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ABSTRACT Contrast enhanced cardiac computed tomography angiography (CTA) is a prominent imaging
modality for diagnosing cardiovascular diseases non-invasively. It assists the evaluation of the coronary
artery patency and provides a comprehensive assessment of structural features of the heart and great vessels.
However, physicians are often required to evaluate different cardiac structures and measure their size
manually. Such task is very time-consuming and tedious due to the large number of image slices in 3D data.
We present a fully automatic method based on a combined multi-atlas and corrective segmentation approach
to label the heart and its associated cardiovascular structures. This method also automatically separates
other surrounding intrathoracic structures from CTA images. Quantitative assessment of the proposed
method is performed on 36 studies with a reference standard obtained from expert manual segmentation of
various cardiac structures. Qualitative evaluation is also performed by expert readers to score 120 studies of
the automatic segmentation. The quantitative results showed an overall Dice of 0.93, Hausdorff distance
of 7.94 mm, and mean surface distance of 1.03 mm between automatically and manually segmented
cardiac structures. The visual assessment also attained an excellent score for the automatic segmentation.
The average processing time was 2.79 minutes. Our results indicate the proposed automatic framework
significantly improves accuracy and computational speed in conventional multi-atlas based approach, and
it provides comprehensive and reliable multi-structural segmentation of CTA images that is valuable for
clinical application.

INDEX TERMS Computed tomography, heart segmentation, multi-atlas segmentation, random walk.

I. INTRODUCTION
Contrast enhanced cardiac computed tomography angiogra-
phy (CTA) is an advanced imaging modality for evaluating
the coronary arteries and the morphology of the heart non-
invasively. It allows the physician to examine the patency
of the coronary arteries for atherosclerotic disease. It also
provides a comprehensive evaluation of the anatomical fea-
tures of the heart and its surrounding vessels for structural
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heart diseases. Quantitative assessment of various anatomical
structures of the heart such as its four chambers, myocardium,
and great vessels on the CTA images can help to detect
potential cardiac anomalies or to evaluate disease progression
and treatment effects. However, this process can be laborious,
time-consuming, and may be prone to user variations since
measurements of these cardiac structures is often performed
manually.

Computer-based automatic segmentation is desirable but
can be challenging due to anatomical variations of the heart
among different individuals, indistinct boundaries between
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substructures of the heart (e.g. right ventricle and right
atrium), or between the heart and surrounding tissues (e.g.
liver, ribs, sternum). Moreover, technical complexities such
as the differences in field-of-view reconstruction, scanning
parameters, imaging protocols, and the presence of imag-
ing or motion artifacts, suboptimal contrast-to-noise ratio
or signal-to-noise ratio can all affect the image quality and
result in imperfect image segmentation. Thus, it is essential
to develop automatic and reliable computerized methods that
can accurately segment the heart and its anatomical structures
and evaluate the methods on a large dataset.

In this paper, we present a fully automatic pipeline for
comprehensive multi-structure CTA image segmentation that
can achieve high accuracy with efficient processing time for
practical clinical applications. The proposed method extends
our previous work [1] by incorporating an improved com-
bined multi-atlas approach with corrective segmentation to
label the whole heart (WH), left ventricular cavity (LV),
left atrial cavity (LA), left ventricular myocardium (LVM),
left atrial appendage (LAA), right ventricular cavity (RV),
right atrial cavity (RA), ascending aorta (AA), superior vena
cava (SVC), inferior vena cava (IVC), pulmonary artery (PA),
and pulmonary vein (PV) in the CTA images. The method
also separates other intrathoracic non-cardiac structures such
as lung, chest wall (CW), spine, descending aorta (DA), and
liver from the CTA images.

Our framework is aimed at addressing the high computa-
tional cost in the multi-atlas based approach while improving
its robustness and accuracy for large scale contrast enhanced
cardiac CTA imaging applications. The main contributions of
this work are as follows:
• We present a comprehensive strategy to simultaneously
segment 17 independent cardiovascular and intratho-
racic structures at once.

• Wepropose a robust and rapid atlas selection scheme and
an enhanced label fusion scheme to improve the speed
and accuracy of multi-atlas registration.

• We incorporate a corrective segmentation process to
further increase the final segmentation accuracy.

Our methods are implemented in a multi-threading architec-
ture to increase computational efficiency. We evaluate the
proposed method on a large clinical dataset and compare the
results with a manual reference standard as well as conven-
tional multi-atlas segmentation.

II. PREVIOUS WORK
Several papers have summarized various automatic 3D car-
diac segmentation methods across multimodality medical
imaging. Kang et al. [2] and Zhuang [3] reviewed some early
works on the whole heart segmentation. A recent comparison
of 10 methods participated in MICCAI-STACOM challenge
2017 was summarized by Zhuang et al.[4]. Among these
techniques, atlas-based approaches have been widely used to
segment numerous cardiac structures [5]–[19]. More recent
works also incorporate deep learning-based approaches for
automatic cardiac segmentation [20]–[24].

In a literature survey, most of the previous works only seg-
mented a limited number of cardiac structures. Table 1 sum-
maries various cardiovascular and intrathoracic structures
explored by these prior developments. For the WH seg-
mentation, Funka-Lea et al. [25] proposed a graph-cuts
method, Zheng et al. [26] presented a marginal space learn-
ing method, and van Rikxoort et al. [5] proposed a multi-
atlas based segmentation technique. Likewise, Jolly [27]
proposed a graph-cuts and EM-based method to segment
the LV, Karim et al. [17] segmented the LA, Yang et al. [8]
segmented the LV and LVM, and Tobon et al. [9] segmented
the LA and PA only.

Several other works have attempted to segment
more cardiovascular structures. Zheng et al. [28] and
Baskaran et al. [24] segmented the four chambers and the
LVM. In Zuluaga et al. [7] and Lu et al.’s [14] works, the four
chambers, LVM, and AA were segmented. Cai et al. [29]
also segmented above six cardiac structures using a Gaus-
sian filter-based method. Kirişli et al. [6] segmented those
six cardiac structures plus the WH region. In the works
by Yang et al.[15], Yang et al.[20], and Payer et al.[21],
the four chambers, LVM, AA and PA were segmented.
Ecabert et al. [30] presented an active shape model to extract
above seven cardiac structures. Zhuang et al. [10] segmented
those seven cardiac structures plus the DA. A more compre-
hensive coverage was shown in Zhou et al.’s [12] work for
segmenting 15 structures, and in Katouzian et al. [16] and
Wang et al. [18] for 16 structures. However, these works split
the PA into left and right trunks, and the AA into aortic arch
and root as separate structures.

Some works have focused on segmenting different car-
diac structures from non-contrast enhanced CT images.
They aimed to assist thoracic radiation treatment plan-
ning [12], [19] and coronary calcium scoring [13]. As cardiac
structures are not clearly distinguishable in these non-contrast
CT applications, Zhou et al. [12] and Shahzad et al. [13]
used the atlas based approach by registering the non-contrast
enhanced CT with contrast enhanced CT images of the
same patients, and then transformed the cardiac struc-
ture labels from the contrast enhanced images to the
non-contrast enhanced dataset for cardiac segmentation.Mor-
ris et al.’s [19] work was also based on the multi-atlas
approach, but it registered non-contrast enhanced CT and
magnetic resonance (MR) images of the same patient, with
various cardiac structures manually labelled on the MR
dataset. Heinrich et al. [31] applied a random walk algorithm
to the results produced by the multi-atlas segmentation. How-
ever, their work was applied to cardiacMR images to segment
seven cardiac structures.

III. METHODOLOGY
Multi-atlas segmentation is one of the most widely used
image segmentation techniques in biomedical imaging appli-
cations [32]. It is an extension of the atlas-based segmenta-
tion approach that leverages the spatial information between
a given target image and an atlas image via a deformable
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TABLE 1. Summary of automatic cardiac CTA image segmentation of various structures from previously published literatures.

FIGURE 1. Flow diagram of the proposed combined multi-atlas and corrective segmentation (CMACS)
framework for fully automatic multi-structure cardiac CTA image segmentation.

registration strategy. An atlas consists of a pair of data,
an image and an associated label, in which the label contains
pre-delineated regions of interest of the image which can be
propagated to the target image space through a non-linear
transformation as obtained from a pairwise non-rigid registra-
tion of the target and atlas images. Compared to a single-atlas
segmentation, multi-atlas segmentation maintains a higher
flexibility by retaining anatomical variations among a library
of atlas datasets to improve the segmentation quality.

Our automatic CTA image segmentation method is based
on the multi-atlas approach and aimed to improve such
method. Fig. 1 shows the flow diagram of our fully automatic

processing pipeline: a combined multi-atlas and corrective
segmentation (CMACS) framework. There are two core
blocks in the processing framework (1) multi-atlas segmen-
tation and (2) corrective segmentation, that will be described
in the following sections.

A. MULTI-ATLAS SEGMENTATION
The multi-atlas segmentation (MAS) block includes a
sequence of steps to improve the common multi-atlas based
methods. First, we establish an atlas library consisting of
a collection of pre-labeled CTA dataset that covers a wide
range of heart sizes. Each atlas contains 12 annotated labels
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representing different cardiovascular structures of interest
that are to be transformed to the target image space after
the image registration. These labels include seven cardiac
structures: LV, LA, RV, RA, LVM, LAA, AA; as well as four
associated vascular structures including SVC, IVC, PA, and
PV all of which carry blood to or from the heart. Addition-
ally, a WH label is delineated to encompass the entire heart
volume including the four chambers, LVM, LAA, AA, and
the surrounding pericardium.

Next, we propose a strategy to rapidly select an optimal set
of atlases from the library by matching structural similarities
between the target and each atlas images. This step effectively
reduces the overall computational time by registering only the
selected atlases instead of the entire atlas dataset with the
target image. To further improve the computational speed,
the image registration was implemented in a multi-threading
scheme to register all selected atlases simultaneously. After
the multi-atlas registration, an enhanced label fusion scheme
is proposed to merge these transformed atlas labels into a
target label. The following subsections will describe each step
in more details.

1) ATLAS SELECTION
The first step in the MAS block is to find a subset of atlas
images that are best matched in anatomical or structural simi-
larity with the target image. This step is aimed to 1) reduce the
computational time and 2) improve registration performance
by registering only those best matching atlas images to the
target image.

We use a structural similarity index (SSI) calculated
between each atlas and the target images to find the best
matched atlases. This index was originally proposed to evalu-
ate the perceptual quality of image compression schemeswith
an application to natural images [33]. It is highly indicative
for summarizing the conformity between a target image and a
reference image by taking luminance, contrast, and structure
similarity into account. We use a cubical patch size of 7× 7×
7 voxels to compute the SSI for each voxel between the target
image X and the atlas image Y to generate an SSI map. Each
pair of the target and atlas images are aligned to their volume
center before computing the SSI map.

Equation (1) shows the function of SSI computed in each
patch. Here µx, µy, σx, σy, σ xy are the local mean, variance,
and covariance within the local 3D patch x of image X and
y of image Y . A symmetric Gaussian weighting function
w = {ωi |i = 1, 2, . . . ,N } with standard deviation of 1.5,
normalized to unit sum

(∑N
i=1 ωi = 1

)
, is used to obtain the

local statistics.

SSI (X,Y) =

(
2µxµy + c1

) (
2σxy + c2

)(
µ2
x + µ

2
y + c1

) (
σ 2
x + σ

2
y + c2

) (1)

µx =
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i=1

ωixi; σ 2
x =

N∑
i=1

ωi (xi − µx)2 (2)

σxy =

N∑
i=1

ωi (xi − µx)
(
yi − µy

)
(3)

c = max (x, y)−min (x, y) (4)

c1 and c2 equal (0.01× c)2, (0.03× c)2, respectively.
They are constant terms used to avoid instability from divid-
ing by zero. Note that SSI equals 1 for a perfect match and
equals -1 for a complete divergency between two regions.
Finally, a mean SSI, as described in (5), is calculated to
represent the overall similarity between two image volumesX
and Y. Here, xj, yj are local patches andM is the total number
of patches.

Similarity score = mean SSI (X ,Y ) =
1
M

M∑
j=1

SSI
(
xj, yj

)
(5)

In our framework, the five atlas images with the highest
mean SSI scores are selected for the multi-atlas registration
during the next step. A multi-threading scheme is used to
compute the SSI from all 36 atlases concurrently.

In a previous work [34], the luminance and contrast terms
in the SSI was exploited to reduce the label fusion computing
time in brain segmentation, but the SSI was not used for opti-
mal atlas selection. In contrast, Yang et al. [15] used mutual
information for atlas selection in their cardiac MAS method.

2) ATLAS REGISTRATION
Image registration is an essential step to determine the spa-
tial correspondence between the target and the atlas images.
A pairwise atlas-to-target deformable image registration is
performed to obtain a non-linear transformation to warp the
atlas label into the target image space. A multi-threading
scheme is implemented to register the five selected atlas
images to the target image concurrently.

Deformable image registration poses a highly non-convex
optimization problem which is prone to local minima. Dis-
crete optimization overcomes these limitations as it does not
require a derivative of the cost function as used in continuous
optimization. We apply an efficient 3D discrete deformable
registration developed by Heinrich et al. [35]–[37] that uses
a Markov Random Field (MRF) objective function C :

C (f ) =
∑
p∈P

D
(
fp
)
+ α

∑
(p,q)∈E

R
(
fp, fq

)
(6)

P is a set of nodes p ∈ P that constitute a graph. Each
node corresponds to a control point in a uniform B-spline
grid with a spatial location xp and a set of 3D displacements
fp = up =

{
up, vp,wp

}
between the target X and the atlas

Y images. The objective function has two terms: a unary cost
D
(
fp
)
and a pair-wise regularization cost R

(
fp, fq

)
.

The unary cost D
(
fp
)
measures the similarity of the voxels

around a control point p in the image X and the voxels
around that control point , displaced by up, in the image
Y based on the sum of absolute differences [35]. The simi-
larity is estimated based on patch-based self-similarity con-
text (SSC) [36], [37]. SSC is described by a sum of squared
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differences between image patches within an image with a
noise estimate σ 2. For a patch x in image X , the SSC is given
by:

SSCX (x, y) = e

(
−
SSD(x,y)
σ2

)
x, y ∈ N (7)

where y defines the corresponding patch within a neighbor-
hood N in image Y , and N contains six connected voxels
around x. Thus, the unary cost is given by:

D
(
fp
)
=

1
|N|

∑
y∈N

∣∣SSCX
(
xp + y

)
−SSCY

(
xp+up + y

)∣∣ (8)

The pair-wise cost R
(
fp, fq

)
regularized the displacement

of the neighboring control points q that are directly connected
to p with p, q ∈ ε where ε is a set of neighboring node pairs.
It is given by squared differences:

R
(
fp, fq

)
=

∥∥up − uq∥∥2∥∥xp − xq∥∥ (9)

This MRF-based optimization problem is solved using
message passing on a minimum spanning tree for computa-
tional efficiency [35]. For each node p, the cost Cp of the best
displacement fq of its parent q is given by:

Cp
(
fq
)
= argmin

fp

(
D
(
fp
)
+ αR

(
fp, fq

)
+

∑
c

Cc
(
fp
))

(10)

α is weighting parameter that equals 1.6 in our framework.
c are the children nodes of p. For leaf nodes, only the first two
terms in (10) is calculated as it has no children nodes [35].

3) LABEL FUSION
After the multi-atlas registration, the label in each selected
atlas is warped to the target image space using the corre-
sponding transformation matrix. The next step is to fuse these
transformed atlas labels into a consensus target label. This
process improves the segmentation accuracy by eliminating
false positive voxel from individually transformed atlas label.
A common approach for label fusion is based on majority
voting [38] that ranks each voxel by the frequency it appears
in all transformed labels and then produces the final target
label from the voxels that retain the most counts.

However, this approach does not consider the underlying
voxel-to-voxel similarity of the target and the transformed
atlas images which may possess large discrepancies due to
mis-registration. Several studies exploited the voxel-to-voxel
relationship between the warped atlas and the target images
to boost the performance [5], [10], [39], [40], [41].

Here we propose a simple technique based on structural
similarity of each image pair to improve this step. First, an SSI
map as described in (1) is computed between the target and
eachwarped atlas images. Voxels within the transformed atlas
labels will be re-indexed as the background if they have neg-
ative SSI values. This process effectively removes the voxels
with low similarity between the target and the warped atlas
images. Next, the voxels in the transformed atlas label that

have an intensity value less than -400 Hounsfield Unit (HU)
in the target image are also re-indexed as the background, as
they represent the air spaces in the lung. Lastly, the majority
voting is used to combine the transformed and processed atlas
labels into a single target label.

B. CORRECTIVE SEGMENTATION
The corrective segmentation (CS) block is designed to
1) refine the cardiovascular labels generated from the MAS
processing block, and 2) separate the intrathoracic structures
surrounding the heart. The first step is to identify non-cardiac
structures in the CTA image and classify them into differ-
ent regions including lung, CW, liver, spine, and DA. This
is based on our previous work [1] to automatically extract
seed voxels representing these five structures. The additional
segmentation of the non-cardiac structures in this process-
ing block is aimed at improving the segmentation of the
cardiac structures. The next step is to combine these five
non-cardiac structures with those 12 cardiovascular struc-
tures from the previous MAS processing block for a joint
17-structure labels. The voxels in these labels then serve as
the seeds to run through a random walk algorithm to improve
the segmentation for each structure. The final segmentation is
obtained by additional post-processing refinement steps. The
following subsections provide more details for each step in
the CS block.

1) MULTI-STRUCTURE SEEDING
A modified version of our previous work [1] is used to
extract the best representative seed voxels (seeding) for these
intrathoracic structures. The first step is to detect poten-
tial lung regions based on an intensity window between
−1000 and −400 HU as the lung contains air and some soft
tissues. For each binarized region, its major-axis length is
measured. The regions with the maximum length are selected
as the lung seed voxels. Next is to find the chest wall region
by locating the top-most boundary points from the previously
detected lung and the whole heart regions. A surface fit is
performed on these points using a linear radial basis function
to separate the lower (mediastinum) and the upper (chest
wall) regions. The upper region is further processed to retain
voxels with greater than zero HU as the chest wall seed
voxels.

The next step is to define the whole heart region based on
the cardiac labels obtained from the previous MAS block.
Here the bright voxels in LV and LA labels and intermediate
enhanced RV, RA, and LVM voxels are merged with the AA
and LAA labels into one region to represent the whole heart
seed voxels. Next is to detect descending aorta and spine
tissues by locating the region outside the lower part of the
whole heart and the lung regions. Voxels with intensity values
lower than zero HU are removed, and then a morphological
erosion is used to process the region. The largest connected
region is selected as the seed voxels for the descending aorta
and spine joined region.
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The last step is to detect the liver tissues by merging all
regions detected from the previous stages and then analyzing
the remaining regions in the image. A series of intensity
thresholding and morphological operations are used to esti-
mate potential liver regions.

2) CARDIAC STRUCTURE SEEDING
This processing stage is aimed at extracting representative
seed voxels from the 12 cardiovascular regions obtained
from the previous MAS processing block. Before the seed
selection, the following preprocessing steps are applied to
each region except for the LVM region. An intensity window
between one standard deviation above and below the median
HU is used to extract intermediate intensity voxels, followed
by a morphological closing at each region.

In the subsequent steps, six cardiac regions are sequentially
processed in the order of LV, AA, RV, LVM, LA, and RA to
extract corresponding seed voxels. These processes are based
on domain knowledge of cardiac anatomy, analyses of voxel
intensity, distance, connected region size, and mathematical
morphology operations.

For example, HU values in AA, LV, LA are typically higher
than RV, RA, LVM in contrast enhanced CTA study and
can thus be used to remove misclassified voxels. Distance
analysis is also useful to rule out misclassified voxels among
different structures. For instance, a 3D convex hull analysis
is used to include papillary muscle in the initial LV region;
candidate voxels that are within 10 mm distance to the RV
are removed. Such distance threshold is derived from the
thickness of ventricular septum that separates the LV and RV.

Similarly, for the RV seeding, a distance measure is calcu-
lated for each voxel in the initial RV region. Voxels less than
10 mm to the LV, or 2 mm to the AA, or 4 mm to the CW are
removed. For the LVM seeding, voxels that are 2mm adjacent
to RV, or 4 mm adjacent to the LA, or 4 mm to the CW are
removed. For the LA seeding, voxels that are 4 mm and 2 mm
adjacent to the DA or AA are removed. For the RA seeding,
voxels that are 2 mm adjacent to the AA, or 4 mm adjacent to
the LA are also removed.

The largest connected region is used at each step as these
structures contain one whole component. The other regions
including PA, PV, SVC, IVC, and LAA are used as their
corresponding seeds without further processing.

3) RANDOM WALK SEGMENTATION
Random walk algorithm [42] requires a set of initial seed
voxels to proceed. It is formulated on aweighted graph, where
each node represents a voxel. A graph G = (V ,E) has
the vertices v ∈ V and edges e ∈ E . An edge, e, of two
vertices, vi, vj, is denoted by eij. The weight of edge eij is
denoted wij. The degree of a vertex is di =

∑
w
(
eij
)
. Given

a weighted graph, VM is a set of labeled vertices and VU is a
set of unlabeled vertices. The random walk algorithm labels
each unknown vertex vi ∈ VU with a label yi ∈ Y by
measuring the probability, xi, that this vertex is first reach
the marked vertex vj ∈ VM , i.e., a set of seeds, which has

been assigned to label yi. The segmentation is completed
when each unknown vi is assigned to the label for which it
has the highest probability, i.e., yi = max

(
xsi
)
with s is the

total number of labels in Y . The algorithm solves the Laplace
equation by minimizing the cost function C :

C = xsTi Lvivjx
s
i (11)

T is the transpose operator. Lvivj is the combinatorial Lapla-
cian matrix defined as dvi if i = j. It equals to −wij if vi and
vj are adjacent vertices, and zero otherwise.

A slightly modified 3D version of random walk algo-
rithm [43] is used to regularize the segmentation based on the
seed voxels in different tissue structures as described in sec-
tions III.B.1. and III.B.2. This process is performed on each
seed region in a single-label and multiple-pass fashion. Each
label is processed by indexing seeds in the corresponding
structure as foreground while seeds from all other structures
are marked as background. In addition, a contour of 4 mm
around each target seed region are marked as background
to avoid over segmentation and improve boundary smooth-
ness. To speed up the process, a multi-threading scheme
is implemented to execute multiple random walk processes
simultaneously.

After the randomwalk segmentation, a few post-processing
steps are performed to separate descending aorta and spine
regions. A threshold at 200 HU is used to remove darker
pixels and then following by morphology erosion and con-
nected region analysis. The region with a higher HU standard
deviation is labelled as the spine since it contains mixed
tissues structure such as bone and fluid. The region with a
lower intensity standard deviation is labelled as the DA due
to its more homogeneous HU distribution. Finally, the 3D
surface of each label is processed by a mean filter in the
polar space to smooth the distance of adjacent neighbors to
the volume center and to improve the visualization quality

IV. EXPERIMENTS
A. CLINICAL DATA AND ATLAS ANALYSIS
One hundred twenty clinical CTA scans of patients with sus-
pected coronary artery disease referred to the National Heart,
Lung and Blood Institute between April 2017 and Septem-
ber 2017were retrospectively collected for this study. Patients
with congenital heart defects, cardiac structural abnormali-
ties, or serious arrhythmias were excluded. All CTA exams
were performed under procedures and protocols approved by
the Institutional Review Board of the National Institutes of
Health. Written informed consent was obtained from all sub-
jects prior to participating in the study. There were 73 males
and the average age was 57 ± 12 years. A subset of 36 CTA
studies from the 120 studies were selected as the atlas library.
The selectionwas based on the heart size to assemble a similar
size distribution of the entire dataset (Fig. 2). For each of
these 36 cases, as defined previously in section III.A, 12 car-
diovascular structures were manually delineated by 2 trained
observers using a custom developed interactive image

16192 VOLUME 8, 2020



V. Bui et al.: Simultaneous Multi-Structure Segmentation of the Heart and Peripheral Tissues

FIGURE 2. Histogram of the heart volume size measured in the entire
120 cases and the selected 36 cases of the atlas library.

analysis software and reviewed by experienced cardiologists
to assemble the reference atlas label dataset.

B. CTA IMAGE ACQUISITION AND PROCESSING
All CTA studies were performed on a 320-detector row
scanner (Aquilion One Genesis, Canon Medical Systems)
with 0.5 mm detector collimation, 275 msec gantry rotation
time, 100–120 kVp tube voltage, 200–850 mAs tube current
according to patient’s attenuation profile determined by the
scout image. Contrast material dose was 50–70 mL admin-
istered at a flow rate of 5.0–5.5 mL/sec and adjusted for
patient weight. Prospective ECG-triggered image acquisition
was initiated by a target threshold of 300 HU in the descend-
ing aorta. Images were reconstructed with a matrix size
of 512 × 512 and a field-of-view of 148 to 220 mm, resulting
to a pixel size of 0.29×0.29mm2 to 0.43×0.43mm2. For each
dataset, images were reconstructed at a 5% phase window
around the diastasis in the cardiac cycle. Each study contains
240 to 520 images with a slice thickness of 0.5 mm and
a slice spacing of 0.25 to 0.5 mm. All CTA images were
subsampled to an isotropic voxel size of 1.0× 1.0×1.0 mm3

to improve the symmetrical property of the voxel for 3D
image processing.

All algorithms were implemented in Python (www.python.
org) and Interactive Data Language (Harris Geospatial Solu-
tions). The registration method was developed in C++ by
Heinrich et al. [35] and compiled to dynamic link library
under Microsoft Visual Studio in our framework. All studies
were processed with the same parameter settings on a com-
puter with an Intel Core i9-7980XE 2.6GHz CPU and 128GB
RAM.

C. EVALUATION METHODS
The automatic segmentation results were quantitatively eval-
uated and compared with expert manual segmentation on the
36 atlases reference dataset. Here we assessed eight of the
12 cardiovascular structures including LV, LA, LVM, LAA,
RV, RA,AA, andWH. The other four structures including PA,
PV, SVC, IVC were not assessed quantitatively as they are

TABLE 2. Segmentation quality score classification.

connecting vessels to the heart and do not possess a complete
structure form in the CTA images.

The performance was evaluated using leave-one-out cross
validation in which each study was withheld in turn for
validation while the remaining 35 studies were used as the
atlas library for the automatic segmentation. Segmentation
quality was evaluated using a Dice coefficient, 3D Hausdorff
distance (HD) and mean surface distance (MSD). Summary
statistics are expressed as the median and 95% confidence
interval due to non-normally distributed data. The volume
size (mL) of each cardiac structure obtained from the two
segmentations was compared using Spearman rank-order
correlation coefficient and nonparametric Mann-Whitney
rank test. A p-value >0.05 indicated a statistically non-
significant (NS) difference.

To compare the performance of our proposed framework
against conventional multi-atlas segmentation, we imple-
mented a baseline multi-atlas segmentation (bMAS) which
consisted of the same optimal atlas selection and multi-atlas
registration steps, but with a conventional label fusion based
on majority voting and without the CS processing block. The
results of bMAS were also compared against the reference
manual segmentation using the same leave-one-out cross val-
idation from those 36 reference datasets.

For the entire 120 studies, evaluation of the automatic seg-
mentation was performed qualitatively by three cardiologists
visually inspecting each automatically segmented cardiac
structure in the images. The criterion of qualitative evaluation
was based on a five-point rating score, as described in Table 2.

On the assessment of multi-structure segmentation for all
17 cardiovascular and intrathoracic structures, the HU dis-
tributions for each structure was computed to quantify the
range (variability) of HU values for specific tissues and the
extent of their HU value overlap with spatially adjacent tis-
sues. The HU values at the 25th, 50th, and 75th percentiles for
each structure’s distribution were calculated. Furthermore,
the percentile difference which describes the width of the
HU distribution, and the interpatient HU variability which
is expressed as the standard deviation of median HU values,
were computed to characterize different tissue types.

V. RESULTS
The proposed automatic multi-structure cardiac CTA image
segmentation framework successfully processed the entire
dataset without exclusion. The data in our study cover a wide
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FIGURE 3. Comparison of different segmentation: single-atlas segmentation (SAS) based on the minimum and maximum structure
similarity index (SSI) matched atlases; baseline multi-atlas segmentation (bMAS) and the proposed combined multi-atlas and
corrective segmentation (CMACS) based on the five highest SSI matched atlases; and the reference manual segmentation for the
12 cardiac structures. Color labels:

range of heart size. The average whole heart volume size
was 826 ± 184 mL, with a minimum size of 471 mL and
a maximum size of 1524 mL. The computational time to
process a CTA image volume averaged 2.79 ± 0.59 minutes.

A. CARDIAC STRUCTURE SEGMENTATION
1) SEGMENTATION COMPARISONS
In Fig. 3, the results of our CMACS framework versus
conventional atlas based segmentation are compared for
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FIGURE 4. Comparison of automatic versus manual segmentation on three cases with the minimum, median, and maximum
averaged Dice indices. Detailed color overlay comparisons for each structure and animated cross-sectional results of the automatic
segmentation can also be viewed in the supplementary files.

TABLE 3. Performance evaluation of the baseline MAS (bMAS) method vs. the proposed CMACS framework.

qualitative assessment. To demonstrate the effectiveness
of atlas selection using the proposed SSI, results of
single-atlas segmentation based on the atlas images with the

minimum vs. maximummean SSI scores of the 36 matchings
were displayed. The segmentation quality is considerably
better by using the atlas with the maximum SSI score than
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TABLE 4. Comparison of the proposed segmentation versus the manual segmentation for measuring different cardiac structure sizes.

the one with the minimum SSI score in this single-atlas based
comparison.

For multi-atlas based comparison, we performed base-
line multi-atlas segmentation (bMAS) as mentioned in the
section IV.C. It is evident that bMAS based on the best
matched five atlas images with majority voting label fusion
further improves the results compared to the single-atlas
based approaches. Finally, the results of the proposed
CMACS framework produced considerably better labels
than the bMAS and single-atlas methods. They appear to
be closest to the reference manual segmentation as shown
in Fig. 3.

2) QUANTITATIVE EVALUATIONS
For the results of leave-one-out validation based on the 36
atlases dataset, Fig. 4 shows three cases with the maximum,
median, and minimum averaged Dice indices between the
proposed CMACS and manual segmentations. The results
of our automatic segmentation can also be viewed in the
supplementary video files for volumetric evaluation. Overall,
our automatic segmentation showswell-maintained results on
all cases and even on the one with the lowest Dice index.

Table 3 summarizes the quantitative comparisons of eight
cardiac structures segmented by the bMAS method and the
CMACS framework against the manual reference standard.
Our framework achieved better results than the bMAS for
each of the eight structures in all Dice, HD, and MSD indices
compared. The Dice results of CMACS are significantly
better than bMAS with p<0.001 for all structures compared.
For the HD index, the CMACS results also are significantly
better than the bMAS results with p<0.05 for LVM, LAA,
AA, and WH structures, but are not significantly different for
LV, LA, RV, and RA structures. Lastly, the MSD results of
CMACS are significantly better than the bMAS results with
p<0.05 for all structures except RA. Overall, these results
indicate that the enhanced label fusion and corrective seg-
mentation block included in our pipeline processing method
consistently improves the performance of conventional multi-
atlas segmentation method.

Fig. 5 illustrates 3D volume size comparisons, showing
the correlation plots between our automatic results against
the manual segmentation among the eight cardiac structures.
There was excellent relationship between automatic andman-
ual segmentations in all cardiac structures, with correlation
coefficients of 0.99 for LV, 0.97 for LA, 0.97 for LVM,

0.82 for LAA, 0.94 for RV, 0.92 for RA, 0.97 for AA, and
0.98 for WH. Table 4 summaries the size of various car-
diac structures measured by the automatic versus the manual
segmentations. The Mann-Whitney test indicates there was
no significant difference in size between the automatic and
expert segmentations for all structure compared (all p=NS).

3) QUALITATIVE EVALUATIONS
In addition to the quantitative evaluation, our automatic
segmentation results were also qualitatively assessed by
expert cardiologists for the entire 120 CTA studies. All
automatic segmentation results were compiled into animated
cross-sectional images in the same format as the included
supplementary video files for visual inspections. Based on the
quality scores as classified in Table 2 for visual assessment,
our automatic segmentation results obtained an excellent
overall score of 1 for all cardiac structures evaluated.

For individual cardiac structure visual assessment, less
than 3% of the cases included one or more of the following
conditions: the RA segmentation slightly extended into the
RV or included the right coronary artery, the RV segmentation
slightly extended into the PA, the LA segmentation slightly
extended into the PV, the LV segmentation slightly extended
into the LA, the LAA segmentation included small portions
of the left circumflex coronary artery or the LA, the AA
segmentation slightly extended into the left or right coronary
artery. Additionally, less than 10% of the cases had slight
contamination in theWH region that included minor amounts
of liver tissues. However, these segmentation flaws were
generally limited within small areas and did not yield large
percentage errors.

B. MULTI-STRUCTURE SEGMENTATION
In addition to cardiac structures, our CMACS frame-
work also performs automatic segmentation of intrathoracic
non-cardiac structures in the CTA images. Fig. 6 shows an
example of our automatic pipeline segmenting all 17 car-
diovascular and intrathoracic structures. Detailed animated
cross-sectional images can also be viewed in the supple-
mentary video files for volumetric evaluation of our multi-
structure segmentation.

To assess our multi-structure segmentation for charac-
terizing different tissues, Table 5 and Fig. 7 summarize
the ranges of the HU values among all 17 structures from
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FIGURE 5. The correlation analyses of cardiac structures between the proposed automatic and manual segmentation. (R: Spearman correlation value).

FIGURE 6. Example of the proposed CMACS framework of all 17 cardiovascular and intrathoracic structures.
Top row shows the 3D rendered display of the raw CTA image and the segmented structures. Bottom row
shows 2D cross-sectional images and labels. Detailed animated cross-sectional results of the automatic
segmentation can also be viewed in the supplementary video files. Color labels:

our automatic segmentation across the entire 120 cases.
In the group comparisons, there were several blood
containing structures such as the LV, LA, LAA, AA,

PV, and DA that had significantly higher HU values
(all median HU> 500) than other blood containing structures
such as the LVM, RV, RA, SVC, IVC, and PA (all median
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TABLE 5. Statistics of the hounsfield unit (HU) distributions for 17
structures across 120 CTA scans from the proposed method.

HU < 200) that were less-enhanced (all p<0.05). However,
all of the 12 blood containing structures had significantly
higher HU values than the liver that showed a typical HU
range for non-contrast enhanced soft tissues (all p<0.05).
Among those six high-contrast enhanced structures, there was
a large degree of overlap in the HU ranges as shown in Fig. 7.
A similar extent of overlap was also observed among the six
less-enhanced structures. This overlap of HU distributions
among spatially adjacent cardiac structures makes the seg-
mentation of different structures surrounding and within the
heart based on the HU values alone a challenging task.

For the interpatient variability comparison of different
tissue structures, Table 5 shows the high-contrast enhanced
blood containing tissues of the LV, LA, LAA, AA, PV, and
DA also had a higher interpatient variability (all > 100 HU)
than other structures that were less enhanced. For the com-
parison of percentile differences between 25% and 75% of
the HU distributions, the largest difference was observed
in the WH region as it combined both high-contrast and
less-contrast enhanced tissues. The spine region also had a
high percentile difference as this structure is comprised of
bone, soft tissue, and cerebrospinal fluid.

VI. DISCUSSIONS
We present a fully automatic image processing system to
segment the heart and its peripheral structures in con-
trast enhanced cardiac CTA images. The proposed frame-
work facilitates a combined multi-atlas and corrective

segmentation approach that outperforms conventional atlas-
based segmentation in our quantitative comparisons. The
qualitative assessment performed by expert cardiologists also
showed our automatic segmentation attained an excellent
quality score for all cardiac structures evaluated in this study.

In the literature, most studies performed quantitative eval-
uation based on Dice, HD, and MSD indices for various
cardiac structure segmentation; Kirişli and colleagues also
included qualitative assessment [6]. To compare the methods
that required less than five minutes processing time, an MSD
of 1.57 mm [28], 0.98 mm [30], and 2.2 to 8.6 mm [20] were
reported. A Dice index from 0.77 to 0.90 [16], from 0.78 to
0.94 [20], from 0.84 to 0.93 [21], and from 0.67 to 0.96 [23]
were also described. In a recent MICCAI-STACOM chal-
lenge [4], a Dice range from 0.81 to 0.91, an HD range from
25.2 to 55.4 mm, and an MSD range from 1.11 to 4.20 mm
were summarized from the comparison of ten cardiac CTA
segmentation algorithms. Comparatively, our method showed
an excellent Dice score from 0.91 to 0.96 on most cardiac
structures, except for the LVMand LAA.Our distance indices
were also comparable with other groups, with an MSD from
0.71 to 1.46 mm and an HD from 4.58 to 13.0 mm. The HD
in our results is noticeably better than those reported in [4].

On comparing the computational speed for differ-
ent multi-atlas methods for automatic CTA segmenta-
tion, whereas some groups [8], [9], [14], [17], [29] did
not report the computational time, those groups that
did [5]–[7], [10], [12], [15], [18] required a much longer pro-
cessing time (greater than five minutes) than our method (less
than three minutes). The processing voxel size is unsurpris-
ingly one of the key factors influencing the overall segmenta-
tion time. A recent study [18] reported a computational time
of greater than three hours using an isotropic 1.5 mm3 voxel
size, or greater than one hour using an isotropic 2.0 mm3

voxel size for processing. Their segmentation time can be
reduced to less than 30 minutes if performed under a larger
voxel size, e.g. 3 mm3 or greater. Advantageously, our pro-
posed CMACS pipeline framework requires less than three
minutes using a 2 mm3 voxel size in the MAS processing
block and 1 mm3 voxel size in the CS processing block.
In contrast, deep neural network methods were considerably
faster than the existing multi atlas-based methods and gener-
ally require less than twominutes for the inference processing
time [20], [21].

In a recent work [4], the advantages and potential lim-
itations of multi-atlas and deep-learning based approaches
for cardiac CTA segmentation were compared and discussed.
Eight out of the ten methods benchmarked in the study were
based on deep neural networks whereas the other two were
multi-atlas based. One possible reason that the multi-atlas
approach is less prevalent is due to its longer processing
time of greater than 20 minutes. However, deep-learning
approaches showed large interquartile ranges and outliers in
Dice compared to the multi-atlas methods, and they require
large amounts of annotated training data in order to produce
good results.
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FIGURE 7. Summary of the Hounsfield unit (HU) ranges for all 17 cardiovascular and intrathoracic structures
labelled from the proposed automatic segmentation of 120 CTA studies.

Furthermore, unlike some poor quality examples in [4] that
displayed an incomplete heart shape, our segmentation pro-
duced a realistic heart shape in all 120 cases that were tested.
The Fig. 4 example demonstrates that our segmentation looks
well-maintained even for the case with the minimum overall
Dice score.

Overall, our proposed method could generate more sta-
ble segmentation results compared to deep-learning based
approaches. Our results were also competitive in terms of
mean accuracies and computation efficiency compared to
conventional multi-atlas based approaches.

In our summary assessment of multi-structure segmenta-
tion for different tissue characterization, we observed two
groups of HU distributions that categorize 12 blood con-
taining cardiovascular structures into high-contrast (LV, LA,
LAA, AA, PV, and DA) versus less-contrast (LVM, RV, RA,
SVC, IVC, and PA) enhanced tissues. Such a large discrep-
ancy in HU values among anatomically adjacent structures
is primarily due to our contrast administration and scan tim-
ing protocol that uses a bolus tracking technique to trigger
the scan when the contrast bolus arrives in the descending
aorta. Our automatic framework can thus be a useful quality
assurance tool to measure optimal contrast enhancement in

routine CTA scans. This multi-structure segmentation feature
may also be useful to differentiate HU characteristics in
muscle, liver, and cancer tissues, or to assess interpatient
HU discrepancies [44]. Moreover, this automatic segmen-
tation feature can also be used for computer-based image
context-driven annotation of cardiac CTA image dataset, such
as a similar work performed on abdominal CT for multi-label
image annotation [45].

The HU ranges for different structures measured in our
study may be compared to a contrast enhanced thoracic
CT study that characterized the HU distribution of various
intrathoracic structures through manual planimetry [44]. For
the common structures that were labelled in both studies,
their results showed lower HU values for those high-contrast
enhanced structures than ours. Their median HU values for
the AA and DA regions were only 246 and 236, versus
568 and 503 in ours. On the other hand, our study had
lower HU values for the structures that are less-enhanced.
Our median HU values for the PA, IVC, and liver regions
were 155, 68, and 46, versus 218, 129, and 92 in theirs. For
the whole heart region, their median HU was 169; whereas
ours was 115. These differences in HU ranges can likely
be explained by different imaging protocols, contrast timing
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and doses administered, e.g. continuous slow infusion versus
first-pass bolus injection, between their thoracic CT and our
cardiac CTA studies.

Our study has some limitations: It used retrospectively col-
lected data from a single center and single vendor. The dataset
represents only a single-phase (75% time point) of the cardiac
cycle. No inter- or intra-operator analysis was evaluated on
the atlas dataset. The segmentation results for intrathoracic
structures were not evaluated against a reference standard as
they were not the primary aim of this study. Our work did not
evaluate patients with congenital heart defects such as single
ventricle, atrial and ventricle septal defects, or other abnormal
cardiac structures. A future study including different scan-
ner vendors and imaging protocols, or a direct comparison
with various techniques such as in MICCAI challenge [4],
is needed to fully evaluate the proposed method under differ-
ent clinical settings.

VII. CONCLUSION
In this paper, a novel automatic segmentation framework
for contrast enhanced cardiac CTA images has been intro-
duced. It incorporates a combined multi-atlas and corrective
segmentation approach to improve conventional atlas-based
segmentation. Our results have shown the proposed frame-
work produced significant improvement over conventional
multi-atlas segmentation, a strong agreement with expert
manual labeling, and a high segmentation quality score in
all cardiac structures assessed. We demonstrated the pro-
posed framework can reliably segment 17 cardiovascular and
intrathoracic structures from cardiac CTA images and provide
high-quality results that are more consistent and faster than
manual labeling. This automatic system may assist clinicians
by more easily and rapidly integrating quantitative size and
morphology evaluation into routine clinical practices.
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