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ABSTRACT Unmanned aerial vehicles and battleships are equipped with the infrared search and tracking
(IRST) systems for its mission to search and detect targets even in low visibility environments. However,
infrared sensors are easily affected by diverse types of conditions, therefore most of IRST systems need to
apply advanced contrast enhancement (CE) methods to cope with the low dynamic range of sensor output
and image saturation. The general histogram equalization for infrared images has unwanted side effects
such as low contrast expansion and saturation. Also, the local area processing for saturation reduction has
been studied to solve the problems regarding the saturation and non-uniformity. We propose the cross fusion
based adaptive contrast enhancement with three counter non-uniformity methods. We evaluate the proposed
method and compare it with conventional CE methods using the discrete entropy, PSNR, SSIM, RMSE,
and computation time indexes. We present the experimental results for images from various products using
several datasets such as infrared, multi-spectral satellite, surveillance, general gray and color images, as well
as video sequences. The results are compared using the integrated image quality measurement index and
they show that the proposed method maintains its performance on various degraded datasets.

INDEX TERMS Infrared images, IRST, image enhancement, low dynamic, fusion, target detection.

I. INTRODUCTION systems. The saturation phenomenon also poses problems

Infrared search and tracking (IRST) systems are used on
unmanned aerial vehicles (UAV) and surveillance applica-
tions such as pan-tilt searching electro-optical systems [1].
In such applications, it is required to process contrast expan-
sion and noise reduction because of the low output character-
istics of IR detection sensors and because its image dynamic
range is severely degraded by low visibility conditions occur-
ring due to light scattering by microscopic aerosols such
as the fog and haze. In fact, several complaints of flight
pilots have been reported about the difficulties associated
with recognizing summit mountain lines (SML) or detect-
ing targets due to low dynamic and saturated images of IR
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in industrial, medical, and security camera systems as well
as defense applications [2]. In recent days, many machine-
learning and deep-learning based automatic target detection
and object tracking models have been used to make the
detection even more efficient and accurate [3]-[9]. The auto-
detection and object tracking methods are affected by the
quality and Homogeneous brightness of training images and
are used to derive more information from the images with
respect to how well they represent targets and details.
Traditionally, the general histogram equalization (GHE) is
a popular solution to improve low dynamic contrast images
based on histogram equalization (HE) calculations [10], [11].
The GHE method expands the contrast to the maximum
dynamic range and offers an effective way for fast calcula-
tion. However, it produces locally saturated output images,
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FIGURE 1. A conceptual flow chart of the proposed method.

degrades the target detection and the recognition perfor-
mance [12]-[14].

Conversely, many studies have proposed solutions for
overcoming the low dynamic and over-saturated image out-
puts by GHE. The brightness preserving bi-histogram equal-
ization (BBHE) and particle swarm optimization (PSO)
based local entropy weighted histogram equalization sepa-
rates an original image histogram into two sub-histograms
based on the mean value of the input image and performs
HE using recombined two sub-histograms [15], [16]. The
local area processing (LAP) based methods are applied to
improve contrast for entire areas of images. The contrast lim-
ited adaptive histogram equalization (CLAHE) is a method
based on LAP principle [17]. However, the decisions of
optimal limit values and divided units are not easily fitted
for various image characteristics. Furthermore, the dualis-
tic sub-image histogram equalization (DSIHE) separates an
image to equal two sub-images using the median value [18].
It focuses on maintaining image brightness quality after
HE process, but it does not perform well in high contrast
stretching.

The brightness preserving dynamic histogram equalization
(BPDHE) uses, the local maxima of the smoothed histogram
to divide the histogram into dynamic level ranges [19]. The
authors of singular value decomposition discrete wavelet
transform (SVD-DWT) method studied singular value based
image equalization (SVE) [20]. These approaches are uti-
lized to eliminate image saturation problems. However,
the SVD-DWT method has little effect on the contrast expan-
sion ratio and is computationally expensive.
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Recently presented, transform based gamma correction
(TGC) method uses an automatic transformation technique
and an adaptive gamma correction with weighting distri-
bution (AGCWD) to improve the brightness of dimmed
images [21]. It offers great performance in comparison with
other methods, however, it returns low contrast enhancement
results for white-saturated images. The contrast enhancement
algorithm based on gap adjustment for HE (CegaHE) adjusts
the gaps between two gray levels using the adjustment equa-
tion [22]. The interlace histogram equalization (IHE) method
uses a simple cross fusion method [23]. However, it shows
severe non-uniformity problems for background image areas.

In this study, we propose a new, efficient contrast enhance-
ment method with a high contrast expansion ratio, low noise
output and fast computation time. This approach imple-
ments the concept of adaptive suppression of non-uniformity
(ASNU) with the maximum spatial occupancy of the 3D
histogram. The main concept of the proposed method is the
image cross fusion (CF) on the output of ASNU stages. Fig. 1
shows the overall outline of the proposed method as a block
diagram. In the first step, a low contrast input image I, is
decomposed into . + v units to be used in 3D histograms
for probability distribution functions, Pp(j), P,(i). Acquired
3D histograms enter three stages of the ASNU step before
entering the final cross fusion step.

In the first stage of ASNU, the interpolation for decom-
posed neighboring histograms Pp(j) and P, (i) is performed.
In the second stage, the cumulative distribution function
(CDF) of interpolated histograms Pj,(j) and P (i) is adap-
tively re-shaped according to the image characteristics of
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each histogram using w;, b; parameters. In the third stage,
the re-shaped CDF), and CDF;, are passed through rational
transfer function (RTF) filter for restoration of the dark and
white pixel levels. Finally, as the output of ASNU, CDF (j)
and CDF/(j) are derived and delivered to the CF step. In the
CF step, the CDF}/(j) and CDF;(j) are mapped to the sub-
image values I, and I, for the final CF output image Ioy.

The experimental results show the CE images and their
histograms obtained using selected methods and the proposed
method which are compared with the images obtained using
the IRST products from UAV systems. The visual assessment
of performance shows which method is most suitable for effi-
cient SML detection or target detection in conditions yielding
low dynamic images. In addition, we present the resulting
images and histograms from Remote sensing, Surveillance,
Grayscale, and RGB datasets for an extended validation. In
the results, we also show the performance of the methods on
real-time video sequences where the image dynamic range is
continuously changed from dark to white values with a nar-
row dynamic band. The results confirm which methods can be
applied to real applications where the image dynamics change
a lot. For quantitative measurement, the normalization index
for time, entropy, PSNR, SSIM, and RMSE are presented in
the comprehensive evaluation of experimental results.

In this work, we propose an effective contrast enhancement
with low computational complexity and robust image quality.
This approach is based on a concept of the image cross fusion
with ASNU for a maximal spatial fill factor of 3D histograms.

Il. RELATED WORK

A. LOW DYNAMIC AND SATURATION PROBLEMS

The most important role of an image signal processor for
the IR image sensor is to increase the contrast ratio in the
process of converting the detected photon energy from focal
plane area of semiconductor sensors to a digital signal output.
The Fig. 2(a) shows a result image after contrast enhance-
ment method (CEM) and non-uniformity correction applied
to the original input image shown in Fig. 2(b). In order
to improve such low dynamic images, most advanced IR
image sensors focus on the efficient CEM process. However,
if IR images are acquired when moisture particles like a
fog or haze are present in the environment, the output images
are degraded substantially. As shown in Fig. 2(c), in such
cases the white saturation phenomenon occurs due to the
distribution of bright pixels, so the images are saturated to
white levels. To solve these problems, we developed a method
which improves the black and white low dynamic image and
is at the same time computationally efficient.

B. MOTIVATION
The main conceptual mathematics of the GHE method is
represented by the following three simple equations:

n;
M x N

hist(i) = hist(x = i) = , 0<i<L, D
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FIGURE 2. Examples of low dynamic ranged images. (a) GT, (b) a low
dynamic image(dark), (c) a low dynamic image(white).

where L is the maximum value of intensity in the image (in the
case of 8-bit image, the L is 255). M x N is the total number
of pixels in the M x N array, n; is the number of pixels with
same intensity, and hist(i) is normalized pixel value for i-th
intensity level. The following equation 2 is used to calculate
the cumulative distribution function (CDF) from the hist(i):

L
CDF(i) = Y _ hist(i). )
i=0
where CDF is expressed as a graph of the hist(i) accumulating
in pixel order. The maximum value on the x-axis is L, and the
maximum response value on the y-axis is 1.
CDF(@) — 1

IGHE = Int(M—le X L) (3)

Equations 1 to 3 define how the GHE method normalizes
the histogram, accumulates it in the CDF, and distributes it
uniformly. The GHE extends histograms which are concen-
trated in a narrow range to the entire range of the intensity.
The GHE seemed to be the best countermeasure for low
dynamic images, but it shows limitations such as low contrast
resolution and image saturation problems [23].

As a more advanced method, the BBHE divides an image
into two areas: (1) dark level of the histogram and (2) bright
level of the histogram. It stretches the intensity values more
effectively than the GHE method. As other LAP based meth-
ods, the CLAHE tries to enhance the image by using a
local HE calculation as units of separated square sub-images.
It shows the high contrast resolution and stretching effect, but
it has a lot of noise and saturated image parts remains.

To overcome these limitations, the SVD-DWT, AGCWD,
and CegaHE are studied. Methods try to solve over-
stretching or under-stretching problems as well as high
contrast enhancement effects [20]-[22]. However, the SVD-
DWT is computationally very expensive due to the complex
processes such as wavelet transform. In order to solve the
aforementioned problems associated with the conventional
2D histogram equalization method, we analyze the 3D his-
togram using a method which decomposes the image into line
units and tries to find the reasons for the fundamental problem
of conventional methods. When a white-saturated image as
shown in Fig. 3(a) is adjusted by the GHE method, the output
is the Fig. 3(b). The histogram of the image is well stretched
from the lowest intensity level to the highest intensity level
using conventional 2D histogram analysis.

However, as a result of the 3D histogram, you can see
that the pixel values are stretched to the whole range from
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FIGURE 3. Fill-factors for 3D histograms. (a) Input (3%), (b) GHE (3%),
(c) Proposed (19%).

TABLE 1. Fill factors on 3D histograms.

Image Original GHE CLAHE AGCHE Proposed
IRST-UAV 18.4 16.8 27.8 17.7 49.2

City-sky 34 3.1 28.7 34 18.9
KNU-HQ 7.5 6.8 11.4 7.5 43.3

minimum to maximum pixel values, but the pixels that can
be represented are not being used to widen the distributed
areas. Fig. 3(c) shows an example of a 3D histogram using
the proposed method, and it utilizes the pixels that can be
represented in a wide pixel intensity range. We measure the
grades of such pixel representation of the fill factor (FF),
and the calculation of the FF are defined with equation 4.
The FF are representing the ratio of the occupied area in 3D
histogram space. Table 1 shows the FF result values for
representative image data from the experimental dataset. The
proposed method has advantages according to high FF value
calculated by:

LN
Fill factor = |:LN — Znum(histw(i) = 0)j| /LN, (4)
i=1
where L is the maximum intensity level (255), and N is the
number of lines obtained in the image decomposition process.
hist3p(i) denotes the number of pixels in each sequence (i)
in the entire 3D histogram area. Therefore, the equation 4
represents the filled levels of the region occupied by pixels
with a value in the 3D histogram.

lll. METHODS

A. THE CROSS FUSION PROCESS

An efficient and adaptive contrast enhancement method for
low dynamic black and white saturated images, and the
method for expressing the image in detail with maximum FF
value, begins with a cross fusion (CF) process. This approach
is motivated by the analysis of the 3D histogram and the 3D
histogram is used for the CF process of the decomposed input
images. As displayed in Fig. 4, the CF procedure starts from
the decomposition of the input image (a) into line units in dif-
ferent directions as shown in (b) and (c). The aforementioned
3D histogram decomposition operation described in Fig. 1 is
expressed by the following two equations:

Pr() = Lin(D/M,  Py(i) = Lin())/N . &)

The input image, /;;, decomposition in each line unit per-
forms following L and M to the adaptive suppression of
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FIGURE 4. The basic principles for CF process. (a) An example of input
image, (b) processes of horizontal direction, (c) processes of vertical
direction, (d) an example output of CF process.

non-uniformity (ASNU) before the output image is recom-
posed by CF calculation.

The CF operation for the output image I,y is implemented
as a simple weighted sum define by:

M N
Tow =) ) FRx (Ih-asnu +l—asvv)  (6)
j=1 i=1

The fusion ratio (FR) parameter for the typical quality of
image improvement is 0.5. Depending on the system, FR can
be adjusted if stronger or weaker stretching is required.

In successfully cross fused images, noise is amplified in
the form of non-uniformity and overstretching due to the
decomposition and re-synthesis of the image. To counter this
we use ASNU method.

B. ADAPTIVE SUPPRESSION OF NON-UNIFORMITY

1) INTERPOLATION OF DECOMPOSED HISTOGRAMS (IDH)
The IDH process prevents the components that are decom-
posed in the line direction from being streaked with a sudden
brightness distribution difference. An interpolation method
is a representative method for preventing non-uniformity
improvement or quantization phenomenon in the image. In
general, the interpolation method is a direct image processing
method of changing image pixel values and is used to softly
fill empty pixels that need to be generated when enlarging an
output image.

We use a modified interpolation concept in the IDH method
to smoothly connect decomposed histograms.

We can improve the components of the histogram of each
line P,(j) and P, (i) as an indirect improvement method for
computationally less expensive implementation. In addition,
we used bicubic interpolation curves to derive the interpo-
lation functions ¢, = [ B « B ] in advance to enable fast
computation:

PpGG—1) Py(i—1)
Pi() = | Pu(i+0) | X ¢n, Py(i) = | Py(i+0) | x ¢y
Pp(j+ 1) Py(i+1)

(N

VOLUME 8, 2020



B. H. Kim et al.: CF-Based Low Dynamic and Saturated Image Enhancement for IRST Systems

IEEE Access

MFI =244

v
Number of pixels.
ol

) T i) )

MFI =134 !

=

------

= /I
Number of pixe
cor
-
Number of pixels

U

5 o 255

Input @" C} 0
3 —— 3
"""""""" ': MFI =36 8 / E
2 £
2 ‘ — o %y " 4
(® ) ©

FIGURE 5. The basic principles for CDF reshaping. (a),(d), and (g)
Examples of decomposed histograms, (b), (e), and (h) results of adaptive
suppression, (c), (f), and (i) output histograms of CDF reshaping process.

2) CDF RESHAPING

This process is the second step of ASNU. The purpose of this
step is to reduce the black and white noise that is generated as
a result of expanding the uniform areas and does not require
the contrast enhancement. The operation principle of CDF
reshaping is shown in Fig. 5. First, the most frequent intensity
(MFI), m;j is detected in the input image for each decomposed
component as shown in Fig. 5(a), (d), and (g) and is defined
as:

mj = arginax P;l’le(j). ®)

The weight and bias parameters for CDF reshaping are calcu-
lated with equations 9 and 10 using the derived MFI parame-
ters as m; and m;.

wi = 14mj x (1/MN), bj=(w;j—1.0)/2w; (9)
wi = 14m; x (1/MN), b = (w; — 1.0)/2w; (10)

Finally, CDF reshaping is performed as defined in equa-
tion 11 below. The computation of the vertically decomposed
components is performed in a similar way.

CDF,,(j) = CDF,(j)/w; + b; )

3) DARK AREA RESTORATION

The results of CDF reshaping according to w and b can be
missing black and white components in the calculation of uni-
form image components. In addition, according to Weber’s
law, human vision has a high resolving power for levels close
to dark gray [24]. Gamma correction is generally used to
increase resolution for dark image components [25]. We use
the rational transfer function (RTF) to compensate for the
dark pixel area restoration. It works for mutual heterogeneity
suppression of the decomposed images as well as restoring
the dark pixel areas. In addition, the RTF filter achieves a
low-pass filter effect, and thus provides dark area correction
and produces smooth images. Furthermore, the RTF filter
is simple and fast without complex processing. As such it,
is suitable for real-time imaging sensor systems.

The basic formula of RTF is:

1
y(n) = L [x(n)+x(n—=1)---+x(n—(dL —-1)], (12)
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FIGURE 6. Results of CDF-reshaping and dark restoration. (a) Input CDF,
(b) result by CDF-reshaping, (c) result after dark area restoration.

where the dL is length of denominating terms. This equation
can be applied for the CDF-reshaping as shown in:

1
CDF}(j) = d—L[CDF;(j) + CDF)(j — 1)
4.+ +CDF,(j— (dL — 1)]  (13)

CDFZ (i) is also calculated in the same manner as defined
by equation 13. [,_asnu and I,_asnu from the CDFs are
calculated as shown in:

CDF;/ —1
In—_asNu = IHt(Tl x 255) (14)
CDF/ —1

I,_AsNU = Int(Tv x 255) (15)

Fig. 6(a) shows an input CDF, Fig. 6(b) shows an inter-
mediate CDF, and Fig. 6(c) shows a result using the CDF-
reshaping processes. On the x-axes of three figures are pixel
values, and on the y-axes are accumulated numbers for each
value. The numbers of lines on one figure are N, where
N is the number of divisions of the histogram. Fig. 6(a)
shows the CDF before correction with the IDH procedure is
performed on image components obtained by decomposing
the image into N components. Fig. 6(b) shows the interme-
diate result in which CDF-reshaping is performed by the
parameters w; and b; from Fig. 6(a). Here, we can derive
improved CDF’ that adaptively suppress the non-uniformity
due to amplifying the contrast ratio in uniform areas from
CDF. The Fig. 6(c) is the result obtained using final reshaped
CDF for dark area restoration and precision filtering by
the RTF.

We have described the THD, CDF-reshaping, and dark
restoration processes defined by three stages of ASNU. The
final outputs I;_asnu and I,_asNu of the process are output
to the final image by performing the CF procedure according
to equation 6.

IV. EXPERIMENTAL RESULTS

In this section, we compare the results of methods: CLAHE,
which is widely used for improving the contrast ratio in the
regions as well as traditional methods such as GHE, BBHE,
DSIHE, BPDHE, IHE, SVD-DWT, AGCWD, CegaHE, and
the proposed method. The experimental results were obtained
for images from five image datasets and a real-time video
sequence dataset using 10 above-mentioned methods. The
GHE is a representative method of processing the contrast
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TABLE 2. Description of experimental datasets.

Num. IRST Remote-Sensing Surveillance  Grayscale RGB
1 IRST-UAV Wave-01(Blue) Cross-road Stars A girl
2 City-sky Wave-02(Green) Airport Big-cat Small-cat
3 KNU-HQ Wave-03(Red) Highway Squirrel Tree-APT
4 APT-sky Wave-04(NIR) Truck Clouds Squirrel
5 Drone Wave-05(SWIR-I) Tank Structure Monkey
6 GP-enter Wave-06(SWIR-II) - An eye Couple
7 GP-grass Wave-07(PC) - Brain Hazy
8 GP-park Wave-08(Cirrus) Startrack
9 Statue Wave-09(TIRS-I)
10 Northgate Wave-10(TIRS-II)
11 Pedestrian -
12 Student

#1~2100  Video35(sec)

enhancement for many applications. Also, BBHE, CLAHE,
IHE, DSIHE, BPDHE, SVD-DWT, AGCWD, CegaHE, and
the proposed method are compared using visual assessment.
In the related work section, we presented low dynamic images
with black and white as shown in Fig. (2) (b) and (c). They
are mostly caused by an insufficient or excessive amount of
light in the scene. The experimental results were obtained
for images listed in Table 2: IRST (12 images), Remote-
Sensing (10 wavelengths) [26], Surveillance (5 images),
Grayscale (7 images), and RGB (8 images). Also, IRST
video sequence (#1 to #2100 frames) was used in the visual
assessment.

In most cases, the ground truth images do not have appro-
priate light intensity properties. In the case of Remote-
sensing satellite IR images, experimental input images are
GT images. In other cases from in Fig. 7(a) to Fig.13 (a),
the input images are generated as low dynamic images using
GT images. The results are shown for multiple methods
together.

For the verification of various IR applications including
IRST, we show the results for several different images for
security monitoring and surveillance using multi-spectral
wavelength images. Since the results of the research, such
as improvement of the image, are required to be verified for
various cases, we were able to obtain outdoor observation
images, such as cross-road, airport, highway, truck, and med-
ical images. Because the results of research such as image
improvement require a comparative verification of the data
from various application fields, we show telescope images
and medical images together with IRST, Surveillance, and
Grayscale dataset results which were widely used in previous
studies.

Finally, we also show the results of applying to RGB
images, including a dataset named A gir/ to check whether
the effect is applied to the degraded or hazy (white saturated)
color image.

In the experimental section, the most representative images
are selected from five datasets. The resulting images are
shown together with their histograms. All the results includ-
ing the remaining experimental images are shown in the
supplemental materials.
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FIGURE 7. IRST-UAV dark low-dynamic image (upper rows: results of
images, lower rows: results of histogram [x-axis: levels of intensity, y-axis:
number of pixels]) (a) GT, (b) Input, (c) GHE, (d) BBHE, (e) CLAHE, (f) IHE,
(g) DSIHE, (h) BPDHE, (i) SVD-DWT, (j) AGCWD, (k) CegaHE, (I) Proposed.

A. VISUAL ASSESSMENT OF THE IRST DATASET

Fig. 7 shows the resulting images form the IRST dataset,
in which the GT image Fig. 7(a) is compared with the results
from different methods in Fig. 7(b) to (1) for the case of the
dark saturation phenomenon.

The result of Fig. 7(c) by the GHE is saturated at the
boundary between the mountain and the sky. The reason for
such problems can be inferred from the histogram in Fig. 7(c).
In the low dynamic image, the difference of pixel brightness
between the sky and mountain is small. Also, in a histogram
with a low FF index, like the histogram in Fig. 7(c), it is diffi-
cult to distinguish between mountains and sky boundaries. In
Fig. 7(e) and (f), the contrast ratio is very high, but the noise
is dramatically pronounced in the entire image including the
sky. The histograms in Fig. 7(e) and (f) are expressed with
a high FF factor, but the distribution of histograms shows
a big difference in comparison to the GT image. Fig. 7(g)
and (h) are stretched around the mean brightness of the input
image, but the effect is low. Fig. 7(i) has less noise and better
histogram results, but there is white saturation that blurs
the boundary between mountains and sky. Fig. 7(j) shows
excellent performance when visually evaluating the quality
of overall image areas. However, the FF value is low, so there
are low contrast parts of the black and white representation.
Fig. 7(k) shows the intermediate result between (j) and (1).
The white and black saturation problems are attenuated a bit
more, but the contrast resolution was low due to the low FF.

In Fig. 8, we show the experimental results when white
saturation occurs. The results in Fig. 8(c), (e), (f) and (1) same
methods are used as in Fig. 7. The results of other methods
show different image quality of black saturated and white
saturated images. This is especially true for methods used
in Fig. 8(i) and (j), which perform well in the black saturation
test in Fig. 7, but return degraded image for the cases with
white saturation conditions.

On the other hand, the proposed method shows robust
quality in various experimental conditions for black and white
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FIGURE 8. IRST-UAV white low-dynamic image (upper rows: results of
images, lower rows: results of histogram [x-axis: levels of intensity, y-axis:
number of pixels]) (a) GT, (b) Input, (c) GHE, (d) BBHE, (e) CLAHE, (f) IHE,
(g) DSIHE, (h) BPDHE, (i) SVD-DWT, (j) AGCWD, (k) CegaHE, (l) Proposed.

saturated images. Furthermore, the results contain low noise
levels, high histogram fill factor and high similarity to the
original image with high contrast enhancement performance.

B. VISUAL ASSESSMENT OF THE SATELLITE DATASET
Satellites are equipped with electro-optical infrared (EO/IR)
imaging systems using multi-wavelength sensors to observe
various terrains and oceans and analyze atmospheric phe-
nomena in detail. The images in Fig. 9 and 10 are obtained
from the satellite EO/IR imaging systems of the Landsat-
8 satellite [26]. Fig. 9(a) shows near-infrared (NIR, 0.845 -
0.885 um) of the fifth wavelength-band (Wave-05) image,
and Fig. 10(a) shows images acquired with long wavelength
infrared (LWIR, 10.30 - 11.30 pm) of the tenth wavelength-
band (Wave-10). As can be seen from the two GT images,
even when the surface of the earth with the same heat source
is photographed, use of NIR can result in the dark saturation
and use of LWIR can produce white saturated images.

Since the GT of NIR image shown in Fig. 9(a), already
shows considerable low dynamic characteristics, we experi-
mented with the input image as shown in Fig. 9(b). The LWIR
image in Fig. 10(a) is used as an input image by applying a
bias to obtain a white-saturated image as shown in Fig. 10(b).
As shown in Fig. 9(c) and Fig. 10(d), the two images show
low contrast resolution due to the poor fill factor of the
histogram. Fig. 10(e) and (f) show high contrast resolutions
but the noise levels in the resulting images are emphasized.
Additionally, the part of the image with the black sea is
changed to gray and the image was distorted. In Fig. 10(g)
and (h), a lot of low dynamic components are still presented.
Fig. 10(1) shows insufficient contrast stretching, which is
particularly vulnerable to white saturation. Fig. 9(j) shows
good results for black saturated images, but Fig. 10(j) shows
that method’s stretching effect is deteriorated in the case of
white saturated images. Fig. 9(k) and the Fig. 10(k) show
that method expands the contrast to the appropriate level, but
the fill factor is low and both results are biased in the dark
region. On the other hand, Fig. 9(1) and Fig. 10(1) show robust
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FIGURE 9. Wave-05 dark low-dynamic image (upper rows: results of
images, lower rows: results of histogram [x-axis: levels of intensity, y-axis:
number of pixels]) (a) GT, (b) Input, (c) GHE, (d) BBHE, (e) CLAHE, (f) IHE,
(g) DSIHE, (h) BPDHE, (i) SVD-DWT, (j) AGCWD, (k) CegaHE, (l) Proposed.
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FIGURE 10. Wave-10 white low-dynamic image (upper rows: results of

images, lower rows: results of histogram [x-axis: levels of intensity, y-axis:

number of pixels]) (a) GT, (b) Input, (c) GHE, (d) BBHE, (e) CLAHE, (f) IHE,
(g) DSIHE, (h) BPDHE, (i) SVD-DWT, (j) AGCWD, (k) CegaHE, (I) Proposed.

enhancement results for both dark and white saturation with
high fill factor. The resulting images have the highest contrast
resolution.

C. VISUAL ASSESSMENT OF THE SURVEILLANCE DATASET
Images similar to the ones in Fig. 11(a) are obtained with
surveillance products including IRST. It is necessary to
observe all the image components such as the shape of the
road around the target and surrounding objects simultane-
ously with the detection of the target. Actually, the details
of background contrast affect the capability of finding the
objects using human eyes, tracking algorithms and automatic
detection algorithms for conventional or deep-learning meth-
ods [27].
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FIGURE 11. Truck white low-dynamic image (upper rows: results of
images, lower rows: results of histogram [x-axis: levels of intensity, y-axis:
number of pixels]) (a) GT, (b) Input, (c) GHE, (d) BBHE, (e) CLAHE, (f) IHE,
(g) DSIHE, (h) BPDHE, (i) SVD-DWT, (j) AGCWD, (k) CegaHE, (I) Proposed.

Following, the input image in Fig. 11(b), results show
white saturation occurs in images of all methods except
in Fig. 11(k). The result in Fig. 11(k) does not show white
saturation, but it shows a low dynamic image which is biased
to the dark area. The resulting image of the proposed method
shown in Fig. 11(1) displays the truck and the background are
preserved well without dark and white saturation.

D. VISUAL ASSESSMENT OF AN EYE DATASET

Fig. 12(a) shows a retinal optical coherence tomography
image of an eye used for ophthalmological diagnosis. It is
very important to carefully inspect all areas of the image
and to find any abnormal cells or blood vessels for defining
accurate diagnosis.

In Fig. 12(e) and (f), the features of the blood vessels are
very clear, but it is difficult to diagnose any abnormal tissue
in the boundary areas due to the partial white saturation.
On the other hand, the method proposed in Fig. 12(1) does
not saturate the background and object components, and the
histogram resolution for all image area is high.

E. VISUAL ASSESSMENT OF THE HAZY DATASET

In previous sections, we showed that the proposed method
can be applied to IR sensor images, security images, med-
ical images, and a wide range of monochrome images like
IR or grayscale. It was also shown that the proposed method
can be used for performance improvement. We have also
attempted to evaluate whether the proposed method can be
used to solve saturation problems in conditions such as fog
and high illumination in color images. Fig. 13(a) is a rep-
resentative low-dynamic color image including fog, where
we compare the performance of the 10 methods in the same
way as in the previous experiments. Using each method,
the input image shown in Fig. 13(b) can be improved as
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FIGURE 12. An eye white low-dynamic image (upper rows: results of
images, lower rows: results of histogram [x-axis: levels of intensity, y-axis:
number of pixels]) (a) GT, (b) Input, (c) GHE, (d) BBHE, (e) CLAHE, (f) IHE,
(g) DSIHE, (h) BPDHE, (i) SVD-DWT, (j) AGCWD, (k) CegaHE, (I) Proposed.
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FIGURE 13. Hazy white low-dynamic image (upper rows: results of
images, lower rows: results of histogram [x-axis: levels of intensity, y-axis:
number of pixels]) (a) GT, (b) Input, (c) GHE, (d) BBHE, (e) CLAHE, (f) IHE,
(g) DSIHE, (h) BPDHE, (i) SVD-DWT, (j) AGCWD, (k) CegaHE, (l) Proposed.
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shown in Fig. 13(c) to (1). In this case, Fig. 13(c) and (f) show
good performance, but the glare of many of lights is visible
in the visual evaluation. The resulting image of the proposed
method shown in Fig. 13(1) expresses an adequate amount of
comfortable light and high contrast resolution and at the same
time eliminates the hazy areas.

F. REAL-TIME VIDEO SEQUENCES

It is very important to improve the performance of real-time
IRST products at the same time as further develop counter-
measures. It is necessary to confirm the result of the improve-
ment of the contrast performance of continuous images as a
result of applying the method to the actual product. For this
experiment, we use a real-time video dataset with reduced
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FIGURE 14. Real time video sequences of /RST-UAV dataset (#0150~#2100).

image dynamics characteristics by changing the saturation
from white to dark. The results for every 150th frame of the
sequence are shown in Fig. 14.

Using the best performing five methods in the visual
assessment from Fig. 7 to 13, comparison results were
obtained from video images. The proposed method shows the
most stable contrast enhancement results in the visual evalua-
tion of continuous images. In order to quantitatively measure
the improvement ratio of the contrast, the improvement ratio
of the contrast of every single video frame according to five
different methods is measured using the contrast index. The
quantitative index for measurement of the contrast improve-
ment is used as the discrete entropy (DE) index, which is
calculated as:

J
DE = — > p(xi) x logop(x;)

i=1
In cases of frames #0150 and #0300, the AGCWD also
shows good results. However, the DE index values are sig-
nificantly lower than for the proposed method. This is true
due to the same reason that occurs in the experimental results

16)
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in Fig. 7(j). The AGCWD method stretches the contrast to
the maximum width in image levels. However, since the fill
factor of the histogram is low, the contrast resolution is not at
a high level. Observing the actual image in detail confirms
that there is a problem with finding and recognizing SML
region. Also, as shown in the video sequence after #1200,
the performance of contrast enhancement using CLAHE,
SVD-DWT, and AGCWD methods decrease significantly in
white saturation.

In contrast, the overall DE values of the CLAHE method
are robust from the first to the final frame. This shows the
same characteristics as shown in Fig. 7(e) and Fig 8(e). The
proposed method also shows robust performance through-
out all video frames in dark and white saturation situations.
It shows the higher DE value than CLAHE and clearer results
than other methods.

V. QUANTITATIVE MEASUREMENTS
A. METRICS OF MEASUREMENT INDEXES

The quantitative measurement related to the improvement
of the image contrast is the DE index as shown in the
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graph in Fig. 14 for a video example. Although the proposed
method showed high DE measurement results, in some cases,
CLAHE or IHE methods outperform the proposed method
as shown in Fig. 15(a), which shows the DE results for
individual images. However, the higher DE results cannot be
always recognized as better performance. This is because the
image with a good contrast improvement results with a high
DE can contain a lot of noise compared to the original or can
take longer calculation times.

Therefore, in order to evaluate images using a quantitative
measure, it is necessary to minimize the noise levels with
DE, the image distortion in comparison with the original
image, and the calculation times. The conventional image
improvement studies are also use various noise improvement
indexes with contrast enhancement indexes [28], [29]. We
use peak signal to noise ratio (PSNR), structural similarity
(SSIM), and root mean square error (RMSE) considering
the distortion and the noise-related measurement indexes,
calculated with equations 17 to 19.

2
Imax ) ; (17)

PSNR(IX, Iy) =10 x loglo (m
Yy ix

where I is the original GT image, and /y, is the output image.
Lyax 1s the max dynamic range of input and output images.
Lpax 18 255 for 8-bit image. The MSE is the mean square error
of the output image in comparison with the original image.

Quxpty + C1)2oyy + C2)
(U2 + p2 4+ C1)o2 + 02+ C)’

SSIM(Uy, Iy) = (18)
where w, and u, are the average values of input and output

images. o, and oy are the variances of input and output
images. C1 = kil uae> and Ca = kplypax>. k1 = 0.01, ky = 0.03.

M N
1 2
RMSE = N El E] (Tout = Ig0)” 19)
i=1 j=

B. ASSESSMENT USING INDIVIDUAL INDEXES
Experiments are performed using many different images
acquired using different sensors and showing different
scenes. We performed experiments with datasets IRST
(12 images), Remote-sensing (10 images), Surveillance
(5 images), General-grayscale (7 images), RGB (8 images).
All of the visual assessment results for every single image
are attached in the supplemental materials. Fig. 15(a) shows
results of 10 different methods using /RST (12 images)
experimental images. Five graphs in Fig. 15(a) are measure-
ment results for calculation time(T), entropy(E), PSNR(P),
SSIM(S), RMSE(R), respectively from the top. The 12 exper-
imental images show slightly different performance measure-
ment results and Fig. 15(b) shows the average of all results
in Fig. 15(a).

The lower T and R indexes mean better performance,
higher E, P, and S mean better performance. Using the pro-
posed method, the quantitative measurement results of the
IRST experimental dataset showed good performance for all
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FIGURE 15. Quantitative measurement using /IRST dataset (12 images),
[x-axis: methods(1:GHE, 2:BBHE, 3:CLAHE, 4:IHE, 5:DSIHE, 6:BPDHE,
7:SVD-DWT, 8:AGCWD, 9:CegaHE, 10:Proposed), y-axis: index values], (a)
individual TEPSR, (b) average TEPSR, (c) normalized TEPSR.

but the T index of SVD-DWT and CegaHE method. The E
index shows that the proposed method outperforms others,
followed by THE, and CLAHE. In addition, SVD-DWT and
the proposed method show good performance for P, S, R due
to low noise levels.

Fig. 16 and Fig. 17 show the measurement results for
four more datasets: Remote-sensing, Surveillance, General-
grayscale, and General-RGB.

C. INTEGRATED ASSESSMENT USING NORMALIZED
TEPSR
We have used time, entropy, signal-to-noise ratio, struc-
tural similarity, and the root mean square error as individual
indexes for quantitative measurement. For image improve-
ment evaluation, several factors should be considered, and
we use the normalized measurement index as an evaluation
technique for comprehensive performance evaluation.

The purpose of this is to normalize each index and to eval-
uate when an image is improved with the integrated indicator.
As an integrated index, normalized T, E, P, S, R (nTEPSR) is

calculated as:
1 T; E;
nTEPSR = — [l - ———)+ —
N Tiax — Tmin Bits

P sa Ri )]
2010g10L ! 1-— Rmax - Rmin

(20)

With the nTEPSR measurement graphs shown in Fig. 15 to
17, we can confirm the advantages and disadvantages of the
ten compared methods. For example, compared with 1:GHE,
4:THE shows the best contrast expansion performance and
faster speed, however, the output is very noisy. 7:SVD-DWT
is slow, but its output is less noisy. 8:AGCWD is fast, but the
output is noisy and has low contrast expansion performance.
9:CegaHE shows the results of medium calculation speed and
very low noise levels, but poor contrast in the output images.
10:Proposed method has lower noise levels and good contrast
ratio in output images, allows fast calculation and retains
robust performance for all testing datasets.
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FIGURE 16. Quantitative measurement using Remote-sensing and
Surveillance datasets, [x-axis: methods(1:GHE, 2:BBHE, 3:CLAHE, 4:IHE,
5:DSIHE, 6:BPDHE, 7:SVD-DWT, 8:AGCWD, 9:CegaHE, 10:Proposed), y-axis:
index values], (a) individual TEPSR, (b) average TEPSR, (c) normalized
TEPSR of Remote-sensing, (d) individual TEPSR, (e) average TEPSR, (f)
normalized TEPSR of Surveillance datasets.

Table 3 shows summarized comparison results using the
integrated nTEPSR index measured in images in Fig. 15 to
17 from datasets IRST, Remote-sensing, General-grayscale,
and General-RGB test images.

The five top rows in Table 3 show the measurement results
of nTEPSR for each dataset. The average is the mean value
for each method for the five different datasets. The variation
of nTEPSR value refers to the maximum variations between
the best and the worst result of nTEPSR for the five datasets.
The bold text highlights the highest and the second highest
performance results.

The proposed method shows the highest performance val-
ues for each dataset and their averages. Since the variation is
small, the image quality improvement performance is robust
to the change of the image data. For example, the results show
that the proposed method outperforms other methods with an
average rank score of 0.73, followed by IHE and CLAHE
methods with rank scores of 0.67 and 0.63 respectively. The
MV of the proposed method is 0.08, and SVD-DWT method
shows the value of 0.07. This means the performance of SVD-
DWT is more constant, but overall lower than that of the
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FIGURE 17. Quantitative measurement using Grayscale and RGB
datasets. [x-axis: methods(1:GHE, 2:BBHE, 3:CLAHE, 4:IHE, 5:DSIHE,
6:BPDHE, 7:SVD-DWT, 8:AGCWD, 9:CegaHE, 10:Proposed), y-axis: index
values], (a) individual TEPSR, (b) average TEPSR, (c) normalized TEPSR of
Grayscale, (d) individual TEPSR, (e) average TEPSR, (f) normalized TEPSR
of RGB datasets.

proposed method. Additionally, Table 3 shows the FPS values
according to the running time analysis result. All methods
were run on the same workstation (a single Intel CPU i7-
7700 3.6GHz 32GB RAM) using MATLAB. The AGCWD
and GHE methods have strengths of the computational speed.
On the other hand, the SVD-DWT and CegaHE show very
slow speed. The proposed method shows a moderate level of
speed, and it is measured 2.65 times faster (29 FPS) by the
C++ script conversion. It is expected to be capable of real-
time operation in the embedded systems.

Fig. 18(a) is a graphical representations of results from
Table 3, and shows the overall score by averaging the
nTEPSR results for each datasets. Fig. 18(b) shows the maxi-
mum variation of each methods. In Fig. 18(a) and Fig. 18(b),
according to the result of comprehensive graphical analy-
sis, the conventional THE method has the second highest
performance next to the proposed method [23]. However,
as shown in the raw data measurement results in Fig. 15
to Fig. 16, IHE is not as good as other methods in terms
of noise performance. The proposed introduces the lesser
amount of noise into the output images than most of other
methods.
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TABLE 3. Quantitative measurement using the nTEPSR index and an analysis of running time.

Datasets GHE BBHE CLAHE IHE DSIHE BPDHE SVD-DWT AGCWD CegaHE Proposed
IRST 0.64 0.63 0.66 0.66 0.59 0.62 0.46 0.56 0.53 0.71
Remote-sensing 0.57 0.57 0.67 0.70 0.58 0.61 0.43 0.56 0.44 0.76
Surveillance 0.59 0.58 0.60 0.64 0.56 0.51 0.43 0.50 0.46 0.68
General-grayscale 0.57 0.55 0.55 0.61 0.50 0.51 0.39 0.49 0.66 0.73
General-RGB 0.71 0.69 0.65 0.75 0.61 0.65 0.41 0.64 0.48 0.76
Average nTEPSR 0.62 0.60 0.63 0.67 0.57 0.58 0.42 0.55 0.51 0.73
Variation nTEPSR 0.14 0.14 0.12 0.14 0.11 0.14 0.07 0.15 0.22 0.08

Running time (msec) 20 37 62 62 41 23 361 10 446 89

FPS 50.9 26.9 16.0 16.0 24.6 43.0 2.7 99.7 2.2 11.2
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FIGURE 18. Measurement results of average normalized TEPSR. [x-axis:
methods, y-axis: integrated measurement values], (a) nTEPSR of each
dataset with an average (b) maximum variation of nTEPSR.

VI. CONCLUSION

In this study, we proposed a new contrast enhancement
method for low dynamic images acquired by IRST, EO/IR,
and grayscale or RGB vision sensor systems. The motivation
of the proposed method is 3D histogram analysis and a three-
step ASNU process for improving image quality after CF.
For the first step in ASNU, the IDH reduces channel noise.
In the second step, the CDF-reshaping process is used to
suppress non-uniformity in images. In the third step, a dark
area restoration process recovers dark pixel levels and reduces
the noise at the same time.

Compared with conventional methods, not only does the
proposed method to show the high contrast enhancement
effect in black and white saturation simultaneously, but also
allows real-time operation capable speed and contains low
noise levels in the resulting images. As a result of this study,
it is expected that the detection and recognition distance can
be extended by applying the gated mode image processing for
use with IRST and EO/IR systems in the haze or low-visibility
environment.

As part of future work, we have a plan to apply the pro-
posed method for improvement of detection performance of
a supervised deep learning algorithm as an advanced training
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data generation technique and pre-processing step for object
detection in the inference process.
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