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ABSTRACT In this article, the problem of robust recursive estimation is studied for a class of uncertain
systems with delayed measurements and delayed noises. The system model is subject to stochastic uncer-
tainties which can be described by multiplicative noises. The phenomenon of delayed measurements occurs
in a random way and the delay rate is characterised by a binary switch sequence with known probability
distribution. The process noise and the measurement noise are both deterministic delay. By combining
the noise at present time and the delayed noise into a whole one, the original system is transformed
into an auxiliary stochastic uncertain system with discrete autocorrelated noises across time. Then, based
on the orthogonal projection theorem and an innovation analysis approach, the desired robust recursive
estimators including robust recursive filter, robust recursive predictor and robust recursive smoother are
derived. A numerical simulation example is exploited to show the effectiveness of the proposed approaches.

INDEX TERMS Robust recursive estimation, delayed noise, delayed measurements, discrete autocorrelated

noise, stochastic uncertainty.

I. INTRODUCTION

In the past decades, the estimation theory and design tech-
niques have received considerable attention due to extensive
application backgrounds ranging from aerospace systems,
navigation, target tracking, communication systems, signal
processing, and elsewhere [1]-[6]. The traditional Kalman
filter is a basic and classical state-space estimator, since its
inception in the early 1960s, it has attracted a great deal
of attention for its simple structure and good performance.
However, the good performance of the traditional Kalman
filter is based on the assumption that the system structure and
parameter are exactly known. Unfortunately, the uncertainty
of system model is inevitable due to the complexity of the
system model and the limitations of human comprehension.
There are a variety of ways to describe the model uncertain-
ties, such as the norm-bounded uncertainty [7]-[9], polytopic
uncertainty [8], [10], stochastic uncertainty [9], [11]-[13]
and so on. In general, the norm-bounded uncertainty and
polytopic uncertainty are treated by the inequality theory
and extreme value theory. For example, the iterative robust
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filtering problem is investigated for a certain ground target
tracking system, where the norm-bounded system param-
eter uncertainty and input uncertainty are solved by the
min-max game theory [14]. In [10], a robust I, — I filter
is designed for switched linear discrete time-delay systems
with polytopic uncertainties, and the existence conditions
for such a filter is formulated in terms of a set of linear
matrix inequalities. The stochastic uncertainties are com-
monly encountered in image processing systems, commu-
nication systems and navigation systems, and are usually
modeled by multiplicative noises. Different from the additive
noises, the multiplicative noises are dependent on the system
state, therefore, the second-order statistical properties of the
multiplicative noises are usually unknown and this property
leads to more difficulties in the designing of the desired
estimators. Up to now, a great deal of efforts have been
delivered to deal with the control and estimation problems for
systems with multiplicative noises, including Riccati euqa-
tion approach [15], [16], linear matrix inequality [17] and
innovation analysis approach [9], [12], [13], etc.

Most traditional estimation theories are based on the
assumption that the measured data can be obtained in real
time. However, this assumption is not realistic in many
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engineering applications. For example, in photoelectric target
tracking systems, the time delay of the TV distance missing
is unavoidable due to the processing of the photoelectric con-
version, signal processing, data acquisition and transmission.
On the other hand, with the development of the network
technology, the networked control systems have been applied
extensively in a lot of professions for its advantages of lows
cost, great mobility and intelligence. Everything has two
sides, when we enjoy the convenience brought by the net-
work, we also have to bear the network-induced time delay.
Therefore, the estimation and control problem for systems
subject to delayed measurements is a hot research topic and
a larger number of literature has been reported in recent
years, see e.g. [11], [18]-[36]. To be specific, the problem
of recursive estimation for descriptor systems with differ-
ent delay rates have been investigated in [31], where the
recursive filter, recursive predictor and recursive smoother
are derived by using the singular value decomposition and
the orthogonal projection theorem. The linear unbiased state
estimation problem for one-step random sampling delay has
been studied in [28], [29]. However, the estimators designed
in [28], [29] are suboptimal since a colored noise due to
augmentation has been treated as a white noise. Least-square
linear filtering using observations coming from multiple sen-
sors with one- or two-step random delay has also been inves-
tigated in [24], where the algorithm uses only the covariance
functions of the processes involved in the observation equa-
tion of each sensor and the delay probabilities. The estima-
tion problem for multistep time delay has also been studied
in [18], [32].

It should be noted that, the past solutions to the problem
of time delay mainly focus on the state time delay and mea-
surement time delay. The cases with time delay in the noise,
however, are seldom discussed. The delayed noises can be
found in several research fields including biology, engineer-
ing, economics, net control systems, etc [37], [38]. In addi-
tion, the delayed noises may appear in the feedback back
cases, such as, in systems with delays in the controls when-
ever the control action is corrupted by an additive “‘white
noise”’ [37], [38]. The traditional method to deal with the
delayed noises is through the state augmentation. However,
the state augmentation will increase the system dimensions
and result in expensive computational cost, especially when
the time delay is large. Recently, Cui et al. [37] presented a
new method to deal with the estimation problem with delayed
noise. Different from the previous works, the new method is
projection formula in Hilbert space rather than state augmen-
tation. However, in reference [37], only the delayed process
noise has been considered and the recursive predictor and
recursive smoother are not designed. Up to now, to the best
of the authors’ knowledge, the robust recursive estimation
problem has not yet been addressed for uncertain systems
with delayed measurements and noises, which still remains
as a challenging research issue.

Motivated by the above analysis, in this paper, we aim
to investigate the robust recursive estimation problem for a
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class of uncertain systems with delayed measurements and
noises, where the system parameters are subject to stochastic
uncertainties which can be described as multiplicative noises.
Without loss of generality, the measurements are assumed
to be one-step time delay and the time delay phenomenon
is described by a binary switching sequence that obeys a
conditional probability distribution. In our current work,
we do not only consider the delayed process noises, we also
consider the delayed measurement noises. By combing the
noise at present and the delayed noise into a whole one,
the original system is transformed into an auxiliary stochastic
uncertain system with discrete autocorrelated noises across
time. Then, the desired robust recursive estimator including
filter, predictor and smoother are obtained via the orthogonal
projection theorem and an innovation analysis approach. The
main contribution of this paper is threefold: 1) the system
model considered is comprehensive that takes into account
the stochastic uncertainties, the randomly delayed measure-
ments and the deterministic delayed process noises and mea-
surement noises; 2) without resorting to state augmenta-
tion, the delayed process noises and measurement noises are
treated by an innovation analysis approach and the orthog-
onal projection theorem; and 3) to the best of the author’s
knowledge, this is the first time that the discrete autocorre-
lated noise across time is studied in the stochastic parameter
uncertain system. A simulation example is exploited to show
the effectiveness of the proposed approaches.

The remainder of the paper is organized as follows.
In Section II, the problem of robust recursive estimation
for a class of uncertain systems with delayed measurements
and noises is formulated. The main results are derived in
Section III. In Section IV, a simulation example is provided to
illustrate the effectiveness of the proposed estimate schemes.
We provide a conclusion in Section V.

Notation: The notation used is standard. The super-
script “T” stands for matrix transposition, R"” denotes the
n-dimensional Euclidean space, R™*" is the set of all real
matrices of dimension m x n, and I and O represent the identity
matrix and zero matrix, respectively. The notation diag(. . .)
stands for block-diagonal matrix. The notation 6;—; is the
Kronecker delta function, which is equal to unity for k = j
and zero for k # j. In addition, £{x} means mathematical
expectation of x and Prob {-} represents the occurrence prob-
ability of the event “- ”. The notation min{a, b} means the
smallest one between a and b. Matrices, if their dimensions
are not explicitly stated, are assumed to be compatible for
algebraic operations.

Il. PROBLEM FORMULATION
Consider the following model parameter uncertain system
with delayed measurements and noises:

Xkl = (Ak +As,k77k> Xk + B1x@k + Bog—1@k—s, (1)

Vi = Cilx + Vi + Vi ()
vk = (1 — A) Yk + Mdr—1, (3)
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where X; € R” is the state of the system to bg estimated,
the initial value xo has mean Xy and covariance Py > 0 and
is uncorrelated with other noise signals. The vector y; € R™
is the output of the sensor, and y; € R is the measurement
received by the estimators. The vectors @; € RY, v, € R™,
and n; € R! are mutually uncorrelated zero-mean Gaussian
white noises with covariances Qk, Rk and I respectively. The
matrices Ak . As,k, B] ko Bz,k —sand Ck are known real matrices
with appropriate dimensions. The known positive integers
t > 1l and h > 1 are the time delay in the process noises
and measurement noises. The variable A, € R! is a binary
switching sequence uncorrelated with other noise signals and
has the statistic properties as follows:

Prob{h, = 1} = E{Ar} = B,
Prob{hy =0} =1—-E{M} =1 - B,

where B, € [0 1]isaknown real time-varying positive scalar
and A is assumed to be uncorrelated with other noise signals.

By defining
_ i Xk . A)k 0 . Ok
= _55/{1]’ _|:In 0]%_[5)/(1]

(Agx 0 Bix Bay-
Asie = |70 O] Bk:[g" 26”]

Cr = [(1 = M)Cr M Crtl,
v(k)
Dy,

T
ST =T =T =T

_Vk Vi—h Vk-1 Vk—l—h] )

[(1 _)\k)lm (1 _Ak)lm )\klm )\klm]» (4)

a compact representation of (1)-(3) can be expressed by:

Xk+1 = ApXk + Ag kX + Brog, 5

Yk = Crxi + Dyvy, (6)

where v and wy are, respectively, the measurement noise and
process noise of the system (5) -(6), and we can see from (4)
that the process noise wy and the measurement noise vy are
zero mean and have the statistic properties Q) ; = =& {wkw }

and R}, Y = E{kaJT} as follows:

Oy = Orbk—j + Ok k—18k—1—j + Ok k+10k+1—
Ry j = Ridk—j + Ric k—18k—1—j + Ri k+18k+1-;
+ Ric k—nOk—h—j + Rk k+hSk-+h—j
+ Ric k—1-h8k—1—h—j + Rkt 1418k +148—j»  (7)

where
Ry = diag (i?k, Ri—n, Ri_1, iék—l—h) ,
Ok dlag(Qk, Ok—1),

Ok k+t = 8 Qk} v Okt = |: *l?_t g] ,
0 0 0 0
o |0 0 0 0
k-l = R 0 o ol
| O Ri_1_p, 0 O

14388

0 0 0 0
Ri_p, O 0 0
Ree-n=1"9""o 0o ol
L 0 0 R O
T 0 000
0 000
Rik—1-n = 0 000"
| Rk—1-, 000
[0 0 0 Ry
0 0 0 0
Ri k4140 = 0o o0 o0 ol
L0 0 0 0
0 0 R, O ]
0 0 0 R
Rikv1 = 0 0 0 koh ,
(0 0 0 0 |
[0 R, O 0
R 1o 0o 0o o0
kkth =1 00 g Re_s
0 0 0 0 |

Remark 1: Tt can be easily seen from (7) that the process
noise wy and the measurement noise v are all autocorrelated
across time. For example, the process noise at time k is
correlated with the process noises at time k — ¢ and k + ¢
with covariances Qi x—; as well as Ok x+:, respectively. The
measurement noise at time k is correlated with the measure-
ment noises attime k — 1, k+ 1,k —h, k+h,k+h+1and
k — h — 1 with covariances Ry x—1, Rk k+1. Rk k—h> Rk k+h»
Ry x—n—1 and Ry gyp+1 respectively. Compared with the cor-
related noises at the same time instant, the autocorrelated
noises across time will lead to more difficulties in the design
of recursive estimators.

Remark 2: Furthermore, it should be pointed that the pro-
cess noise wy and the measurement noise vy are both discrete
autocorrelated noises across time. For example, the pro-
cess noise at time k is correlated with the process noise
at time k — ¢, however, it is not correlated with the process
noisesattime k—1,k—2,...,k—t—2,k—t—1. The mea-
surement noise at time & is correlated with the measurement
noise at time k — 1 and k — A, but, it is not correlated with the
measurement noise attime k—2,k—3,....k—h—3,k—h—2.
In contrast to the continuous autocorrelated noises across
time which has already been widely studied in references [2],
[31, [9], [12], [13], [27], [32], the discrete autocorrelated
noises across time will bring us new challenges.

Remark 3: Note that the system model of (5)-(6) is sub-
ject to stochastic uncertainties, and Cy with Dy involve the
stochastic variables 1x. Therefore, system (5)-(6) is actually a
stochastic system. On the other hand, the measurement noise
v and the process noise wy are both discrete autocorrelated
noise across. In view of these two observations, conven-
tional robust recursive estimators are no longer applicable
here.
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The state estimation is a dynamic estimation problem,
which can be divided into three types. The filtering problem
is to use the current measurement information to estimate
the current system state, the prediction problem is to use
the current measurement information to estimate the future
system state, and the smoother problem is to use the current
measurement information to estimate the past system state.
Our aim in this paper is to design recursive filter Xy ¢, pre-
dictor Xx4n ik, N > 1 and smoother Xxx+n, N > 1 for the
given system. For this purpose, the orthogonal projection the-
orem and an innovation analysis approach will be used. The
advantage of this proposed method to address the recursive
estimation comes from the fact that the innovations constitute
a white process and the newly obtained estimators are optimal
in the linear minimum variance sense.

Ill. MAIN RESULTS

Before processing further, let us introduce some new nota-
tions and Lemmas, which are very useful in establishing our
main results.

Cet = [=Ck Cret1l. Tk = O — B,
De=1[~In —1Lp In Ly]l, ox=E& {J,f}
Cv = Gk — Co = JtCox. Dy = IiD,. (3)
Lemma 1: For system state x; and process noise

wk+m(m > 0), the second order mixed origin moment

X im = 5{kaZ+m} can be calculated as follows:

T
x5e Fr—m—1Bktm—t X Qk+m,k+m—t’ 0<m<i,

k,k+m 0, m Z t,

where the notation f; is defined as follows:

n}—lAk*f’ > 0,
Fi= - 9
T, i=0. ©

Proof: From (5) and (9), the system state x; can be
rewritten as follows:

t t
X = HAk—ixk—t + Z Fi-1
i=1 i=1
X (A k—iMk—iXk—i + Br—iwp—;). (10)

Taking into account (10) and the fact that n;_; is not cor-
related with w4, the mixed origin moment X;”,  can be
calculated as follows:

t t
X5 =] [A—i€ i 3+ F i1 Bioi€{or—io] 1)

i=1 i=1

It follows readily from (5), (7) andk+m—k+t =m—+1t >t
that the system state x;_; is not correlated with the process
noise wk4n,. Therefore, we have

t
X = FiaBiiflor—io],}- (11)
i=1
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If we want S{wk,,-co,Lm} # 0, the subscripts of w;_; and
wk+m should meet the following relationship:

k+tm—k+i=m+i=t, ie{l,2,....t}. (12)

If m > ¢, then (12) does not hold, that is to say the expectation
& {wk,iw,cT +mt = 0, further more, the mixed origin moment
X,f”,fjrm =0.1f0 < m < t, then (12) holds, and (12) can be
rewritten as follows:

i=t—m, (13)

where the value of i is set {1,2,...,t}, however, the values of
m and ¢ are fixed and unique. Therefore, the value of i which
satisfies (12) and (13) is fixed and unique. Substituting (13)
into (11), we have

X,0 T
Xk)k+m=Ft7m713k+m7tQk+m,k+m7p O<m<t, (14

which completes the proof of Lemma 1.

Remark 4: If the process noise wy is continuous auto-
correlated across time and if we want the expectation
£ {wk,iw,irm} # 0, then, equation (12) will be changed
as m + i < t and the variable i in (13) are not unique.
Therefore, equations (12)-(14) constitute the main differ-
ences between the discrete autocorrelated process noise
across time and the continuous autocorrelated process noise
across time in the proof of the second order mixed origin
moment X; ;"

k,k+m*

Lemma 2: For system state second origin moment matrix
Xtk = Elxrixl, ). we have the following recursive
result:

X, X _ XX 4T X,wpT X, X
Xt = AX i A + AKX B + Ak X

x AL+ BeXO T AL + By QiBy

where X;” can be calculated as in Lemma 1 and the initial
value is Xy = diag(Xox] , 0) + diag(Po, 0).

Proof: Lemma 2 follows directly from (5), Lemma 1 and
the fact that the noise signal 7y is zero mean unit variance and
uncorrelated with other signals.

Lemma 3: The innovation g, the process noise one-step
predictor &y x—1 and the measurement noise on-step predictor
Vkjk—1 are given by:

ek = Yk — CiXijk—1 — DiVijk—1, (15)
-1
N —~w,E& —1
Oklk—1 = Z Ep k—iNp—i€k—is (16)
i=1
ht1
A —V,E —1
Dek—1 = > B A ek, (17)

i=1

where X x—1 is the system state one-step predictor, the inno-
vation covariance Aj_; will be determined as in Theo-

. Q&),S _ T QV,S _
rem 1, the expectations 8,73 ; = Elwye;_;} and Erii =
E{vrel .} can be calculated as follows:

k—i

= CH — QWX ~T @5V ~T

Eik—i = O k—itk—im1 Chi + O k—ipk—i—1 Pi—i>
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=V,E _ V,X ~T v,V nT
Skk—i = ®k,k—i\k—i—1ck—i + ®k,k—i\k—i—1Dk—iv
. w,x ~T
where the expectations Ok lk—icl = & {“)kxk—ﬂk—i—l}’
w,V _
Ok,k—i\k—i—l = 5[‘0k"k ilk—i— 1} Chyt —ilk—i—1

=T _
g {kak—nk—i—l} and ®k,k—i|k—i—1 =¢ Vkvk—i\k—i—l} are
respectively, determined by:

-1
w,x _ T T
O k—ifk—im1 = H Ok k1B Ay

n=i+1
T
+Z<kkn|knlBk
n=i+1
T T
+ O —nlk—n— IDk7n> Ay, (18)
M,
s —~w,e —1 /—v,e
®;cu,1:—i|k—i—l == Z ‘-‘JL:k fAk—f(“l‘; ik f) )
f=i+l
My = minfh+i+1,t— 1}, (19)
h
v, X _ ~T
kk—ilk—i—1 = 1_[ <—Rk,k—h—1Dk_h_1
n=i+1
—1 —X,E T
XAk—h—l("‘k hk—h—1) )'Akfn
T
+ Z <®kk —nlk—n— lBk
n=i+1
T T
+ O IDk—n> Ay, (20)
G‘)1\;‘12 ilk—i— l_Rkk i
h+1
- Z B Ay Gl @D
=i+1

where the matrices Al . DI =~ and Al are defined
in (48) and (28), respectively The remaining expectations
®kk nlk—n—1 = g{wkwk —nlk—n— l} and ®kk —nlk—n—1 =
E{kak_nlk_n_l} can be calculated as follows:

t+n—1
w,w _ o =€
k,k—nlk—n—1 — Qk,k—n_ Z Skk—f
f=n+1
—~w,&
X Ay f(“k nk f) (22)
My
v, _ =V, —w,& T
®k,k7n|k7n71 - Z Skok f (“k nk—f) ’
f=n+1
My = minfh+1,t +n — 1}, (23)
where the initial values are e_; = 0, :(‘;8 =0, E(u))'f,- =

0. 2" _ —,E
s - “_n —

—n,—i ’ i =0, Ai = In, 68)(;0n|0n1=
0 ®00 i0—i—1 — O ®OO i|0—i 1 - 0 ®00 il0—i—1 — 0,
@8’8’_”0_[_1 =0 and fo|_1 = [x0 017, and the range of the

values of i and » are defined as in (18)-(23).
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Proof: Tt follows from (6), (7) and the OPT that the
one-step prediction for y; can be calculated as follows:

k-1
Sk = CeElud + G Y Elae] 1A e
i=1
k—1
+Dy Y Efweel YA e
i=1
= CiFkk—1 + DiVkp—1- (24)

Subtracting (24) from yy yields (15).

Applying the OPT, the process noise one-step predictor
@k|k—1 and the measurement noise one-step predictor Vg x—1
can be calculated as follows:

k-1
> =Y Elowel 3N er_i
Wklk—1 = {wrer i} AL €k—i
i=1
k-1
k=t = ¥ Elvrel A eni
Vklk—1 = {vier_ A _i8k—i-
i=1

From (7), we know that when i > ¢ — 1, the expectation
£ {wkskTﬂ-} = 0, and when i > h + 1, the expectation
£ {vkskTﬂ-} = 0. Thus, the process noise one-step predictor
@k|k—1 and the measurement noise one-step predictor Vgjx—1
can be rewritten as in (16) and (17), respectively.

Taking into account (17) and the fact that the process noise
w 1s not correlated with the measurement noise v, the expec-
tation @f”kv_”k_l._l = S{wkf),{_ilk_i_l} can be calculated as
follows:

, T AT
®Z),I:fi|k7i71 =& {wkvk—i} —-¢& {wkvk—i\k—i—l}
h+i+1
— Y Eloxel AL,
f=1+i
x Evi—ief s} (25)

If f > t — 1, then the expectation £ {a)k,skT_f} = 0 and we
have (19). Similarly, ®Z’Z—i|k—i—1 = E{vk\?,{f”kﬂfl} can be

calculated as follows:

VsV _ T AT
Ok,k—i|k—i—1 =& inVk—i} - Hvkvk—ilk—i—ll

h+1
=Ry Z El‘::i—f
f=1+i
< AL BT (26)

According to (6), (8) and (15), the innovation & can be
rewritten as follows:

ex = Cixp + Ciek—1 + Divi + Dippi—1- 27

"l:herefore, using (25), (26) and the fact that Dk_i and
Cr_; are both zero mean and uncorrelated with other
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. . —w,e T
signals, the expectations &y ;, = Efwxe_;} and
:Zi ;=€ {vkagﬂ-} can be calculated as follows:
—w,E = = ~
Epxi=¢ {wk (Ckfixkfi + Cr—iXk—ilk—i—1
@V,X _
kk—ilk—i—1 =

- _ T
+Dj—ivi—i + Dk—in—i|k—i—l> }
~T AT
=& {wkxk—i\k—i—l} Ci—i
T AT
+& {wkvk—ﬂk—i—l } Dj._;

- O 1\k z—le l+Okk ilk—i—1 Dk i

-V, & ~
Erpi=¢ {Vk (Ck—ixk—i + Ch—iXk—ifk—i1
- _ T
+Dj_ivi—i + Dk—in—ilk—i—1>
_ =T AT
=¢ {kak—i|k—i—l} Ci—i

T =T
+& {Vkvk—ilk—i—l } Di_;

follows:

~T
& {wkxk—tH\k—t}

_ v,x =T A Y
= O k—ipe—im1 Ck—i + Ok k—ipk—i—1Pi—i ElorAfy_,) = 0,
Then, our next step is to calculate the remaining expectations OZ’ ,;” nlk—n—1

w,X V,X
Op k—ith—i—130d O% g B

From Theorem 1, the state prediction error X —;jx—;—1 can
be calculated as follows:

X—if—i—1 = Ak—im1Xk—i—1jk—i=2 + As ki1

+ B i 1Ok —i—1|k—i—2 ~T
_ € VX —nlk—h—1
— Di—i 1 Vk—i-1jk—i—2

where Ax_i—1, Ask—i—1 and Dy_;_; are determined as

in (48). By introducing the notation A,

T
1—[n A . g{vk'As,k—n}
mit2 Ak—j+1, 0 =j=<n,
= Ok nlk—n—1

=1,

. (28)
j>n,
the state prediction error Xx_;jx—i—1 can be rewritten by:
t—1
Tipoior = || AtonFkorrips

n=i+1
t—1
+ Z An {-As,k—n + Bk—n(;)k—n\k—n—l
n=i+1
— Di—nVk—nlk—n—1} »

M;

proof.

. w,x _ ~T
therefore, the expectations O k—ifk—io1 = & {wkxk—ﬂk—i—l}

v, X _ ~T .
and ®k,k—i|k—i—1 =& vkxkfi‘kﬂ.fl] can be determined as

follows:
t—1
, ~T T
(”)Z),lf—nk—i—l = H g{wkxk—t+1|k—t}~’4k7n

n=i+1
t—1

+ > (5{wk,4§k_n}
n=i+1
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+g{wk@Z—rz\k—n—lB£_”}
— g{wki}]{_ﬂk—n—lpkr—n}) AZ’ (29)

ﬁ g {Vk;ckahlkfhfl} A;f_n

n=i+1
h
+ 3 (emAl )
n=i+1
+g{vk‘blz—n|k—n—131{7n}

+€{Vk‘~}l{—n|k—n—lplzfn}) Az (30)

Taking into account (48), Lemma 1 and the fact that wy
and v, are both discrete autocorrelated across time, the
remaining expectations in (29) and (30) can be calculated as

& {wk(Xk—z+1 — ka—r+1|k—z)T}

Qrk—BL_,. (€3]
(32)

- g{wké)l{—n\k—n—l}

—1

Elwkop_,)

Q;fuyk*"_ Z E(];),’]f_f
f=n+1
-1 mw,e T
X A (B k—p) (33)

& {kak_h} -& {kafkT—mk—h—l}

nT
_Rkk h— le h—1

R (S L €
=0, (35
AT T

5{vkwk—n|k—n—l} + g{vkwkfn}
M
v, 1 o, T
- Z Dz,iffAkff(‘:‘z)fn,kff) ,
f=n+1

minfh+1,t +n—1}. (36)

Combining (31)-(33) and (29), we have (18). Substitut-
ing (34)-(36) into (30) yields (20) which completes the

Remark 5: 1In the traditional recursive estimation problem,
the innovations are calculated as g = y; — Ckfck|k_1 and the
noises one-step predictors are @gk—1
However, due to the possible sensor delay which occurs in
a random way and the deterministic delayed noises, these
are not true for the problem at hand. Therefore, we need
to recalculate the innovations, the process noise one-step
predictor and the measurement noise one-step predictor.

Lemma 4: For the state one-step prediction errors 7y x—1
and Zx|xk—1, we have the following result:

= 0 and V-1 = 0.

5{7k|k—121{|k_1} = 5{rk5;{|k_1}~
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Proof: According to the OPT, the one-step predictors
Fxjk—1 and Zgjx—1 can be calculated as follows:

k—1
k-1 = Efnd + Y Elne] IAT e

i=1

k—1
A Tya—l
Zkk—1 = Elz} + ZE{ZkEj }Aj &,
Jj=1
therefore, the one-step prediction error Fyjx—1 = rx — Frjk—1

and Zxjk—1 = zx — Zxjk—1 can be calculated as follows:

k—1
Pkt = e — Elr) = Y Elree] VAT e,
i=1
k—1
Zkk—1 = 2k — Efany — Zf{zksz}Aj’laj. 37)
j=1
It follows directly from (37) that the expectation

& {?k|k_1212 «—1} can be calculated as follows:

EFuk—1Zp1} = EE 1) — EEIRIL)

+ELEnIE)T)
k—1

+ Y ElElne WA Elze] )
j=1
k—1

= > Elnel VAT Eleir] )

i=1
k—1
+ Y Elrel AT E(eil )

i=1
k—1k—1

+ 3 Enel 1A Elee] )

j=1 i=1
x AT ez (38)
v Jk
since the innovations are zero mean and uncorrelated with

each other, in addition, the expectations E{ry} and E{z;} are
uncorrelated with the innovations &;, therefore, we have

EEInYZl ) = ELEELYT Y = ElndElz)T,
ElEtnYe]} = Elnéte] Y =0,

Eleilla)}y = Eleélzf} =0,
k—1k—1

DY etnel YA Eleie] YA Eejz )

j=1 i=1

k—1
=Y Elnel IA] Efeiz ). (39)

i=1

Substituting (39) into (38), we have E{Fk|k,12£|k_l} =
Elry 2,{‘ k—l} which completes the proof.
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A. ROBUST RECURSIVE FILTER
Theorem 1: For system (5)-(6), we have the following
robust recursive filter:

A A =X,& 5 —1
Xkl = Xkk—1 + B Ay ek, (40)
—~X,& p =1, =x,e\T
Pk = Prjk—1 — ‘:‘k,kAk (“:‘k,k) s 41)
A 2 =X,& -1
X1k = Xk1lk—1 + Z 0y DAg ks (42)

Priipe = ArPrk—1Af + Ak(®Zi’;‘|k71)TB,{
— A(© )" DL "‘Xl:fl/f’Ax
+ By 9;:,’/31(—1“41{ + Bk@z)fiffk—lBZ
_Bk(®z’,cl:|k—l)TDl{ - Dk@z:);qk—l/‘/{
— kO 1Bl + Di®L L DL (43)

k. klk—1
A = O‘kée,kX]f:]);Ce]:k + CkP]dk_leT
+0xDRiD] + Dy O\ DY, (44)
Bk = Pri-1Ci + O ) DY, (45)
i = AcEE + BT, “6)
X = AXTRAT, + o BEE (AT DeRy

x DA Gy o + ok By

XA CoXy Gt B T ()
where the innovation g; is defined and calculated as in
Lemma 3. Ay is the innovation covariance. Ezf is the expec-
tation between x; and &;(i = k, k+1). Pyjx and Py )¢ are the
state filtering error covariance and state one-step prediction
error covariance, respectively. X, ,:4 . A — g {As. k‘AsT, .} and the
matrices Ay, A, and Dy are defined in (48). The expecta-
tions O 71 1, O k10 Op Kk—1> O ik and O, are
defined and calculated as in Lemﬁma 3. The initial values are
Roi—1 =[] 017, Poj—1 = diag(Py, 0).

Proof: According to (5), (7), the OPT and the fact that 7

is zero mean and uncorrelated with other signals, the system
state one-step predictor Xy 1x can be calculated as follows:

k
)ACk-‘rl\k = E{xpy1} + ZS {Xk_;,_]giT} Ai—lgi
i=1

k—1
= ArE{x} + 25 {Akxke‘iT] A;lei
i=1
k—1
+ fo [Bka)ksiT} Ai_ls,‘ + & {xk_HEZ] Ak_lsk
i=1

~ A —X,& -1
= AiXpk—1 + Brwgk—1 + B0y Ag ks

therefore, the one-step prediction error X 41|x has the follow-
ing form:

~ —X,& -1/~ \~
ek = Ak — By o A CoXpgk—1 + (As ki
—X,&

—1 ~ —X,&
= Bifia M Coxe + Brokk—1 — Bl

—1 5 —X,& -1/ =
x Ay Dkvk—‘:‘k+1,kAk Dy viji—1.
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By defining
—_X,E -1 —X,& —17
-As,k = (Asxmk — C‘k—i—l,kAk Croxg — dk—i—l,kAk Dyvy,

Ak — Ak _ —X,E

= ~1c = E5E
“k+1,kAk Ck, Dy

71—
= &%) Ap ' Dr. (48)

the one-step prediction error Xi4ix can be rewritten
by:

X1k = AcXp -1+ As k + Bigk—1 — Divik—1. - (49)

Furthermore, noting (49), the one-step prediction error
covariance can be calculated as follows:

Priik = A€ [)?k|k—15€kT|k,1 } AL+ A€ {ikuc—lAsT,k
+ Ak E T -1 1 1BE + E(A KAL)
— AkE{Ep— 171 YD + E(AT VAL
+ E{ A k@rjk—1)BE — 5{As,k‘7k|k71}pg
+Bk€{5)k|k—13~CkT|k_1}A1{ +Bk5{65k|k—1A£k}
+ Bk5{®k|k—15)lgk4 }B{ — BkE{@rj—1
X V1YL = DkE 15— JAL — Di
x Ep—1@4_1)Bf — DiE{Tip—1AL;)
+ DiETrp—17 1 )DL - (50)
where the remaining expectations can be calculated by:
E@r—1F—1} = ElorFf 1) = OF 1y
ETep—1%—1} = EVF 1) = O %1

~ ~T ~T v,V
EWk—1Vkp—1} = EWVi—1} = O k-1

~ ~T ~T :
g{wk\kflwkuc_l} = g{wkwk“(_]} = Z),I:Tk—l’
~ T ~T @,V
Eldrk—1Vp—1} = Elovip_1} = O 1>
Elxpa ALY = i1 ALY = Elanp—1 AL} =0
Xiek—1 A g t = EWr—1A; 1} = Elor—1A5 1 =0,

(51)
X/f/ﬁ’AS = As kX G ALk + OkELY Ay DeRiDg
x A M@ 0T + ok LY A Ce
< X rClon Bl o7 (52)
where Lemmas 1-4 have been applied. Substituting (51)
and (52) into (50), we have (43). _ ~
It follows from (27) and the fact that matrices Cy and Dy

are zero mean, the innovation covariance Ay = £ {akskT} can
be calculated as follows:

A =€ [sz} Ce’kg ixkx,Z} CeT,k + Ckg {)Ek|k—1
X fclek_l} (_fkT + & {sz} Deg{vkv,{}bz

+Dk5{\~’k\k—l\7]{\k71}bz
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= 0t CoaXi 7k Clp + CPrp—1 G
+ UkDeRkDZ + Dk Z:‘ljclk—ll_)/{'
From (27) and the fact that v and Cy are zero mean uncor-

related with each, the expectation &;7; = & {x skT} can be
calculated as follows:

Ezz =& {xk(ékxk + Ckfck”(_l
+ Dyvy + Dk\~/k|k—1)T}
= Pep—1Cf + O 7)) DY

where @Z’}i‘ 1 can be calculated as in Lemma 3. Further-

more, the expectation Ez’e =

Y1k = E{xs1e]} can be calcu-
lated as follows:

—X,E

i =€ {(Aka + Ag k kXk +Bkwk)8”

—~w,&

—X,E
= Ax Erk + By Exko

where E77 can be calculated as in Lemma 3.
Again, by using (5) and the OPT, the recursive filter Xz
can be designed as follows:

k
Tk = Elxr} + ZE [xkaiT} A e
i=1
= Xkjk—1 + EiiiA,:Iek,
therefore, the filtering error Xy ¢ is calculated as follows:
Xhlk = Xklk—1 — EZ:ZAk_lsk. (53)

Based on (53), the filtering error covariance Pk can be
calculated as follows:

B . Ty n—1 oo T
P = EXpk—1%g -1} — EFk—185 1A, (L)
=X,& A —1 =T =X, A =1 mx,eNT
— Bl ElaXip + A (B

where the expectation £ {)?Hk,lfclek_l} = Pijk—1 and the
expectation & {Xx—1 skT} can be calculated as follows:

k—1
Elfp—rel ) = Elmel ) — € “Zsme? }A,»lei} & ] :
i=1

The fact that g is uncorrelated with ¢;, j # k, we have
~ T T —x,
Efrp—re; ) = Elugr ) — 0= B},

therefore, the error covariance Prx can be rewritten
by:

—X,& A =1, =x,6\T
Pk = Prj—1 — B Ay (B0,

which completes the proof of theorem 1.
We are now in a position to proceed with the design of
predictor and smoother for the given system.
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B. ROBUST RECURSIVE PREDICTOR
Theorem 2: For the given system (5)-(6), we have the
following predictor:

1<N<t:

Xk Nk = ARgN—1Xk+N—11k + BrayN— 104N -1k
_ =N mw,e 1

=2ic0 BN —1 k—i D—ik—is

Piynik = Ak+N—1Pk+N—1|kAk+N_1

Ok4N—1]k

X,X
+As kAN -1 X EN 1 kN -1
T
XA{ ean—1 T AktN -1

T
X O N1 keN— 1k Bren -1

X, T
BN 1O N1 N —1k)
ALy s+ B

x O BT

k+N 1Lk+N—-1"k+N—-1°

w,0
®k+N71 K4+N—1lk — Qk+N71 k+N—1

_ Zt —N —mw.e
0 Sk+N—1,k—i

(Ha) & )T
Sk+N—1,k—i’

X, _ t

kN —1k+N—1k = anz Af4N-nBr+N-1-1 (54)

X Ok N—1—1,k+N—1
_ Zt =N —x,¢
0 SN 1 k—i
—~,e T
XA z("‘k+N71k D
H.X &
SN k—i = ®k+N71 k— tlkfzflck i
T
+ k+N—l,k—l|k—l— D

®ziN71,k—i|k—i—1 = Hiv;rzl Ak N—n
X Pr—ijk—i—1
+ ZQH—ZZ -InlekJern
x O

k+N nk—ilk—i—1°
X,V _
Ol N1 k—ilk—ie1 = Hn S AkN—n
x 0" zk—z\k

+Z

k+N—n,k—i|k—i—l’

—i—1

n—lBk+N—n

N>t:

k4N lk = Ak+N—1Xk4+N—1]k>

Piynik = Ak+N—1Pk+N—1A/{+N_1
+Aswk+N—1X1)<ch71,k+N71
X AsTkJrN,1 + Biyn—1 Qk+N—-1

(55)
X Bk+N + Ak+n—1

T
X O Nt kN—1Bren -1
T
+Bk+N—1(®k+N—l\k,k+N—l)
X Ak+N
X, Xx o)
AN —1k k+N— KN =1, k4N —1°

where the initial values are given in Theorem 1 and
Lemmas 1-4. The notation 1, is  defined
in (58).
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Proof: From (5) and the OPT, the N-step state predictor
Xr+N |k can be calculated as follows:

k

Repn = Elaant + ) Ebmane] 1A e
i—1
= AN 1%k N1k + BraN—1DksN -1k, (56)

where the process noise predictor yy—1x can be calculated
as follows:
k—1
N -1
Ok+N -1k = Zg{a)k-&-N—lskT_i}Ak_[gk—i-
i=0
It can be easily seen that if N > ¢, then the expectation
5{wk+N,18,Z7i} = 0, furthermore, we have c?)k+N,1|k = 0.
Therefore, the design of the proposed N -step predictor can be
divided into two different parts: One is N > ¢ and the other
isl<N <t.

1) 1 < N < t: Taking into account the fact that the process
noise is z-step discrete autocorrelated across time, we have
from (5) that

k—1

- T Al
Orn—1e = Y Eloin1ef_ YA eri
i=0
t—N

_ =, —1 .
= Z Bl N1 k=i Dk ik
i=0

therefore, the N — 1 step process noise prediction error
®k+N—1)k can be expressed as follows:

~ —w,E -1
Wk4+N—1k = Wk+N—-1 — Z ‘:“k+N—l,k—iAk7i8k_i‘

It follows from (5) and (56) that the N -step state prediction
error Xx4n |k can be calculated as follows:
Xk+Nk = Ak+N—1Xk+N—11k + As k-+N—1Mk+N—1
X Xp4N—1 + BraN—1Ok+N -1k
and then, the N-step state prediction error covariance Py [k
can be calculated as follows:
T
Pranie = AkeN-1PraN—116A}yn—1 T Ask+N—1
T
X XN 1 kN —1As kN —1 T Akn -1
T
X 5{xk+N—1|kwk+Nfl|k}Bk+N71
~ ~T
+ BN -1 E{ DN 1k Xp 1}
T ~
XApyn_1 t Bean-1E{ DN 11k
~T T
X Op N1k Bryn—1- (57)
Our next step is to calculate the remaining expectations

in (57). From Lemma 4, we have

~ ~T ~T
g{a)k+N—l|kG)k+N71 |k} = 5{wk+N—la)k+Nf1 |k}

Ok+N—1 K+N—1]k
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and the expectation @}, LksN_1jx can be calculated as
follows:

w,w _ T
krN—1 k-1 = ElorN-10p vt}

AT
- g{wk+N—10)k+N_1\k}

t—N
_ @ _ —w,&
= QN1 k+N—1 SkAN—1,k—i
i=0
-1 mw.e T
X N B N =)

where the fact that the process noise is 7-step discrete auto-
correlated across time has been applied.
By introducing the notation T,

n
[[he2 AkeN—m, n>1,

T, =
" 1, n=1,

(58)

the state x;+xy—1 can be rewritten as follows:

Xk N—1 = ApgN-2XktN—2 + As kN2
X Nk4+N—2Xk+N—2 + Bran 20k N—2

1 t
[ TAksv—m¥tin— 4+ T
n=2 n=2

X (As,k+N—n Nk+N —nXk+N —n

+ Bk+N—nwk+N—n)»

therefore, the expectation E{Xk+N—11k

~ _ ~T _ X,
O 1 }= g{xk"‘N—lwk-i-N—llk}_ O fN—1 k+N—1}k Canbe
calculated as follows:

X, _ T
kN1 kN1, = N 10 vy}

AT
- g{xk+N—1wk+N71|k}

t
= HAk+anBk+th71
n=2
X Qk+N—t—1,k+N—1
t-N
=X,
SkAN—1,k—i
i=0
-1 .t T
X N (B,

where the second equality holds since the process noise is
t-step discrete autocorrelated across time and 7 is uncor-
related with other signals. Taking (27) into consideration,
the remaining expectation Ez’jN_ Lk—i= Elxr+n— 18,{_i} can
be calculated as follows:

—X,E = =~ ~
BN _1xi =€ [xk+N71 (Ckfixkfi + Cr—iXg—ilk—i—1
- L T
+ Dy—ivk—i + Dk—ivk—i\k—i—l)

= Elxan—1x_)E(CT_}}
+ELrN 15—
+ Eern—1Vi_}ED]_}
+ Ea N1V Dh i
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where the matrices C‘k,i and Dk,i are zero mean, therefore,

X, €

the expectation & AN —1.k—; can be rewritten as follows:

—X,E

- _ahx C.T
Sk+N—1,k—i — “k+N—1,k—ilk—i—1~k—i

X,V ~T
+ ®k+N—l,k—i|k—i—1Dk—i’

X _ ~T
where O Ly i ip—i-1 = Tg{xk‘f‘N—]xk—ﬂk—i—l} and
X,V ~
OU N1 f—ilk—ie1 = S{Xk+N—1vk,i‘k7i71} can be calculated
as follows:
N+i
X,X _ ~T
®k+N71,k7i|kfi71 = HAk+N—n5 {xk—lxkfilkfifl}
n=2
N+i
+ Z _in—lBk—&-N—n
n=2
£ ~T
X {a)k+N—nxk7[\k7i71}
N+i
= HAk+N—nPk—i|k—i—l
n=2
N+i
+ Z _in—lBk-‘rN—n
n=2
w,X
X Ot N—n,k—ilk—i—1°
N+i
X,V _ ~T
®k+N—1,k—i|k—i—1 = HAk+N—n5 {xk—lkailkfifll
n=2
N+i
+ Z -[n—lB/H-N—n
n=2
5 ~T
X {a)k+N—nd7i\kﬂ;1}
N+i
_ X,V
= HAk‘FN—”@kfi,kfi\kfifl
n=2
N+i
+ Z -in—lBk—&-N—n
n=2

w,V
X O N Cnk—ifk—im1

2) N > t: From (7) and the OPT, we have @y ny_1 = O,
therefore, the N-step state predictor can be calculated as
follows:

k4N Ik = Ak+N—1Xk+N 1]k

and then, the N-step state prediction error Xk = Xk+Nk —
Xk+n has the following expression:

XNk = AN 15N -1k + As kN -1k +N—1
X Xk+N—1 + Br4N—10k+N-1. (59)

It implies from (59) and Lemma 2 that the N-step state pre-
diction error covariance P4y x can be calculated as follows:

T
Prinie = AkN—1Pirn—14)n— + A kN -1
X, X T
XX N1 kN 145 k4N —1 T Birn -1

T
X Qk+N-1Bjyn_1 +Ak+n-1
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0] T
X Oy 1k kN —1Bran—1 + Bran-1
X(®k+N 1k, k+N—1) Ak+N71’

X, ~ T
where ®k+N—1|k,k+N—l = E{Xk+N-11k @) y_1} can be cal-
culated as follows:

X, _ T
kN1 k+N—1 = EXRAN 10y}
- T
— EX N1k @ 1)
-1
= l_[Ak+N—1—(n—1)5{xk+N_,
n=1
. T
X @g+N—-1} — E(XkN -1k @y 1}
k
= x5 =X,&

k+N—1k+N—1 — “k+N7] i
i=1

-1 T
X A S{SiwkHv_l},

where Lemma 1 has been applied Sincek +N — 1 —k =
N — 1 > t, therefore, E{g; a)k+N 1} = 0, and then, we have

k+N KA4N—1 = Xk+N Lktn—1 Which completes the
proof of the Theorem 2.

C. ROBUST RECURSIVE SMOOTHER

Theorem 3: For the addressed system (5)-(6), the N-step
(N > 0) fixed-lag robust recursive smoother can be calcu-
lated as follows:

~ A —X,E —1
Xklk+N = Xkk+N—1 + E gy v A pin kN,  (60)

—X,& 71 Hxs
Prik4n = Prj+N—-1 — B iy Dy (B k+N)
(61)
=X, XX C‘T
“k,k+N — “k,k+N|k+N—1~k+N
Ry T
+Op ko Ny 1 Dins (62)
X, X _
koklk—1 = Prlk—1 (63)
X, X o oXX AT
k,k+N|k+N—1 — “k,k+N—1lk+N—-2""k+N—1
X, T
+ k,k+N—l\k+N—sz+N—l
X,V T
= O kN1 pk+N—2Pran 15 (64)
k+N—1
X,V _ =X,E A —1 mV,E T
kk+Nk+N—-1 — Z "‘k,iAi (“k+N 1) ’ (65)
i=1
k+N-2
X, _ Xx,a) _ Z =X, €
k,k+N—1k+N—-2 — “k,k+N—1 ki
i=1
-1/ ~w,e T
XA (Epgy_1,)" (66)

where the matrices Ay n—1 and Dy n—1 are defined in (48).
The initial values are given by Theorem 1 and Lemmas 1-4.
Proof: Applying the OPT, the N-step fixed-lag robust
recursive smoother is calculated as follows:
k+N
Xekan = Elx} + Z Elxeel YA e
i=1

2 —X,E —1
Xek+N—1 + B Ly v A NEK+N (67)
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where the expectation Ezi w=F¢€ {xk8Z+N} can be calcu-
lated as follows:

B

X, € ~ ~ ~
v =€ {xk(CkJrkaJrN + CktNXk+N|k+N—1

(1]

- noo T
+ Dyt NVik4N + DigNVi4N|k+N—1) }

~T
Ok Jk+N|k+N— ICk+N

=T
+ O kN k4N —1 Dkn (68)

where the last equality holds since the matrices Ciin
and Dy,y are zero mean and uncorrelated with the sys-

tem state. It follows from the OPT that the expectations
X,V _ ~T X,X _

kkNkN—1 = V1) and O vy =

E{xkfckTJerkJerl} in (68) can be calculated as follows:

oY

- T
kN kN1 = EOkOVIEN = VN kv —1)"}

k+N—1
— =X, 1,mv,e T
- Z “,A ("‘k+Nt ’
i=1
P = E{xp(A X
kk+Nk+N—1 = k\Ak+N—12k+N—1]k+N -2
+ A k+N—1 + Bkt N— 1Ok N -1k +N -2
= T
— Dkt N—1Vk4+N—1]k+N—-2)" }
T
G‘)k k+N—1|k+N— 2Ak+N—1
T
+ O N 1N —2Bran—1
X,V T
k,k+N—l|k+N—2Dk+N—l’ (69)
. X, .
where the expectation ®k, kN —1[k+N—2 1D (69) can be calcu-
lated as follows:

X, _ T
®k,k+N71|k+N72 = Efxpwp 1}

AT
- 5{kak+N—1|k+N—2}

X,
k,k+N—1
k+N—-2
=X,& 1,/ ~w,e T
— Y EATIE LT 0

i=1
where Lemma 1 has been applied in (70). In addition, apply-
ing Lemma 4, we have

s ~T ~ ~T
O ko1 = EtaXi_1} = EFrp—1%—1) = Prik—1-

From (67), the smoother error can be obtained as follows:

- . ~ —X,E A—l
Xk|lk+N = Xk — Xk|k+N—1 — S g N Dy NEL+N

)

=~ =X, -1
= Xklk+N—1 — S k+NAk+N8k+N,

s

therefore, the smoother error covariance can be obtained by:

PN = Prgien—1 — E{Xkpkrn 18N} Ak4n
=X,E f]
— Eilkan Mg E e
—X,E T
X xk|k+N 1+ By k+NAk+N(“k k+N)
=X,& —X,& T
B kan Ain B i)

—~X,E
x ("‘k k+N)

= Prlk+N-1 —

which completes the proof of the Theorem 3.
Remark 6: A seemingly natural way of handling the
delayed process noises and measurement noises is to augment
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the system states. However, when ¢ and h are very large,
such a state augmentation approach gives rise to significant
increase of the system dimension, which would inevitably
lead to heavy computational burden. Without resorting to
state augmentation, in our current work, by combining the
noises at present time and the delayed noises into a whole
one, the delayed noises are transformed to be the discrete
autocorrelated noises across time. At last, by using an inno-
vation analysis approach and the OPT, the desired recursive
filter, recursive predictor and recursive smoother are obtained
in Theorems 1-3, respectively.

In this manuscript, the measurement delay is assumed to
be at most one-step delay. However, in practical applications,
there is also the phenomenon of multi-step delay. In addi-
tion, for multi-sensor fusion system, the measurement delay
of each sensor is also different. These problems mentioned
above are exactly the new research topics that the author will
carry out on the basis of this paper in the future.

IV. AN ILLUSTRATIVE EXAMPLE

An example is provided to illustrate the effectiveness of
our approaches in this manuscript. Let us consider the fol-
lowing uncertain system with delayed measurements and
noises:

R 0.5 -0.8 0.1 0 N
Ut =\loa o5 |t o oq|™)%
0.6 0.2
+ [_l]a)k + [0‘3]%—:,
S S U
yk - 0 1 -xk Vk Vk—ha
i = (I = )Yk + AiYk—1, (71)

where X = [)?f X fczT k]T € R? is the system state to be
estimated. The scalars ¢ and / are the time delay of the process
noise and the measurement noise, respectively. The vectors
n € R, € Rand vy € R? are zero-mean Gaussian white
noises with covariances 1, 1 and I, respectively. The variables
Ax € R is a binary switching sequence taking values on
1 with Prob{};y = 1} = E{ ¢} = Br = 0.15. Ol}l‘ objective
is to find robust recursive filter X; x|k, predictor X; 42 and
smoother %i, klk+1,1 = 1,2, and to give a comparison of their
accuracies. _

In the simulation, the initial value Xy has mean Xy = [0 0]
and the covariance Py = diag(2, 1). The steps of the delayed
process noise and measurement noise are set as t = 2 and
h = 3, respectively. Let MSE1 denote the mean square
error for the estimation of X, i.e., (1/K) ZkK:1{}l,k -
il,k\k}z, where K is the number of the samples. Similarly,
MSE?2 is the mean square error for the estimation of X2k
ie., (1/K) Zszl{;fZ,k — Xa.xk )% Figures 1-8 are simulation
results.

From Figures 1-8, we can see that, 1) the proposed
robust recursive filter, predictor and smoother have good
performances for the uncertain system (71), this is due to
the fact that efforts have been made to compensate the
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FIGURE 3. The signal of X; ; and predictor ’:‘l,k+2|k-

stochastic uncertainty, the randomly delayed measurements
and the deterministic delayed process noise and measurement
noise; 2) the predictor has the worst performance and the
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FIGURE 6. The signal of X, ; and smoother ):(27,",“_, .

smoother has the best performance, this is natural because
that the most information is used in the smoother and the least
information is used in the predictor.
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V. CONCLUSION

In this paper, we have investigated the robust recursive
estimation problem for a class of uncertain systems with
randomly delayed measurements and deterministic delayed
process noises and measurement noises. The dynamic system
under consideration is subject to stochastic uncertainty. The
delay phenomenon of the measurements is randomly and
the delay rate is described as a binary switching sequence
obeying a conditional probability distribution. The process
noise is assumed to be z-step time delay and the measure-
ment noise is assumed to be A-step time delay. By combining
the noise at present time and the delayed noise into a whole
one, the original system is transformed to be a stochas-
tic parameter uncertain system with discrete autocorrelated
noise across time. As shown in Remark 2 and Remark 4,
the discrete autocorrelated noise across time is quite different
from the continuous autocorrelated noises, however, perhaps
fortunately, the orthogonal projection theorem and an innova-
tion analysis approach can be used to treat this complex case,
and the obtained robust recursive estimators including filter,
predictor and smoother are optimal in the linear minimum
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variance sense. A simulation example has been exploited to
show the effectiveness of the proposed approaches.
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