-input affine projec-
tion (FxAP) algorithm has been proposed to handle the
difficulty with correlated inputs [8]–[10]. This algorithm
shows better performance for correlated inputs, but its com-
putational complexity is too high for implementation in an
ANC system. Especially matrix inversion should be obtained
through VSS-FxAP algorithms [10]. The filtered-input gra-
dient adaptive lattice (FxGAL) algorithm has been proposed
to reduce the computational complexity and improve the
performance degradation with correlated inputs [11]–[17].
The FxGAL algorithm using the lattice form to orthogonal-
ize correlated inputs shows better performance and lower
computational complexity than the FxAP algorithm. How-
ever, as the regression coefficients are updated by a stochas-
tic gradient approach such as the normalized least mean
square (NLMS) algorithm, the performance of the FxGAL
algorithm cannot reach that of the filtered-input recursive
least-squares (FxRLS) algorithm based on a least-square
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estimation [18]–[21]. Although the FxRLS algorithm shows
the best performance among all aforementioned algorithms,
it has not been applied to ANC systems owing to its high
computational complexity of O(M2) operations per itera-
tion [22], where M is the tap length of the filter. A recursive
least-squares lattice (RLSL) algorithm is expected to be the
best alternative to solve this problem [23], [24]. The RLSL
algorithm has many advantages such as fast convergence
rate, low computational complexity, and robustness for cor-
related inputs. However, it has not been generally used in
ANC systems with a filtered-input structure because of its
nonlinear property and the computational complexity of the
filtered-input structure [25].

This paper proposes the secondary-path innovation (SPI)
algorithm to overcome the limitation of the filtered-input
structure in ANC systems. The SPI algorithm associated with
the power spectral factorization of the secondary path whitens
the error microphone signals into the virtual error signals just
ahead of the secondary path to construct virtual desired sig-
nals corresponding to the outputs of the lattice filter. In addi-
tion, this paper proposes the lattice-order decision (LOD)
algorithm. This algorithm uses the initial and final estimation
errors to decide the order of the lattice filters considering
excess ratio of lattice order (ERLO) and the performance for
noise reduction. The proposed ANC system with low com-
putational complexity shows almost the same performance as
the ANC system based on the FxRLS algorithm. Moreover,
while the conventional ANC systems can be only operated
by knowing the tap length of the optimal finite impulse
response (FIR) filter in the primary path, the proposed ANC
system can cancel the noise effectively without knowing the
tap length of the optimal FIR filter.

The rest of this paper is organized as follows. In section II,
the RLSL algorithm is introduced and applied to the ANC
system. In section III, the SPI and LOD algorithms are
proposed. Simulation results are shown in section IV, and
conclusion is presented in section V.

II. PRELIMINARY
The desired signals to be reduced are expressed as

d(k) = p(z)x(k)+ v(k), (1)

where p(z) is the transfer function from the reference sensor
to the error microphone sensor. x(k) represents the input noise
signals, and v(k) represents the measurement noise signals.
In the lattice filter, order-update recursions for forward and

backward prediction errors are defined as

fm(k) = fm−1(k)+ 0f ,m(k − 1)bm−1(k − 1), (2)

bm(k) = bm−1(k − 1)+ 0b,m(k − 1)fm−1(k), (3)

where m = 1, 2, . . . ,M and M is the lattice order. f0(k)
and b0(k) are set to x(k). fm(k) and bm(k) represent the
forward and backward prediction errors, respectively.0f ,m(k)
and 0b,m(k) represent the forward and backward reflection
coefficient, respectively. The output signals of the lattice filter

Algorithm 1 RLSL Algorithm [26]
Predictions: Starting with k = 1, calculate the order
updates in the sequence m = 1, 2, . . .M :

1m−1(k) = λ1m−1(k−1)+γm−1(k−1)bm−1(k−1)fm−1(k),

Fm−1(k) = λFm−1(k−1)+γm−1(k−1)|fm−1(k)|2,

Bm−1(k) = λBm−1(k−1)+γm−1(k)|bm−1(k)|2,

0f ,m(k) = −
1m−1(k)

Bm−1(k − 1)
,

0b,m(k) = −
1m−1(k)
Fm−1(k)

,

γm(k) = γm−1(k)−
γm−1(k)2|bm−1(k)|2

Bm−1(k)
,

where λ = [0.9, 1].
Filtering: For k = 1, 2, . . ., calculate the order updates
in the sequence m = 0, 1, . . .M :

ρm(k) = λρm(k − 1)+ γm(k)bm(k)εm(k),

εm+1(k) = εm(k − 1)− κm(k − 1)bm(k),

κm(k) =
ρm(k)
Bm(k)

.

Initialization at time k = 0:

1m−1(0) = 0, Fm−1(0) = Bm−1(0) = δ,

0f ,m(0)=0b,m(0)=0, γ0(0)=σv(k)2, ρm(0)=0,

where δ is very small value. σv(k)2 is the variance of the
measurement noises v(k) and is approximated as

σe(k)2 ≈ ζσe(k)2 + (1− ζ )e(k)2,

σv(k)2 ≈ 0.005σe(k)2,

where ζ was set to 0.999.
Initialization at the zeroth-order:

f0(k)= b0(k)=x(k), F0(k)=B0(k)=λF0(k−1)+|x(k)|2,

γ0(k) = σv(k)2, ε0(k) = d̂r (k)

where d̂r (k) is generated by the proposed SPI algorithm.

are defined as

yr (k) =
M∑
m=0

bm(k)κm(k), (4)

where κm(k) represents the regression coefficient and is
updated by the RLSL algorithm. The update rule of the RLSL
algorithm was proposed by [26] and is shown in Algorithm 1.
The output signals through the secondary path are defined as

y(k) =
N∑
i=0

yr (k − i)hi = yTr (k)ho, (5)

where the secondary-path (SP) model tap ho is inRN×1, and
the vector of the output signals before passing the SP model
yr (k) is denoted by [yr (k)yr (k−1) · · · yr (k−N+1)]T ∈RN×1.
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FIGURE 1. Proposed RLSL ANC system.

The error microphone signals e(k) that can be observed are
defined as

e(k) = d(k)− y(k). (6)

As the signals e(k) are distorted by the secondary path, the vir-
tual desired signals d̂r (k) corresponding to the outputs of the
lattice filter, which is required to apply the RLSL algorithm to
the ANC system without the filtered-input structure, cannot
be obtained using e(k). The virtual desired signals are esti-
mated using the proposed method in section III.

III. PROPOSED METHOD
The RLSL algorithm with low computational complexity has
a fast convergence rate and robustness for correlated inputs in
environments where the tap length of the optimal FIR filter
is unknown. However, the ANC systems with the secondary
path generally do not use the RLSL algorithm, as it is not
easy to apply this algorithm to the filtered-input structure.
In this paper, for applying the RLSL algorithm to the ANC
systemswithout the filtered-input structure, the SPI algorithm
is proposed.

A. SECONDARY-PATH INNOVATION ALGORITHM
The secondary path is modeled with the FIR filters of length
N as follows.

Ho(z) = h0 + h1z−1 + h2z−2 + · · · + hN−1z−N+1. (7)

The error microphone signals e(k) can be rewritten as

e(k) = d(k)− y(k), (8)

= dr (k)Tho + v(k)− yr (k)Tho, (9)

= {dr (k)− yr (k)}Tho + v(k), (10)

= er (k)Tho + v(k), (11)

=

N−1∑
n=0

er (k − n)hn + v(k), (12)

where dr (k) ∈ RN×1 and er (k) ∈ RN×1 represent the vector
of the virtual desired signals and the virtual error signals
corresponding to the outputs of the lattice filter just ahead
of the secondary path, respectively.

The equation (12) can be rewritten in the form of
state-space representation as

er,pri(k + 1) = Aer,pri(k)+ Ber (k),

e(k) = Cer,pri(k)+ Der (k)+ v(k), (13)

where er,pri(k) = [er (k − 1) er (k − 2) · · · er (k −N + 1)]T ∈
R(N−1)×1 represents the state vector stacking the prior virtual
error signals. A, B, C , and D are defined as

A=
[
0 0
I 0

]
∈R(N−1)×(N−1), B = [1 0]T∈R(N−1)×1,

C = [h1 h2 · · · hN−1] ∈ R1×(N−1), D = h0.
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The state-space representation (13) is converted to the
z-transform as

zEr,pri(z) = AEr,pri(z)+ BEr (z),

E(z) = CEr,pri(z)+ DEr (z)+ V (z), (14)

Using the above (14), the SP model in (7) can be rewritten as

Ho(z) = C(zI − A)−1B+ D. (15)

For deriving the innovation process [27], [28] associated
with the power spectral factorization of the secondary path,
the power spectral density of the secondary path Ho(z)HT

o (z)
is first derived as[

C(zI − A)−1 I
] [ Q S

ST R

] [
(z−1I − A)−TCT

I

]
, (16)

where

Q = BBT , S = BDT , R = DDT .

The equation (16) can be rewritten [29] as[
C(zI − A)−1 I

] [Q+ APAT − P S + APCT

ST + CPAT R+ CPCT

]
×

[
(z−1I − A)−TCT

I

]
, (17)

For deriving the equation (17) into a spectral factorization
form, P satisfying the following conditions is obtained using
the Riccati equation solution [30].

0 = Q+ APAT − P− (S + APCT )(R+ CPCT )−1

× (ST + CPAT ), (18)

where P always exist, as A is stable [29].
Using the above (18), the equation (17) can be rewritten as

= {C(zI − A)−1(S + AP̄CT )(R+ CP̄CT )−1 + I }

× (R+ CP̄CT )

×{(R+CP̄CT)−1(ST+CP̄AT )(z−1I−A)−TCT
+I }, (19)

where P̄ is the maximum value of P.
In the equation (19), the inverse of the first spectral factor-

ization form is defined for the innovation filter K (z) as

K (z) = {C(zI−A)−1(S+AP̄CT )(R+CP̄CT )−1 + I }−1,

= I−C{zI−A+(S+AP̄CT )(R+CP̄CT )−1C}−1

× (S+AP̄CT )(R+CP̄CT )−1. (20)

K (z)E(z) is a white Gaussian signal g(z) with variance (R +
CP̄CT ) and can be defined as

g(z) = E(z)−C{zI−A+(S+AP̄CT )(R+CP̄CT )−1C}−1

× (S+AP̄CT )(R+CP̄CT )−1E(z),

= E(z)− CÊr,pri(z). (21)

Utilizing the above (21), the estimated virtual error signals
can be derived as

Êr,pri(z) = {zI−A+(S+AP̄CT )(R+CP̄CT )−1C}−1

× (S+AP̄CT )(R+ CP̄CT )−1E(z). (22)

Using the equation (22), the SPI filter can be derived as

êr,pri(k + 1) = Aêr,pri(k)+ (S + AP̄CT )(R+ CP̄CT )−1

× (er (k)− C êr,pri(k)), (23)

where

êr,pri(k+1)=
[
êr (k) êr (k−1)· · ·êr (k −N +2)

]T
∈R(N−1)×1.

The virtual error signals êr (k) in each iteration can be
obtained as

êr (k) = êr,pri(1)(k + 1), (24)

where êr,pri(1) is the first entry of the vector êr,pri. The esti-
mated virtual desired signals corresponding to the outputs
of the lattice filter just ahead of the secondary path can be
derived as

d̂r (k) = yr (k)+ êr (k). (25)

A summary of the SPI algorithm is shown in Algorithm 2.

B. LATTICE-ORDER DECISION ALGORITHM
The LOD algorithm is proposed to operate the ANC system
without knowing the tap length of the optimal FIR filter. The
LOD algorithm is performed by using the virtual desired
signal and the (Me + 1)th estimation error signal, which are
the initial and final estimation errors of the lattice filter. The
recursion of the estimation errors εm(k) is defined as

εm+1(k) = εm(k − 1)− κm(k − 1)bm(k), (26)

where m = 0, 1, . . . ,Me. Starting with one order, the LOD
algorithm increases the lattice order until the average of the
final estimation error is less than the average of the initial
estimation error by a certain threshold. The average of the
estimation errors can be easily estimated using moving aver-
ages as

ε̂0(k) = (1− ξ )|ε̂0(k − 1)| + ξ |ε0(k)|, (27)

ε̂Me+1(k)= (1−ξ )|ε̂Me+1(k−1)| + ξ |εMe+1(k)|, (28)

where ε0(k) = d̂r (k). ξ is set to 1/L and L is the interval
to update the lattice order, which affects computing memory
and the performance of the ANC system.
In this study, to analyze the performance of the LOD

algorithm according to L, an excess ratio of the lattice-order
(ERLO) is defined as

ERLO(%) =
(
Me −M
M

)
× 100, (29)

where M is the tap length of the optimal FIR filter and Me
is the order of the lattice filter estimated using the LOD
algorithm.

The LOD algorithm compares the initial estimation error
ε̂0(k), and the final estimation error ε̂Me+1(k) at each interval
and then increases the order of the lattice filter if the ratio
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Algorithm 2 Secondary-Path Innovation Algorithm

Require: SP model as the FIR filter Ho(z) = h0+h1z−1+h2z−2+· · ·+hN−1z−N+1, Error signals e(k)

1) A=
[
0 0
I 0

]
∈R(N−1)×(N−1), B = [1 0]T∈R(N−1)×1, C = [h1 h2 · · · hN−1] ∈ R1×(N−1), D = h0.

2) Q = BBT , S = BDT , R = DDT

3) Find P̄ ∈ R(N−1)×(N−1) satisfying 0 = Q+ AP̄AT − P̄− (S + AP̄CT )(R+ CP̄CT )−1(ST + CP̄AT )
4) For k = 1:end
5) êr,pri(k + 1) = Aêr,pri(k)+ (S + AP̄CT )(R+ CP̄CT )−1(e(k)− C êr,pri(k))
6) êr (k) = êr,pri(1)(k + 1), (where êr,pri(1)(k + 1) is the first entry of the vector êr,pri(k + 1))
7) d̂r (k) = yr (k)+ êr (k)
8) end

TABLE 1. Analysis of ERLO, convergence rate, and steady-state error level according to L (M = 100, α = 3.1, SNR = 45dB, input signals were white
Gaussian noise).

Algorithm 3 Lattice-Order Decision Algorithm
Initial conditions:Me = 1, ε̂m(0) = 0, L = constant ,
ξ = 1/L, p = 1, α = constant
1) For k = 1 : end
2) ε̂0(k) = (1− ξ )|ε̂0(k − 1)| + ξ |ε0(k)|
3) ε̂Me+1(k)= (1− ξ )|ε̂Me+1(k − 1)| + ξ |εMe+1(k)|
4) If k = p ∗ L
5) If log

(
|ε̂0(k)|
|ε̂Me+1(k)|

)
< α

6) Me = Me + 1
7) p = p+ 1
8) end
9) end
10) end

ε̂0(k) to ε̂Me+1(k) is not below the threshold α. Specifically,
at k = p ∗ L, (p = 1, 2, · · · ),

Me→ Me + 1 if log
(
|ε̂0(k)|
|ε̂Me+1(k)|

)
< α, (30)

where α was set to [2,4] in this study. The α value of 2
indicates that ε̂Me+1(k) should be reduced by approximately
1/102 of ε̂0(k). A specific summary of the LOD algorithm is
shown in Algorithm 3.
Using white Gaussian noise and correlated signals,

the LOD algorithm was tested for various tap lengths of the
optimal FIR filter as shown in TABLE 1 and Figs 2 - 4. The
LOD algorithm has the following characteristics.
• If the tap length of the optimal FIRfilter is long, the LOD
algorithm determines the lattice order to be less than the
tap length of the optimal FIR filter, providing efficient
computing memory and fast convergence rate to the
RLSL algorithm.

FIGURE 2. NMSE of the RLSL algorithm with the LOD (M = 500, α = 3.4,
SNR = 45dB, input signals were correlated by G1(z)).

FIGURE 3. NMSE of the RLSL algorithm with the LOD (M = 300, α = 3.4,
SNR = 45dB, input signals were correlated by G2(z)).

• The RLSL algorithm has faster convergence rate and
lower steady-state error level as L is smaller. However,
if L is less than 5, the LOD algorithm can be unstable
since the averages of initial and final estimation errors
are changed too quickly.

• ERLO can be large in large L.
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FIGURE 4. NMSE of the RLSL algorithm with the LOD (M = 100, α = 2.8,
SNR = 45dB, input signals were correlated by G3(z)).

Based on the above characteristics, L was set to 5 in this
study.

IV. SIMULATION
Simulations were performed in four cases depending on the
correlated input signals. All results are presented by averag-
ing 100 independent simulations. The criterion of the per-
formance was set to normalized mean-square error (NMSE),
which is defined as

NMSE(k) (dB) = 10 log10
||d(k)− y(k)||2

||d(k)||2
, (31)

where the desired target noises d(k) was set to

d(k) =
N−1∑
n=0

u(k − n)hn + v(k), (32)

where u(k) is defined as u(k) =
∑M−1

i=0 x(k − i)wi and wi
represents the coefficients of the optimal FIR filter wo with
length of 100 and 300, which are expressed as Wo,1(z) and
Wo,2(z), respectively. hn represents the coefficients of the SP
model ho. As shown in Fig. 5 and 6, the SP was modeled in
four types, generated through polynomial expansion of the
pole/zero information using MATLAB, depending on the tap
length (50 and 200) and phase (minimum and non-minimum
phases). The measurement noise v(k) set to white Gaussian
noise was injected according to the signal-to-noises ratio
(SNR). The filtered-input NLMS (FxNLMS), FxGAL, and
FxRLS algorithms were compared with the proposed RLSL
algorithm. The FxNLMS algorithm was chosen, as it is a
representative algorithm for adaptive filters. The FxGAL
algorithm was chosen to show the difference between the
algorithms based on the stochastic gradient approach and
the least-square estimation approach. The FxRLS algorithm,
which shows the best performance for adaptive filters, was
chosen to show that its performance is almost the same as
that of the proposed RLSL algorithm with low computational
complexity. The computational complexities of each algo-
rithm are shown in TABLE 2.
To evaluate the numerical stability of the comparison

algorithms for mismatched SP models, each algorithm were

TABLE 2. Number of multiplication operations per one sample. (M is the
tap length of the optimal FIR filter, N is the tap length of the SP model.)

FIGURE 5. SP model with the tap length of 50.

FIGURE 6. SP model with the tap length of 200.

simulated using the mismatched SP models generated by a
mismatched degree (MD) of the SP model. The MD of the
SP model is defined as

MD(%) =

∑N−1
n=0 (ĥn − hn)∑N−1

n=0 hn
× 100, (33)

where ĥn represents the coefficients of the estimated SP
model. As seen in TABLE 3 and 4, the numerical stabil-
ity is expressed as stable and unstable for each MD of the
SP model. If the algorithm is stable, the average of the
steady-state error levels is shown, and if the algorithm is
unstable, the approximate number of iterations before the
algorithm diverges is shown.

All simulations with these comparison algorithms assume
that the tap length of the optimal FIR filter is known in
advance. If the tap length of the optimal FIRfilter is unknown,
only the proposed RLSL algorithmwith the LOD algorithm is
simulated, as the comparison algorithms cannot be performed
in the situation.
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TABLE 3. Evaluation of the numerical stability of the comparison algorithms for mismatched SP model (SP model: Ho,2(z), SNR = 35dB, input signals
were correlated by G2(z)).

TABLE 4. Evaluation of the numerical stability of the comparison algorithms for mismatched SP model (SP model: Ho,4(z), SNR = 45dB, input signals
were correlated by G3(z)).

A. CASE 1
The first simulation for the SNR of 45dB used the correlated
inputs obtained from passing white Gaussian noise through
the succeeding filters as

G1(z)=
1+0.9z−1+0.6z−2+0.81z−3−0.329z−4

1− 0.9z−1
.

First, the optimal FIR filter and the SP were modeled to
Wo,1(z) and Ho,1(z). In the proposed RLSL algorithm, λ and
α were set to 0.995 and 3.1, respectively. L was set to 5
and the ERLO was approximately 13.3%. In the FxRLS
algorithm, λ was set to 0.995 and P0 was set to 0.01I .
In the FxGAL algorithm, µ and λ were set to 0.005 and
0.995, respectively. In the FxNLMS algorithm, µ was set
to 0.2.

Second, the optimal FIR filter and the SP were modeled to
Wo,2(z) and Ho,3(z). In the proposed RLSL algorithm, λ and
α were set to 0.995 and 3.1, respectively. L was set to 5 and
the ERLOwas approximately -41%. In the FxRLS algorithm,
λ was set to 0.997 and P0 was set to 0.05I . In the FxGAL
algorithm, µ and λ were set to 0.005 and 0.995, respectively.
In the FxNLMS algorithm, µ was set to 0.7.

FIGURE 7. NMSE in case 1 (Wo,1(z), Ho,1(z)).

B. CASE 2
The second simulation for the SNR of 35dB used the cor-
related inputs obtained from passing white Gaussian noise
through the succeeding filters as

G2(z)=
1+0.5z−1+0.81z−2

1− 0.59z−1 + 0.4z−2
.
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FIGURE 8. NMSE in case 1 when the SP model is mismatched (MD = −50,
Wo,1(z), Ho,1(z)).

FIGURE 9. NMSE in case 1 (Wo,2(z), Ho,3(z)).

The optimal FIR filter and the SP were modeled to
Wo,1(z) and Ho,2(z). In the proposed RLSL algorithm, λ
and α were set to 0.995 and 3.2, respectively. L was set to
5 and the ERLO was approximately 42.7%. In the FxRLS
algorithm, λ was set to 0.995 and P0 was set to 0.01I .
In the FxGAL algorithm, µ and λ were set to 0.005 and
0.995, respectively. In the FxNLMS algorithm, µ, was set
to 0.2.

Second, the optimal FIR filter and the SP were modeled
to Wo,2(z) and Ho,3(z). In the proposed RLSL, λ and α were
set to 0.995 and 3.1, respectively. algorithm. L was set to
5 and the ERLO was approximately -59.8%. In the FxRLS
algorithm, λ was set to 0.998 and P0 was set to 0.02I . In
the FxGAL algorithm, µ and λ were set to 0.005 and 0.995,
respectively. In the FxNLMS algorithm, µ was set to 0.7.

C. CASE 3
The third simulation for the SNR of 45dB used the correlated
inputs obtained from passing white Gaussian noise through
the succeeding filters as

G3(z) =
1

1− 0.9z−1

The optimal FIR filter and the SP were modeled to
Wo,1(z) and Ho,1(z). In the proposed RLSL algorithm,

FIGURE 10. NMSE in case 2 (Wo,1(z), Ho,2(z)).

FIGURE 11. NMSE in case 2 when the SP model is mismatched (MD = 50,
Wo,1(z), Ho,2(z)).

FIGURE 12. NMSE in case 2 (Wo,2(z), Ho,3(z)).

λ and α were set to 0.995 and 3.1, respectively. L was
set to 5 and the ERLO was approximately 60.1%. In the
FxRLS algorithm, λ was set to 0.995 and P0 was set to
0.01I . In the FxGAL algorithm, µ and λ were set to 0.01 and
0.995, respectively. In the FxNLMS algorithm, µ, was set
to 0.3.

Second, the optimal FIR filter and the SP were modeled
to Wo,2(z) and Ho,4(z). In the proposed RLSL algorithm, λ
and α were set to 0.995 and 3.1, respectively. L was set to 5
and the ERLO was approximately −51.7%. In the FxRLS
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FIGURE 13. NMSE in case 3 (Wo,1(z), Ho,1(z)).

FIGURE 14. NMSE in case 3 (Wo,2(z), Ho,4(z)).

algorithm, λ was set to 0.998 and P0 was set to 0.01I .
In the FxGAL algorithm, µ and λ were set to 0.001 and
0.995, respectively. In the FxNLMS algorithm, µ was set
to 0.2.

D. CASE 4
The final simulations for the SNR of 45dB were performed
in the environments where the sign of the optimal FIR fil-
ter is suddenly changed. The correlated inputs were set to
those as the case 1. The SP model was set to H0,2(z) and
H0,3(z).

In case of the SP model with the non-minimum phase
H0,2(z), λ and α were set to 0.996 and 3.4, respectively, in the
proposed RLSL algorithm. L was set to 5 and the ERLO was
approximately 39%. In the FxRLS algorithm, λ was set to
0.996 andP0 was set to 0.01I . In the FxGAL algorithm,µ and
λ were set to 0.005 and 0.995, respectively. In the FxNLMS
algorithm, µ, was set to 0.2.
In case of the SP model with the minimum phase H0,3(z),

λ and α were set to 0.996 and 3.5, respectively, in the pro-
posed RLSL algorithm. L was set to 5 and the ERLO was
approximately -34.2%. In the FxRLS algorithm, λ was set to
0.997 andP0 was set to 0.01I . In the FxGAL algorithm,µ and
λ were set to 0.005 and 0.995, respectively. In the FxNLMS
algorithm, µ, was set to 0.2.

FIGURE 15. NMSE in case 3 when the SP model is mismatched (MD =
−30, Wo,2(z), Ho,4(z)).

FIGURE 16. NMSE in case 4 (Wo,1(z), Ho,2(z)).

FIGURE 17. NMSE in case 4, (Wo,2(z), Ho,3(z)).

E. SIMULATION RESULTS
The proposed RLSL algorithm, which has lower computa-
tional complexity than the FxRLS algorithm, performed very
well for the correlated inputs. The FxGAL algorithm showed
a fast convergence rate for the correlated inputs, but was
inferior to the proposed RLSL algorithm in terms of the
steady-state error level as shown in Fig 7 and 13.

Additionally, for long tap length of the optimal FIR fil-
ter, the performance of the FxRLS algorithm was degraded
in terms of the convergence rate, but the performance of
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FIGURE 18. NMSE in case 4 when the SP model is mismatched (MD = 10,
Wo,2(z), Ho,3(z)).

the proposed RLSL algorithm was very well maintained as
shown in Fig 12, 14 and 17. The performance of the proposed
algorithm was also robust against unexpected environmental
variations as shown in Fig. 16,17 and 18.
For the mismatched SP models, the FxGAL algorithm

was always numerically stable, but its performance deteri-
orated. The FxRLS algorithm performed well when it was
numerically stable, but the algorithm was numerically unsta-
ble compared to the proposed RLSL algorithm as seen in
TABLE 3 and 4. The proposed RLSL algorithm was found
to be numerically stable, except for an extreme value of MD
= −70 in TABLE 3, and to maintain a low steady-state error
levels.

Even in environments where the tap length of the optimal
FIR filter was not known in advance, only the proposed
RLSL algorithm with the LOD algorithm maintained a good
performance and numerical stability, which is important to
implement the ANC system in real environments.

V. CONCLUSION
Combined with the SPI and LOD algorithms, the RLSL
algorithm was applied to the ANC system without the
filtered-input structure. For constructing virtual desired sig-
nals corresponding to the outputs of the lattice filter just ahead
of the secondary path, the SPI algorithm associated with the
power spectral factorization of the secondary path whitens
the error microphone signals passing through the secondary
path into the virtual error signals just ahead of the secondary
path. The LOD algorithm allows the ANC system to maintain
its noise reduction performance without knowing the tap
length of the optimal FIR filter. The proposed SPI and LOD
algorithms can be easily applied to various ANC systems to
improve the adaptive filter. The proposed ANC system based
on the RLSL algorithm has not only a fast convergence rate
and a low steady state error like the ANC system based on the
FxRLS algorithm, but also low computational complexity.
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