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ABSTRACT In this article, the problem of robust recursive estimation is studied for a class of uncertain
systems with delayed measurements and delayed noises. The system model is subject to stochastic uncer-
tainties which can be described by multiplicative noises. The phenomenon of delayed measurements occurs
in a random way and the delay rate is characterised by a binary switch sequence with known probability
distribution. The process noise and the measurement noise are both deterministic delay. By combining
the noise at present time and the delayed noise into a whole one, the original system is transformed
into an auxiliary stochastic uncertain system with discrete autocorrelated noises across time. Then, based
on the orthogonal projection theorem and an innovation analysis approach, the desired robust recursive
estimators including robust recursive filter, robust recursive predictor and robust recursive smoother are
derived. A numerical simulation example is exploited to show the effectiveness of the proposed approaches.

INDEX TERMS Robust recursive estimation, delayed noise, delayed measurements, discrete autocorrelated
noise, stochastic uncertainty.

I. INTRODUCTION
In the past decades, the estimation theory and design tech-
niques have received considerable attention due to extensive
application backgrounds ranging from aerospace systems,
navigation, target tracking, communication systems, signal
processing, and elsewhere [1]–[6]. The traditional Kalman
filter is a basic and classical state-space estimator, since its
inception in the early 1960s, it has attracted a great deal
of attention for its simple structure and good performance.
However, the good performance of the traditional Kalman
filter is based on the assumption that the system structure and
parameter are exactly known. Unfortunately, the uncertainty
of system model is inevitable due to the complexity of the
system model and the limitations of human comprehension.
There are a variety of ways to describe the model uncertain-
ties, such as the norm-bounded uncertainty [7]–[9], polytopic
uncertainty [8], [10], stochastic uncertainty [9], [11]–[13]
and so on. In general, the norm-bounded uncertainty and
polytopic uncertainty are treated by the inequality theory
and extreme value theory. For example, the iterative robust
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filtering problem is investigated for a certain ground target
tracking system, where the norm-bounded system param-
eter uncertainty and input uncertainty are solved by the
min-max game theory [14]. In [10], a robust l2 − l∞ filter
is designed for switched linear discrete time-delay systems
with polytopic uncertainties, and the existence conditions
for such a filter is formulated in terms of a set of linear
matrix inequalities. The stochastic uncertainties are com-
monly encountered in image processing systems, commu-
nication systems and navigation systems, and are usually
modeled by multiplicative noises. Different from the additive
noises, the multiplicative noises are dependent on the system
state, therefore, the second-order statistical properties of the
multiplicative noises are usually unknown and this property
leads to more difficulties in the designing of the desired
estimators. Up to now, a great deal of efforts have been
delivered to deal with the control and estimation problems for
systems with multiplicative noises, including Riccati euqa-
tion approach [15], [16], linear matrix inequality [17] and
innovation analysis approach [9], [12], [13], etc.

Most traditional estimation theories are based on the
assumption that the measured data can be obtained in real
time. However, this assumption is not realistic in many
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engineering applications. For example, in photoelectric target
tracking systems, the time delay of the TV distance missing
is unavoidable due to the processing of the photoelectric con-
version, signal processing, data acquisition and transmission.
On the other hand, with the development of the network
technology, the networked control systems have been applied
extensively in a lot of professions for its advantages of lows
cost, great mobility and intelligence. Everything has two
sides, when we enjoy the convenience brought by the net-
work, we also have to bear the network-induced time delay.
Therefore, the estimation and control problem for systems
subject to delayed measurements is a hot research topic and
a larger number of literature has been reported in recent
years, see e.g. [11], [18]–[36]. To be specific, the problem
of recursive estimation for descriptor systems with differ-
ent delay rates have been investigated in [31], where the
recursive filter, recursive predictor and recursive smoother
are derived by using the singular value decomposition and
the orthogonal projection theorem. The linear unbiased state
estimation problem for one-step random sampling delay has
been studied in [28], [29]. However, the estimators designed
in [28], [29] are suboptimal since a colored noise due to
augmentation has been treated as a white noise. Least-square
linear filtering using observations coming from multiple sen-
sors with one- or two-step random delay has also been inves-
tigated in [24], where the algorithm uses only the covariance
functions of the processes involved in the observation equa-
tion of each sensor and the delay probabilities. The estima-
tion problem for multistep time delay has also been studied
in [18], [32].

It should be noted that, the past solutions to the problem
of time delay mainly focus on the state time delay and mea-
surement time delay. The cases with time delay in the noise,
however, are seldom discussed. The delayed noises can be
found in several research fields including biology, engineer-
ing, economics, net control systems, etc [37], [38]. In addi-
tion, the delayed noises may appear in the feedback back
cases, such as, in systems with delays in the controls when-
ever the control action is corrupted by an additive ‘‘white
noise’’ [37], [38]. The traditional method to deal with the
delayed noises is through the state augmentation. However,
the state augmentation will increase the system dimensions
and result in expensive computational cost, especially when
the time delay is large. Recently, Cui et al. [37] presented a
newmethod to deal with the estimation problemwith delayed
noise. Different from the previous works, the new method is
projection formula in Hilbert space rather than state augmen-
tation. However, in reference [37], only the delayed process
noise has been considered and the recursive predictor and
recursive smoother are not designed. Up to now, to the best
of the authors’ knowledge, the robust recursive estimation
problem has not yet been addressed for uncertain systems
with delayed measurements and noises, which still remains
as a challenging research issue.

Motivated by the above analysis, in this paper, we aim
to investigate the robust recursive estimation problem for a

class of uncertain systems with delayed measurements and
noises, where the system parameters are subject to stochastic
uncertainties which can be described as multiplicative noises.
Without loss of generality, the measurements are assumed
to be one-step time delay and the time delay phenomenon
is described by a binary switching sequence that obeys a
conditional probability distribution. In our current work,
we do not only consider the delayed process noises, we also
consider the delayed measurement noises. By combing the
noise at present and the delayed noise into a whole one,
the original system is transformed into an auxiliary stochastic
uncertain system with discrete autocorrelated noises across
time. Then, the desired robust recursive estimator including
filter, predictor and smoother are obtained via the orthogonal
projection theorem and an innovation analysis approach. The
main contribution of this paper is threefold: 1) the system
model considered is comprehensive that takes into account
the stochastic uncertainties, the randomly delayed measure-
ments and the deterministic delayed process noises and mea-
surement noises; 2) without resorting to state augmenta-
tion, the delayed process noises and measurement noises are
treated by an innovation analysis approach and the orthog-
onal projection theorem; and 3) to the best of the author’s
knowledge, this is the first time that the discrete autocorre-
lated noise across time is studied in the stochastic parameter
uncertain system. A simulation example is exploited to show
the effectiveness of the proposed approaches.

The remainder of the paper is organized as follows.
In Section II, the problem of robust recursive estimation
for a class of uncertain systems with delayed measurements
and noises is formulated. The main results are derived in
Section III. In Section IV, a simulation example is provided to
illustrate the effectiveness of the proposed estimate schemes.
We provide a conclusion in Section V.
Notation: The notation used is standard. The super-

script “T ” stands for matrix transposition, Rn denotes the
n-dimensional Euclidean space, Rm×n is the set of all real
matrices of dimensionm×n, and I and 0 represent the identity
matrix and zero matrix, respectively. The notation diag(. . .)
stands for block-diagonal matrix. The notation δk−j is the
Kronecker delta function, which is equal to unity for k = j
and zero for k 6= j. In addition, E{x} means mathematical
expectation of x and Prob {·} represents the occurrence prob-
ability of the event “· ”. The notation min{a, b} means the
smallest one between a and b. Matrices, if their dimensions
are not explicitly stated, are assumed to be compatible for
algebraic operations.

II. PROBLEM FORMULATION
Consider the following model parameter uncertain system
with delayed measurements and noises:

Exk+1 =
(
EAk + EAs,kηk

)
Exk + EB1,k Eωk + EB2,k−t Eωk−t , (1)

Eyk = ECk Exk + Evk + Evk−h, (2)

yk = (1− λk) Eyk + λkEyk−1, (3)
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where Exk ∈ Rn is the state of the system to be estimated,
the initial value Ex0 has mean Ēx0 and covariance EP0 > 0 and
is uncorrelated with other noise signals. The vector Eyk ∈ Rm

is the output of the sensor, and yk ∈ Rm is the measurement
received by the estimators. The vectors Eωk ∈ Rq, Evk ∈ Rm,
and ηk ∈ R1 are mutually uncorrelated zero-mean Gaussian
white noises with covariances EQk , ERk and I respectively. The
matrices EAk , EAs,k , EB1,k , EB2,k−t and ECk are known real matrices
with appropriate dimensions. The known positive integers
t > 1 and h > 1 are the time delay in the process noises
and measurement noises. The variable λk ∈ R1 is a binary
switching sequence uncorrelated with other noise signals and
has the statistic properties as follows:

Prob{λk = 1} = E{λk} = βk ,
Prob{λk = 0} = 1− E{λk} = 1− βk ,

where βk ∈ [0 1] is a known real time-varying positive scalar
and λk is assumed to be uncorrelated with other noise signals.
By defining

xk =
[
Exk
Exk−1

]
, Ak =

[
EAk 0
In 0

]
, ωk =

[
Eωk
Eωk−t

]
,

As,k =
[
EAs,k 0
0 0

]
, Bk =

[
EB1,k EB2,k−t
0 0

]
,

Ck = [(1− λk ) ECk λk ECk−1],

v(k) =
[
EvTk Ev

T
k−h Ev

T
k−1 Ev

T
k−1−h

]T
,

Dk = [(1− λk )Im (1− λk )Im λk Im λk Im] , (4)

a compact representation of (1)-(3) can be expressed by:

xk+1 = Akxk + As,kηkxk + Bkωk , (5)

yk = Ckxk + Dkvk , (6)

where vk and ωk are, respectively, the measurement noise and
process noise of the system (5) -(6), and we can see from (4)
that the process noise ωk and the measurement noise vk are
zero mean and have the statistic properties Qωk,j = E{ωkωTj }
and Rvk,j = E{vkvTj } as follows:

Qωk,j = Qkδk−j + Qk,k−tδk−t−j + Qk,k+tδk+t−j
Rvk,j = Rkδk−j + Rk,k−1δk−1−j + Rk,k+1δk+1−j

+Rk,k−hδk−h−j + Rk,k+hδk+h−j
+Rk,k−1−hδk−1−h−j + Rk,k+1+hδk+1+h−j, (7)

where

Rk = diag
(
ERk , ERk−h, ERk−1, ERk−1−h

)
,

Qk = diag( EQk , EQk−t ),

Qk,k+t =
[
0 EQk
0 0

]
, Qk,k−t =

[
0 0
EQk−t 0

]
,

Rk,k−1 =


0 0 0 0
0 0 0 0
ERk−1 0 0 0
0 ERk−1−h 0 0

 ,

Rk,k−h =


0 0 0 0
ERk−h 0 0 0
0 0 0 0
0 0 ERk−1−h 0

 ,

Rk,k−1−h =


0 0 0 0
0 0 0 0
0 0 0 0

ERk−1−h 0 0 0

 ,

Rk,k+1+h =


0 0 0 ERk
0 0 0 0
0 0 0 0
0 0 0 0

 ,

Rk,k+1 =


0 0 ERk 0
0 0 0 ERk−h
0 0 0 0
0 0 0 0

 ,

Rk,k+h =


0 ERk 0 0
0 0 0 0
0 0 0 ERk−1
0 0 0 0

 .

Remark 1: It can be easily seen from (7) that the process
noise ωk and the measurement noise vk are all autocorrelated
across time. For example, the process noise at time k is
correlated with the process noises at time k − t and k + t
with covariances Qk,k−t as well as Qk,k+t , respectively. The
measurement noise at time k is correlated with the measure-
ment noises at time k − 1, k + 1, k − h, k + h, k + h+ 1 and
k − h − 1 with covariances Rk,k−1, Rk,k+1, Rk,k−h, Rk,k+h,
Rk,k−h−1 and Rk,k+h+1 respectively. Compared with the cor-
related noises at the same time instant, the autocorrelated
noises across time will lead to more difficulties in the design
of recursive estimators.
Remark 2: Furthermore, it should be pointed that the pro-

cess noise ωk and the measurement noise vk are both discrete
autocorrelated noises across time. For example, the pro-
cess noise at time k is correlated with the process noise
at time k − t , however, it is not correlated with the process
noises at time k−1, k−2, . . . , k− t−2, k− t−1. The mea-
surement noise at time k is correlated with the measurement
noise at time k− 1 and k− h, but, it is not correlated with the
measurement noise at time k−2, k−3, . . ., k−h−3, k−h−2.
In contrast to the continuous autocorrelated noises across
time which has already been widely studied in references [2],
[3], [9], [12], [13], [27], [32], the discrete autocorrelated
noises across time will bring us new challenges.
Remark 3: Note that the system model of (5)-(6) is sub-

ject to stochastic uncertainties, and Ck with Dk involve the
stochastic variables λk . Therefore, system (5)-(6) is actually a
stochastic system. On the other hand, the measurement noise
vk and the process noise ωk are both discrete autocorrelated
noise across. In view of these two observations, conven-
tional robust recursive estimators are no longer applicable
here.
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The state estimation is a dynamic estimation problem,
which can be divided into three types. The filtering problem
is to use the current measurement information to estimate
the current system state, the prediction problem is to use
the current measurement information to estimate the future
system state, and the smoother problem is to use the current
measurement information to estimate the past system state.
Our aim in this paper is to design recursive filter x̂k|k , pre-
dictor x̂k+N |k ,N > 1 and smoother x̂k|k+N ,N ≥ 1 for the
given system. For this purpose, the orthogonal projection the-
orem and an innovation analysis approach will be used. The
advantage of this proposed method to address the recursive
estimation comes from the fact that the innovations constitute
a white process and the newly obtained estimators are optimal
in the linear minimum variance sense.

III. MAIN RESULTS
Before processing further, let us introduce some new nota-
tions and Lemmas, which are very useful in establishing our
main results.

C̄e,k = [−ECk ECk−1], Jk = (λk − βk ),

D̄e = [−Im − Im Im Im] , σk = E
{
J2k
}

C̃k = Ck − C̄k = Jk C̄e,k , D̃k = Jk D̄e. (8)

Lemma 1: For system state xk and process noise
ωk+m(m ≥ 0), the second order mixed origin moment
X x,ωk,k+m = E{xkωTk+m} can be calculated as follows:

X x,ωk,k+m =

{
zt−m−1Bk+m−t × QTk+m,k+m−t , 0 ≤ m < t,
0, m ≥ t,

where the notation zi is defined as follows:

zi =

{∏i
f=1 Ak−f , i > 0,

I , i = 0.
(9)

Proof: From (5) and (9), the system state xk can be
rewritten as follows:

xk =
t∏
i=1

Ak−ixk−t +
t∑
i=1

zi−1

× (As,k−iηk−ixk−i + Bk−iωk−i). (10)

Taking into account (10) and the fact that ηk−i is not cor-
related with ωk+m, the mixed origin moment X x,ωk,k+m can be
calculated as follows:

X x,ωk,k+m=

t∏
i=1

Ak−iE{xk−tωTk+m}+
t∑
i=1

zi−1Bk−iE{ωk−iωTk+m}.

It follows readily from (5), (7) and k+m−k+ t = m+ t ≥ t
that the system state xk−t is not correlated with the process
noise ωk+m. Therefore, we have

X x,ωk,k+m =

t∑
i=1

zi−1Bk−iE{ωk−iωTk+m}. (11)

If we want E{ωk−iωTk+m} 6= 0, the subscripts of ωk−i and
ωk+m should meet the following relationship:

k + m− k + i = m+ i = t, i ∈ {1, 2, . . . , t}. (12)

Ifm ≥ t , then (12) does not hold, that is to say the expectation
E{ωk−iωTk+m} = 0, further more, the mixed origin moment
X x,ωk,k+m = 0. If 0 ≤ m < t , then (12) holds, and (12) can be
rewritten as follows:

i = t − m, (13)

where the value of i is set {1,2,. . . ,t}, however, the values of
m and t are fixed and unique. Therefore, the value of i which
satisfies (12) and (13) is fixed and unique. Substituting (13)
into (11), we have

X x,ωk,k+m=zt−m−1Bk+m−tQTk+m,k+m−t , 0≤m< t, (14)

which completes the proof of Lemma 1.
Remark 4: If the process noise ωk is continuous auto-

correlated across time and if we want the expectation
E{ωk−iωTk+m} 6= 0, then, equation (12) will be changed
as m + i ≤ t and the variable i in (13) are not unique.
Therefore, equations (12)-(14) constitute the main differ-
ences between the discrete autocorrelated process noise
across time and the continuous autocorrelated process noise
across time in the proof of the second order mixed origin
moment X x,ωk,k+m.
Lemma 2: For system state second origin moment matrix

X x,xk+1,k+1 = E{xk+1xTk+1}, we have the following recursive
result:

X x,xk+1,k+1 = AkX
x,x
k,k A

T
k + AkX

x,ω
k,k B

T
k + As,kX

x,x
k,k

×ATs,k + Bk (X
x,ω
k,k )

TATk + BkQkB
T
k ,

where X x,ωk,k can be calculated as in Lemma 1 and the initial
value is X x,x0,0 = diag(Ēx0 ĒxT0 , 0)+ diag(EP0, 0).

Proof: Lemma 2 follows directly from (5), Lemma 1 and
the fact that the noise signal ηk is zero mean unit variance and
uncorrelated with other signals.
Lemma 3: The innovation εk , the process noise one-step

predictor ω̂k|k−1 and themeasurement noise on-step predictor
v̂k|k−1 are given by:

εk = yk − C̄k x̂k|k−1 − D̄k v̂k|k−1, (15)

ω̂k|k−1 =

t−1∑
i=1

4
ω,ε
k,k−i3

−1
k−iεk−i, (16)

v̂k|k−1 =
h+1∑
i=1

4
v,ε
k,k−i3

−1
k−iεk−i, (17)

where x̂k|k−1 is the system state one-step predictor, the inno-
vation covariance 3k−i will be determined as in Theo-
rem 1, the expectations 4ω,εk,k−i = E{ωkεTk−i} and 4

v,ε
k,k−i =

E{vkεTk−i} can be calculated as follows:

4
ω,ε
k,k−i = 2

ω,x
k,k−i|k−i−1C̄

T
k−i +2

ω,v
k,k−i|k−i−1D̄

T
k−i,
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4
v,ε
k,k−i = 2

v,x
k,k−i|k−i−1C̄

T
k−i +2

v,v
k,k−i|k−i−1D̄

T
k−i,

where the expectations 2ω,xk,k−i|k−i−1 = E
{
ωk x̃Tk−i|k−i−1

}
,

2
ω,v
k,k−i|k−i−1 = E

{
ωk ṽTk−i|k−i−1

}
, 2

v,x
k,k−i|k−i−1 =

E
{
vk x̃Tk−i|k−i−1

}
and 2v,v

k,k−i|k−i−1 = E
{
vk ṽTk−i|k−i−1

}
are,

respectively, determined by:

2
ω,x
k,k−i|k−i−1 =

t−1∏
n=i+1

Qk,k−tBTk−tA
T
k−n

+

t−1∑
n=i+1

(
2
ω,ω
k,k−n|k−n−1B

T
k−n

+2
ω,v
k,k−n|k−n−1D

T
k−n

)
AT
n , (18)

2
ω,v
k,k−i|k−i−1 = −

M1∑
f=i+1

4
ω,ε
k,k−f3

−1
k−f (4

v,ε
k−i,k−f )

T ,

M1 = min{h+ i+ 1, t − 1}, (19)

2
v,x
k,k−i|k−i−1 =

h∏
n=i+1

(
−Rk,k−h−1D̄Tk−h−1

×3−1k−h−1(4
x,ε
k−h,k−h−1)

T
)
AT
k−n

+

h∑
n=i+1

(
2
v,ω
k,k−n|k−n−1B

T
k−n

+2
v,v
k,k−n|k−n−1D

T
k−n

)
AT
n , (20)

2
v,v
k,k−i|k−i−1 = Rvk,k−i

−

h+1∑
f=i+1

4
v,ε
k,k−f3

−1
k−f (4

v,ε
k−i,k−f )

T , (21)

where the matrices AT
k−n, DT

k−n and AT
n are defined

in (48) and (28), respectively. The remaining expectations
2
ω,ω
k,k−n|k−n−1 = E{ωk ω̃Tk−n|k−n−1} and 2

v,ω
k,k−n|k−n−1 =

E{vk ω̃Tk−n|k−n−1} can be calculated as follows:

2
ω,ω
k,k−n|k−n−1 = Qωk,k−n −

t+n−1∑
f=n+1

4
ω,ε
k,k−f

×3−1k−f (4
ω,ε
k−n,k−f )

T , (22)

2
v,ω
k,k−n|k−n−1 = −

M2∑
f=n+1

4
v,ε
k,k−f3

−1
k−f (4

ω,ε
k−n,k−f )

T ,

M2 = min{h+ 1, t + n− 1}, (23)

where the initial values are ε−i = 0, 4v,ε
0,−i = 0, 4ω,ε0,−i =

0, 4v,ε
−n,−i = 0, 4ω,ε

−n,−i = 0, 3−i = Im, 2
ω,ω
0,0−n|0−n−1 =

0, 2v,ω
0,0−i|0−i−1 = 0, 2v,v

0,0−i|0−i−1 = 0, 2v,x
0,0−i|0−i−1 = 0,

2
x,ω
0,0−i|0−i−1 = 0 and x̂0|−1 = [ĒxT0 0]T , and the range of the

values of i and n are defined as in (18)-(23).

Proof: It follows from (6), (7) and the OPT that the
one-step prediction for yk can be calculated as follows:

ŷk|k−1 = C̄kE{xk} + C̄k
k−1∑
i=1

E{xkεTi }3
−1
i εi

+ D̄k
k−1∑
i=1

E{vkεTi }3
−1
i εi

= C̄k x̂k|k−1 + D̄k v̂k|k−1. (24)

Subtracting (24) from yk yields (15).
Applying the OPT, the process noise one-step predictor

ω̂k|k−1 and the measurement noise one-step predictor v̂k|k−1
can be calculated as follows:

ω̂k|k−1 =

k−1∑
i=1

E{ωkεTk−i}3
−1
k−iεk−i,

v̂k|k−1 =
k−1∑
i=1

E{vkεTk−i}3
−1
k−iεk−i.

From (7), we know that when i > t − 1, the expectation
E{ωkεTk−i} = 0, and when i > h + 1, the expectation
E{vkεTk−i} = 0. Thus, the process noise one-step predictor
ω̂k|k−1 and the measurement noise one-step predictor v̂k|k−1
can be rewritten as in (16) and (17), respectively.

Taking into account (17) and the fact that the process noise
ωk is not correlatedwith themeasurement noise vk , the expec-
tation 2ω,vk,k−i|k−i−1 = E{ωk ṽTk−i|k−i−1} can be calculated as
follows:

2
ω,v
k,k−i|k−i−1 = E

{
ωkvTk−i

}
− E

{
ωk v̂Tk−i|k−i−1

}
= −

h+i+1∑
f=1+i

E{ωkεTk−f }3
−1
k−f

× E{vk−iεTk−f }
T . (25)

If f > t − 1, then the expectation E{ωkεTk−f } = 0 and we
have (19). Similarly, 2v,v

k,k−i|k−i−1 = E{vk ṽTk−i|k−i−1} can be
calculated as follows:

2
v,v
k,k−i|k−i−1 = E

{
vkvTk−i

}
− E

{
vk v̂Tk−i|k−i−1

}
= Rvk,k−i −

h+1∑
f=1+i

4
v,ε
k,k−f

×3−1k−f (4
v,ε
k−i,k−f )

T . (26)

According to (6), (8) and (15), the innovation εk can be
rewritten as follows:

εk = C̃kxk + C̄k x̃k|k−1 + D̃kvk + D̄k ṽk|k−1. (27)

Therefore, using (25), (26) and the fact that D̃k−i and
C̃k−i are both zero mean and uncorrelated with other
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signals, the expectations 4
ω,ε
k,k−i = E{ωkεTk−i} and

4
v,ε
k,k−i = E{vkεTk−i} can be calculated as follows:

4
ω,ε
k,k−i = E

{
ωk

(
C̃k−ixk−i + C̄k−ix̃k−i|k−i−1

+ D̃k−ivk−i + D̄k−iṽk−i|k−i−1
)T}

= E
{
ωk x̃Tk−i|k−i−1

}
C̄T
k−i

+E
{
ωk ṽTk−i|k−i−1

}
D̄Tk−i

= 2
ω,x
k,k−i|k−i−1C̄

T
k−i +2

ω,v
k,k−i|k−i−1D̄

T
k−i,

4
v,ε
k,k−i = E

{
vk
(
C̃k−ixk−i + C̄k−ix̃k−i|k−i−1

+ D̃k−ivk−i + D̄k−iṽk−i|k−i−1
)T}

= E
{
vk x̃Tk−i|k−i−1

}
C̄T
k−i

+ E
{
vk ṽTk−i|k−i−1

}
D̄Tk−i

= 2
v,x
k,k−i|k−i−1C̄

T
k−i +2

v,v
k,k−i|k−i−1D̄

T
k−i.

Then, our next step is to calculate the remaining expectations
2
ω,x
k,k−i|k−i−1 and 2

v,x
k,k−i|k−i−1.

From Theorem 1, the state prediction error x̃k−i|k−i−1 can
be calculated as follows:

x̃k−i|k−i−1 = Ak−i−1x̃k−i−1|k−i−2 +As,k−i−1

+Bk−i−1ω̃k−i−1|k−i−2

−Dk−i−1ṽk−i−1|k−i−2,

where Ak−i−1, As,k−i−1 and Dk−i−1 are determined as
in (48). By introducing the notation An

An =

{∏n
j=i+2Ak−j+1, 0 ≤ j ≤ n,

I , j > n,
(28)

the state prediction error x̃k−i|k−i−1 can be rewritten by:

x̃k−i|k−i−1 =
t−1∏
n=i+1

Ak−nx̃k−t+1|k−t

+

t−1∑
n=i+1

An
{
As,k−n + Bk−nω̃k−n|k−n−1

−Dk−nṽk−n|k−n−1
}
,

therefore, the expectations2ω,xk,k−i|k−i−1 = E
{
ωk x̃Tk−i|k−i−1

}
and 2v,x

k,k−i|k−i−1 = E
{
vk x̃Tk−i|k−i−1

}
can be determined as

follows:

2
ω,x
k,k−i|k−i−1 =

t−1∏
n=i+1

E
{
ωk x̃Tk−t+1|k−t

}
AT
k−n

+

t−1∑
n=i+1

(
E{ωkAT

s,k−n}

+ E{ωk ω̃Tk−n|k−n−1B
T
k−n}

− E{ωk ṽTk−n|k−n−1D
T
k−n}

)
AT
n , (29)

2
v,x
k,k−i|k−i−1 =

h∏
n=i+1

E
{
vk x̃Tk−h|k−h−1

}
AT
k−n

+

h∑
n=i+1

(
E{vkAT

s,k−n}

+ E{vk ω̃Tk−n|k−n−1B
T
k−n}

+ E{vk ṽTk−n|k−n−1D
T
k−n}

)
AT
n . (30)

Taking into account (48), Lemma 1 and the fact that ωk
and vk are both discrete autocorrelated across time, the
remaining expectations in (29) and (30) can be calculated as
follows:

E
{
ωk x̃Tk−t+1|k−t

}
= E

{
ωk (xk−t+1 − x̂k−t+1|k−t )T

}
= Qk,k−tBTk−t , (31)

E{ωkAT
s,k−n} = 0, (32)

2
ω,ω
k,k−n|k−n−1 = E{ωkωTk−n} − E{ωk ω̂Tk−n|k−n−1}

= Qωk,k−n −
t−1∑

f=n+1

4
ω,ε
k,k−f

×3−1k−f (4
ω,ε
k−n,k−f )

T , (33)

E
{
vk x̃Tk−h|k−h−1

}
= E

{
vkxTk−h

}
− E

{
vk x̂Tk−h|k−h−1

}
= −Rk,k−h−1D̄Tk−h−1
×3−1k−h−1(4

x,ε
k−h,k−h−1)

T , (34)

E{vkAT
s,k−n} = 0, (35)

2
v,ω
k,k−n|k−n−1 = E{vk ω̂Tk−n|k−n−1} + E{vkωTk−n}

= −

M2∑
f=n+1

4
v,ε
k,k−f3

−1
k−f (4

ω,ε
k−n,k−f )

T ,

M2 = min{h+ 1, t + n− 1}. (36)

Combining (31)-(33) and (29), we have (18). Substitut-
ing (34)-(36) into (30) yields (20) which completes the
proof.
Remark 5: In the traditional recursive estimation problem,

the innovations are calculated as εk = yk −Ck x̂k|k−1 and the
noises one-step predictors are ω̂k|k−1 = 0 and v̂k|k−1 = 0.
However, due to the possible sensor delay which occurs in
a random way and the deterministic delayed noises, these
are not true for the problem at hand. Therefore, we need
to recalculate the innovations, the process noise one-step
predictor and the measurement noise one-step predictor.
Lemma 4: For the state one-step prediction errors r̃k|k−1

and z̃k|k−1, we have the following result:

E{r̃k|k−1z̃Tk|k−1} = E{rk z̃Tk|k−1}.
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Proof: According to the OPT, the one-step predictors
r̂k|k−1 and ẑk|k−1 can be calculated as follows:

r̂k|k−1 = E{rk} +
k−1∑
i=1

E{rkεTi }3
−1
i εi

ẑk|k−1 = E{zk} +
k−1∑
j=1

E{zkεTj }3
−1
j εj,

therefore, the one-step prediction error r̃k|k−1 = rk − r̂k|k−1
and z̃k|k−1 = zk − ẑk|k−1 can be calculated as follows:

r̃k|k−1 = rk − E{rk} −
k−1∑
i=1

E{rkεTi }3
−1
i εi,

z̃k|k−1 = zk − E{zk} −
k−1∑
j=1

E{zkεTj }3
−1
j εj. (37)

It follows directly from (37) that the expectation
E{r̃k|k−1z̃Tk|k−1} can be calculated as follows:

E{r̃k|k−1z̃Tk|k−1} = E{rk z̃Tk|k−1} − E{E{rk}zTk }
+ E{E{rk}E{zk}T }

+

k−1∑
j=1

E{E{rk}εTj }3
−1
j E{zkεTj }

T

−

k−1∑
i=1

E{rkεTi }3
−1
i E{εizTk }

+

k−1∑
i=1

E{rkεTi }3
−1
i E{εiE{zk}T }

+

k−1∑
j=1

k−1∑
i=1

E{rkεTi }3
−1
i E{εiεTj }

×3−1j E{εjzTk }, (38)

since the innovations are zero mean and uncorrelated with
each other, in addition, the expectations E{rk} and E{zk} are
uncorrelated with the innovations εi, therefore, we have

E{E{rk}zTk } = E{E{rk}E{zk}T } = E{rk}E{zk}T ,
E{E{rk}εTj } = E{rk}E{εTj } = 0,

E{εiE{zk}T } = E{εi}E{zTk } = 0,
k−1∑
j=1

k−1∑
i=1

E{rkεTi }3
−1
i E{εiεTj }3

−1
j E{εjzTk }

=

k−1∑
i=1

E{rkεTi }3
−1
i E{εizTk }. (39)

Substituting (39) into (38), we have E{r̃k|k−1z̃Tk|k−1} =
E{rk z̃Tk|k−1} which completes the proof.

A. ROBUST RECURSIVE FILTER
Theorem 1: For system (5)-(6), we have the following

robust recursive filter:

x̂k|k = x̂k|k−1 +4
x,ε
k,k3

−1
k εk , (40)

Pk|k = Pk|k−1 −4
x,ε
k,k3

−1
k (4x,ε

k,k )
T , (41)

x̂k+1|k = x̂k+1|k−1 +4
x,ε
k+1,k3

−1
k εk , (42)

Pk+1|k = AkPk|k−1AT
k +Ak (2

ω,x
k,k|k−1)

TBTk

−Ak (2
v,x
k,k|k−1)

TDT
k + X

As,As
k,k

+Bk2
ω,x
k,k|k−1A

T
k + Bk2

ω,ω
k,k|k−1B

T
k

−Bk (2
v,ω
k,k|k−1)

TDT
k −Dk2

v,x
k,k|k−1A

T
k

−Dk2
v,ω
k,k|k−1B

T
k +Dk2

v,v
k,k|k−1D

T
k , (43)

3k = σk C̄e,kX
x,x
k,k C̄

T
e,k + C̄kPk|k−1C̄

T
k

+ σk D̄eRk D̄Te + D̄k2
v,v
k,k|k−1D̄

T
k , (44)

4
x,ε
k,k = Pk|k−1C̄T

k + (2v,x
k,k|k−1)

T D̄Tk , (45)

4
x,ε
k,k+1 = Ak4

x,ε
k,k + Bk4

ω,ε
k,k , (46)

XAs,As
k,k = As,kX

x,x
k,k A

T
s,k + σk4

x,ε
k+1,k3

−1
k D̄eRk

× D̄Te 3
−1
k (4x,ε

k+1,k )
T
+ σk4

x,ε
k+1,k

×3−1k C̄e,kX
x,x
k,k C̄

T
e,k3

−1
k (4x,ε

k+1,k )
T , (47)

where the innovation εk is defined and calculated as in
Lemma 3.3k is the innovation covariance.4

x,ε
k,i is the expec-

tation between xk and εi(i = k, k+1). Pk|k and Pk+1|k are the
state filtering error covariance and state one-step prediction
error covariance, respectively.XAs,As

k,k = E{As,kAT
s,k} and the

matrices Ak , As,k and Dk are defined in (48). The expecta-
tions2ω,xk,k|k−1,2

v,x
k,k|k−1,2

v,ω
k,k|k−1,2

ω,ω
k,k|k−1 and2

v,v
k,k|k−1 are

defined and calculated as in Lemma 3. The initial values are
x̂0|−1 = [ĒxT0 0]T , P0|−1 = diag(EP0, 0).

Proof:According to (5), (7), the OPT and the fact that ηk
is zero mean and uncorrelated with other signals, the system
state one-step predictor x̂k+1|k can be calculated as follows:

x̂k+1|k = E{xk+1} +
k∑
i=1

E
{
xk+1εTi

}
3−1i εi

= AkE{xk} +
k−1∑
i=1

E
{
AkxkεTi

}
3−1i εi

+

k−1∑
i=1

E
{
BkωkεTi

}
3−1i εi + E

{
xk+1εTk

}
3−1k εk

= Ak x̂k|k−1 + Bk ω̂k|k−1 +4
x,ε
k+1,k3

−1
k εk ,

therefore, the one-step prediction error x̃k+1|k has the follow-
ing form:

x̃k+1|k = (Ak −4
x,ε
k+1,k3

−1
k C̄k )x̃k|k−1 + (As,kηk

−4
x,ε
k+1,k3

−1
k C̃k )xk + Bk ω̃k|k−1 −4

x,ε
k+1,k

×3−1k D̃kvk −4
x,ε
k+1,k3

−1
k D̄k ṽk|k−1.
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By defining

As,k = (As,kηk −4
x,ε
k+1,k3

−1
k C̃k )xk −4

x,ε
k+1,k3

−1
k D̃kvk ,

Ak = Ak −4
x,ε
k+1,k3

−1
k C̄k , Dk = 4

x,ε
k+1,k3

−1
k D̄k , (48)

the one-step prediction error x̃k+1|k can be rewritten
by:

x̃k+1|k=Ak x̃k|k−1+As,k + Bk ω̃k|k−1 −Dk ṽk|k−1. (49)

Furthermore, noting (49), the one-step prediction error
covariance can be calculated as follows:

Pk+1|k = AkE
{
x̃k|k−1x̃Tk|k−1

}
AT
k +AkE

{
x̃k|k−1AT

s,k

}
+AkE{x̃k|k−1ω̃Tk|k−1}B

T
k + E{As,kAT

s,k}

−AkE{x̃k|k−1ṽTk|k−1}D
T
k + E{As,k x̃Tk|k−1}A

T
k

+ E{As,k ω̃k|k−1}BTk − E{As,k ṽTk|k−1}D
T
k

+BkE{ω̃k|k−1x̃Tk|k−1}A
T
k + BkE{ω̃k|k−1A

T
s,k}

+BkE{ω̃k|k−1ω̃Tk|k−1}B
T
k − BkE{ω̃k|k−1

× ṽTk|k−1}D
T
k −DkE{ṽk|k−1x̃Tk|k−1}A

T
k −Dk

× E{ṽk|k−1ω̃Tk|k−1}B
T
k −DkE{ṽk|k−1AT

s,k}

+DkE{ṽk|k−1ṽTk|k−1}D
T
k , (50)

where the remaining expectations can be calculated by:

E{ω̃k|k−1x̃Tk|k−1} = E{ωk x̃Tk|k−1} = 2
ω,x
k,k|k−1,

E{ṽk|k−1x̃Tk|k−1} = E{vk x̃Tk|k−1} = 2
v,x
k,k|k−1,

E{ṽk|k−1ṽTk|k−1} = E{vk ṽTk|k−1} = 2
v,v
k,k|k−1,

E{ω̃k|k−1ω̃Tk|k−1} = E{ωk ω̃Tk|k−1} = 2
ω,ω
k,k|k−1,

E{ω̃k|k−1ṽTk|k−1} = E{ωk ṽTk|k−1} = 2
ω,v
k,k|k−1,

E
{
x̃k|k−1AT

s,k

}
= E{ṽk|k−1AT

s,k} = E{ω̃k|k−1AT
s,k} = 0,

(51)

XAs,As
k,k = As,kX

x,x
k,k A

T
s,k + σk4

x,ε
k+1,k3

−1
k D̄eRk D̄Te

×3−1k (4x,ε
k+1,k )

T
+ σk4

x,ε
k+1,k3

−1
k C̄e,k

×X x,xk,k C̄
T
e,k3

−1
k (4x,ε

k+1,k )
T , (52)

where Lemmas 1-4 have been applied. Substituting (51)
and (52) into (50), we have (43).
It follows from (27) and the fact that matrices C̃k and D̃k

are zero mean, the innovation covariance 3k = E{εkεTk } can
be calculated as follows:

3k = E
{
J2k
}
C̄e,kE

{
xkxTk

}
C̄T
e,k + C̄kE

{
x̃k|k−1

× x̃Tk|k−1
}
C̄T
k + E

{
J2k
}
D̄eE{vkvTk }D̄

T
e

+ D̄kE{ṽk|k−1ṽTk|k−1}D̄
T
k

= σk C̄e,kX
x,x
k,k C̄

T
e,k + C̄kPk|k−1C̄

T
k

+ σk D̄eRk D̄Te + D̄k2
v,v
k,k|k−1D̄

T
k .

From (27) and the fact that vk and C̃k are zero mean uncor-
related with each, the expectation 4x,ε

k,k = E
{
xkεTk

}
can be

calculated as follows:

4
x,ε
k,k = E

{
xk (C̃kxk + C̄k x̃k|k−1

+ D̃kvk + D̄k ṽk|k−1)T
}

= Pk|k−1C̄T
k + (2v,x

k,k|k−1)
T D̄Tk ,

where 2v,x
k,k|k−1 can be calculated as in Lemma 3. Further-

more, the expectation 4x,ε
k+1,k = E

{
xk+1εTk

}
can be calcu-

lated as follows:

4
x,ε
k+1,k = E

{
(Akxk + As,kηkxk + Bkωk )εTk

}
= Ak4

x,ε
k,k + Bk4

ω,ε
k,k ,

where 4ω,εk,k can be calculated as in Lemma 3.
Again, by using (5) and the OPT, the recursive filter x̂k|k

can be designed as follows:

x̂k|k = E{xk} +
k∑
i=1

E
{
xkεTi

}
3−1i εi

= x̂k|k−1 +4
x,ε
k,k3

−1
k εk ,

therefore, the filtering error x̃k|k is calculated as follows:

x̃k|k = x̃k|k−1 −4
x,ε
k,k3

−1
k εk . (53)

Based on (53), the filtering error covariance Pk|k can be
calculated as follows:

Pk|k = E{x̃k|k−1x̃Tk|k−1} − E{x̃k|k−1εTk }3
−1
k (4x,ε

k,k )
T

− 4
x,ε
k,k3

−1
k E{εk x̃Tk|k−1} +4

x,ε
k,k3

−1
k (4x,ε

k,k )
T ,

where the expectation E{x̃k|k−1x̃Tk|k−1} = Pk|k−1 and the
expectation E{x̃k|k−1εTk } can be calculated as follows:

E{x̃k|k−1εTk } = E{xkεTk } − E
{{

k−1∑
i=1

E{xkεTi }3
−1
i εi

}
εTk

}
.

The fact that εk is uncorrelated with εj, j 6= k , we have

E{x̃k|k−1εTk } = E{xkεTk } − 0 = 4x,ε
k,k ,

therefore, the error covariance Pk|k can be rewritten
by:

Pk|k = Pk|k−1 −4
x,ε
k,k3

−1
k (4x,ε

k,k )
T ,

which completes the proof of theorem 1.
We are now in a position to proceed with the design of

predictor and smoother for the given system.
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B. ROBUST RECURSIVE PREDICTOR
Theorem 2: For the given system (5)-(6), we have the

following predictor:



1 < N ≤ t :
x̂k+N |k = Ak+N−1x̂k+N−1|k + Bk+N−1ω̂k+N−1|k ,
ω̂k+N−1|k =

∑t−N
i=0 4

ω,ε
k+N−1,k−i3

−1
k−iεk−i,

Pk+N |k = Ak+N−1Pk+N−1|kATk+N−1
+As,k+N−1X

x,x
k+N−1,k+N−1

×ATs,k+N−1 + Ak+N−1
×2

x,ω
k+N−1,k+N−1|kB

T
k+N−1

+Bk+N−1(2
x,ω
k+N−1,k+N−1|k )

T

×ATk+N−1 + Bk+N−1
×2

ω,ω
k+N−1,k+N−1B

T
k+N−1,

2
ω,ω
k+N−1,k+N−1|k = Qωk+N−1,k+N−1

−
∑t−N

i=0 4
ω,ε
k+N−1,k−i

×3−1k−i(4
ω,ε
k+N−1,k−i)

T ,

2
x,ω
k+N−1,k+N−1|k =

∏t
n=2 Ak+N−nBk+N−t−1
×Qk+N−t−1,k+N−1
−
∑t−N

i=0 4
x,ε
k+N−1,k−i

×3−1k−i(4
ω,ε
k+N−1,k−i)

T ,

4
x,ε
k+N−1,k−i = 2

x,x
k+N−1,k−i|k−i−1C̄

T
k−i

+2
x,v
k+N−1,k−i|k−i−1D̄

T
k−i,

2
x,x
k+N−1,k−i|k−i−1 =

∏N+i
n=2 Ak+N−n
×Pk−i|k−i−1
+
∑N+i

n=2 kn−1Bk+N−n
×2

ω,x
k+N−n,k−i|k−i−1,

2
x,v
k+N−1,k−i|k−i−1 =

∏N+i
n=2 Ak+N−n
×2

x,v
k−i,k−i|k−i−1

+
∑N+i

n=2 kn−1Bk+N−n
×2

ω,v
k+N−n,k−i|k−i−1,

(54)



N > t :
x̂k+N |k = Ak+N−1x̂k+N−1|k ,
Pk+N |k = Ak+N−1Pk+N−1ATk+N−1

+As,k+N−1X
x,x
k+N−1,k+N−1

×ATs,k+N−1 + Bk+N−1 Qk+N−1
×BTk+N−1 + Ak+N−1
×2

x,ω
k+N−1|k,k+N−1B

T
k+N−1

+Bk+N−1(2
x,ω
k+N−1|k,k+N−1)

T

×ATk+N−1,
2
x,ω
k+N−1|k,k+N−1 = X x,ωk+N−1,k+N−1,

(55)

where the initial values are given in Theorem 1 and
Lemmas 1-4. The notation kn is defined
in (58).

Proof: From (5) and the OPT, the N-step state predictor
x̂k+N |k can be calculated as follows:

x̂k+N |k = E{xk+N } +
k∑
i=1

E{xk+N εTi }3
−1
i εi

= Ak+N−1x̂k+N−1|k + Bk+N−1ω̂k+N−1|k , (56)

where the process noise predictor ω̂k+N−1|k can be calculated
as follows:

ω̂k+N−1|k =

k−1∑
i=0

E{ωk+N−1εTk−i}3
−1
k−iεk−i.

It can be easily seen that if N > t , then the expectation
E{ωk+N−1εTk−i} = 0, furthermore, we have ω̂k+N−1|k = 0.
Therefore, the design of the proposedN -step predictor can be
divided into two different parts: One is N > t and the other
is 1 < N ≤ t .
1) 1 < N ≤ t: Taking into account the fact that the process

noise is t-step discrete autocorrelated across time, we have
from (5) that

ω̂k+N−1|k =

k−1∑
i=0

E{ωk+N−1εTk−i}3
−1
k−iεk−i

=

t−N∑
i=0

4
ω,ε
k+N−1,k−i3

−1
k−iεk−i,

therefore, the N − 1 step process noise prediction error
ω̃k+N−1|k can be expressed as follows:

ω̃k+N−1|k = ωk+N−1 −

t−N∑
i=0

4
ω,ε
k+N−1,k−i3

−1
k−iεk−i.

It follows from (5) and (56) that the N -step state prediction
error x̃k+N |k can be calculated as follows:

x̃k+N |k = Ak+N−1x̃k+N−1|k + As,k+N−1ηk+N−1
× xk+N−1 + Bk+N−1ω̃k+N−1|k ,

and then, the N -step state prediction error covariance Pk+N |k
can be calculated as follows:

Pk+N |k = Ak+N−1Pk+N−1|kATk+N−1 + As,k+N−1
×X x,xk+N−1,k+N−1A

T
s,k+N−1 + Ak+N−1

× E{x̃k+N−1|k ω̃Tk+N−1|k}B
T
k+N−1

+Bk+N−1E{ω̃k+N−1|k x̃Tk+N−1|k}
×ATk+N−1 + Bk+N−1E{ω̃k+N−1|k
× ω̃Tk+N−1|k}B

T
k+N−1. (57)

Our next step is to calculate the remaining expectations
in (57). From Lemma 4, we have

E{ω̃k+N−1|k ω̃Tk+N−1|k} = E{ωk+N−1ω̃Tk+N−1|k}
= 2

ω,ω
k+N−1,k+N−1|k ,
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and the expectation 2ω,ωk+N−1,k+N−1|k can be calculated as
follows:

2
ω,ω
k+N−1,k+N−1|k = E{ωk+N−1ωTk+N−1}

− E{ωk+N−1ω̂Tk+N−1|k}

= Qωk+N−1,k+N−1 −
t−N∑
i=0

4
ω,ε
k+N−1,k−i

×3−1k−i(4
ω,ε
k+N−1,k−i)

T ,

where the fact that the process noise is t-step discrete auto-
correlated across time has been applied.

By introducing the notation kn

kn =

{∏n
m=2 Ak+N−m, n > 1,

I , n = 1,
(58)

the state xk+N−1 can be rewritten as follows:

xk+N−1 = Ak+N−2xk+N−2 + As,k+N−2
× ηk+N−2xk+N−2 + Bk+N−2ωk+N−2

=

t∏
n=2

Ak+N−nxk+N−t +
t∑

n=2

kn−1

× (As,k+N−nηk+N−nxk+N−n
+Bk+N−nωk+N−n),

therefore, the expectation E{x̃k+N−1|k
ω̃Tk+N−1|k}= E{xk+N−1ω̃Tk+N−1|k}= 2

x,ω
k+N−1,k+N−1|k can be

calculated as follows:

2
x,ω
k+N−1,k+N−1|k = E{xk+N−1ωTk+N−1}

− E{xk+N−1ω̂Tk+N−1|k}

=

t∏
n=2

Ak+N−nBk+N−t−1

×Qk+N−t−1,k+N−1

−

t−N∑
i=0

4
x,ε
k+N−1,k−i

×3−1k−i(4
ω,ε
k+N−1,k−i)

T ,

where the second equality holds since the process noise is
t-step discrete autocorrelated across time and ηk is uncor-
related with other signals. Taking (27) into consideration,
the remaining expectation 4x,ε

k+N−1,k−i= E{xk+N−1εTk−i} can
be calculated as follows:

4
x,ε
k+N−1,k−i = E

{
xk+N−1

(
C̃k−ixk−i + C̄k−ix̃k−i|k−i−1

+ D̃k−ivk−i + D̄k−iṽk−i|k−i−1
)T}

= E{xk+N−1xTk−i}E{C̃
T
k−i}

+ E{xk+N−1x̃Tk−i|k−i−1}C̄
T
k−i

+ E{xk+N−1vTk−i}E{D̃
T
k−i}

+ E{xk+N−1ṽTk−i|k−i−1}D̄
T
k−i,

where the matrices C̃k−i and D̃k−i are zero mean, therefore,
the expectation 4x,ε

k+N−1,k−i can be rewritten as follows:

4
x,ε
k+N−1,k−i = 2

x,x
k+N−1,k−i|k−i−1C̄

T
k−i

+2
x,v
k+N−1,k−i|k−i−1D̄

T
k−i,

where 2
x,x
k+N−1,k−i|k−i−1 = E{xk+N−1x̃Tk−i|k−i−1} and

2
x,v
k+N−1,k−i|k−i−1 = E{xk+N−1ṽTk−i|k−i−1} can be calculated

as follows:

2
x,x
k+N−1,k−i|k−i−1 =

N+i∏
n=2

Ak+N−nE
{
xk−ix̃Tk−i|k−i−1

}
+

N+i∑
n=2

kn−1Bk+N−n

×E{ωk+N−nx̃Tk−i|k−i−1}

=

N+i∏
n=2

Ak+N−nPk−i|k−i−1

+

N+i∑
n=2

kn−1Bk+N−n

×2
ω,x
k+N−n,k−i|k−i−1,

2
x,v
k+N−1,k−i|k−i−1 =

N+i∏
n=2

Ak+N−nE
{
xk−iṽTk−i|k−i−1

}
+

N+i∑
n=2

kn−1Bk+N−n

×E{ωk+N−nṽTk−i|k−i−1}

=

N+i∏
n=2

Ak+N−n2
x,v
k−i,k−i|k−i−1

+

N+i∑
n=2

kn−1Bk+N−n

×2
ω,v
k+N−n,k−i|k−i−1.

2) N > t: From (7) and the OPT, we have ω̂k+N−1 = 0,
therefore, the N -step state predictor can be calculated as
follows:

x̂k+N |k = Ak+N−1x̂k+N−1|k ,

and then, the N -step state prediction error x̃k+N |k = x̂k+N |k−
xk+N has the following expression:

x̃k+N |k = Ak+N−1x̃k+N−1|k + As,k+N−1ηk+N−1
× xk+N−1 + Bk+N−1ωk+N−1. (59)

It implies from (59) and Lemma 2 that the N -step state pre-
diction error covariance Pk+N |k can be calculated as follows:

Pk+N |k = Ak+N−1Pk+N−1ATk+N−1 + As,k+N−1
×X x,xk+N−1,k+N−1A

T
s,k+N−1 + Bk+N−1

×Qk+N−1BTk+N−1 + Ak+N−1
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×2
x,ω
k+N−1|k,k+N−1B

T
k+N−1 + Bk+N−1

× (2x,ω
k+N−1|k,k+N−1)

TATk+N−1,

where 2x,ω
k+N−1|k,k+N−1 = E{x̃k+N−1|kωTk+N−1} can be cal-

culated as follows:

2
x,ω
k+N−1|k,k+N−1 = E{xk+N−1ωTk+N−1}

− E{x̂k+N−1|kωTk+N−1}

=

t−1∏
n=1

Ak+N−1−(n−1)E{xk+N−t

×ωk+N−1} − E{x̂k+N−1|kωTk+N−1}

= X x,ωk+N−1,k+N−1 −

k∑
i=1

4
x,ε
k+N−1,i

×3−1i E{εiωTk+N−1},

where Lemma 1 has been applied. Since k + N − 1 − k =
N − 1 ≥ t , therefore, E{εiωTk+N−1} = 0, and then, we have
2
x,ω
k+N−1|k,k+N−1 = X x,ωk+N−1,k+N−1 which completes the

proof of the Theorem 2.

C. ROBUST RECURSIVE SMOOTHER
Theorem 3: For the addressed system (5)-(6), the N -step

(N > 0) fixed-lag robust recursive smoother can be calcu-
lated as follows:

x̂k|k+N = x̂k|k+N−1 +4
x,ε
k,k+N3

−1
k+N εk+N , (60)

Pk|k+N = Pk|k+N−1 −4
x,ε
k,k+N3

−1
k+N (4

x,ε
k,k+N )

T ,

(61)

4
x,ε
k,k+N = 2

x,x
k,k+N |k+N−1C̄

T
k+N

+2
x,v
k,k+N |k+N−1D̄

T
k+N , (62)

2
x,x
k,k|k−1 = Pk|k−1, (63)

2
x,x
k,k+N |k+N−1 = 2

x,x
k,k+N−1|k+N−2A

T
k+N−1

+2
x,ω
k,k+N−1|k+N−2B

T
k+N−1

−2
x,v
k,k+N−1|k+N−2D

T
k+N−1, (64)

2
x,v
k,k+N |k+N−1 = −

k+N−1∑
i=1

4
x,ε
k,i3

−1
i (4v,ε

k+N ,i)
T , (65)

2
x,ω
k,k+N−1|k+N−2 = X x,ωk,k+N−1 −

k+N−2∑
i=1

4
x,ε
k,i

×3−1i (4ω,εk+N−1,i)
T , (66)

where the matricesAk+N−1 andDk+N−1 are defined in (48).
The initial values are given by Theorem 1 and Lemmas 1-4.

Proof: Applying the OPT, the N -step fixed-lag robust
recursive smoother is calculated as follows:

x̂k|k+N = E{xk} +
k+N∑
i=1

E{xkεTi }3
−1
i εi

= x̂k|k+N−1 +4
x,ε
k,k+N3

−1
k+N εk+N , (67)

where the expectation 4x,ε
k,k+N = E{xkεTk+N } can be calcu-

lated as follows:

4
x,ε
k,k+N = E

{
xk (C̃k+N xk+N + C̄k+N x̃k+N |k+N−1

+ D̃k+N vk+N + D̄k+N ṽk+N |k+N−1)T
}

= 2
x,x
k,k+N |k+N−1C̄

T
k+N

+2
x,v
k,k+N |k+N−1D̄

T
k+N , (68)

where the last equality holds since the matrices C̃k+N
and D̃k+N are zero mean and uncorrelated with the sys-
tem state. It follows from the OPT that the expectations
2
x,v
k,k+N |k+N−1 = E{xk ṽTk+N |k+N−1} and 2

x,x
k,k+N |k+N−1 =

E{xk x̃Tk+N |k+N−1} in (68) can be calculated as follows:

2
x,v
k,k+N |k+N−1 = E{xk (vk+N − v̂k+N |k+N−1)T }

= −

k+N−1∑
i=1

4
x,ε
k,i3

−1
i (4v,ε

k+N ,i)
T ,

2
x,x
k,k+N |k+N−1 = E{xk (Ak+N−1x̃k+N−1|k+N−2

+As,k+N−1 + Bk+N−1ω̃k+N−1|k+N−2
−Dk+N−1ṽk+N−1|k+N−2)T }

= 2
x,x
k,k+N−1|k+N−2A

T
k+N−1

+2
x,ω
k,k+N−1|k+N−2B

T
k+N−1

−2
x,v
k,k+N−1|k+N−2D

T
k+N−1, (69)

where the expectation2x,ω
k,k+N−1|k+N−2 in (69) can be calcu-

lated as follows:

2
x,ω
k,k+N−1|k+N−2 = E{xkωTk+N−1}

− E{xk ω̂Tk+N−1|k+N−2}
= X x,ωk,k+N−1

−

k+N−2∑
i=1

4
x,ε
k,i3

−1
i (4ω,εk+N−1,i)

T , (70)

where Lemma 1 has been applied in (70). In addition, apply-
ing Lemma 4, we have

2
x,x
k,k|k−1 = E{xk x̃Tk|k−1} = E{x̃k|k−1x̃Tk|k−1} = Pk|k−1.

From (67), the smoother error can be obtained as follows:

x̃k|k+N = xk − x̂k|k+N−1 −4
x,ε
k,k+N3

−1
k+N εk+N

= x̃k|k+N−1 −4
x,ε
k,k+N3

−1
k+N εk+N ,

therefore, the smoother error covariance can be obtained by:

Pk|k+N = Pk|k+N−1 − E{x̃k|k+N−1εTk+N }3k+N

× (4x,ε
k,k+N )

T
−4

x,ε
k,k+N3

−1
k+NE{εk+N

× x̃Tk|k+N−1} +4
x,ε
k,k+N3

−1
k+N (4

x,ε
k,k+N )

T

= Pk|k+N−1 −4
x,ε
k,k+N3

−1
k+N (4

x,ε
k,k+N )

T ,

which completes the proof of the Theorem 3.
Remark 6: A seemingly natural way of handling the

delayed process noises andmeasurement noises is to augment
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the system states. However, when t and h are very large,
such a state augmentation approach gives rise to significant
increase of the system dimension, which would inevitably
lead to heavy computational burden. Without resorting to
state augmentation, in our current work, by combining the
noises at present time and the delayed noises into a whole
one, the delayed noises are transformed to be the discrete
autocorrelated noises across time. At last, by using an inno-
vation analysis approach and the OPT, the desired recursive
filter, recursive predictor and recursive smoother are obtained
in Theorems 1-3, respectively.

In this manuscript, the measurement delay is assumed to
be at most one-step delay. However, in practical applications,
there is also the phenomenon of multi-step delay. In addi-
tion, for multi-sensor fusion system, the measurement delay
of each sensor is also different. These problems mentioned
above are exactly the new research topics that the author will
carry out on the basis of this paper in the future.

IV. AN ILLUSTRATIVE EXAMPLE
An example is provided to illustrate the effectiveness of
our approaches in this manuscript. Let us consider the fol-
lowing uncertain system with delayed measurements and
noises:

Exk+1 =
([

0.5 −0.8
0.4 0.5

]
+

[
0.1 0
0 0.1

]
ηk

)
Exk

+

[
0.6
−1

]
ωk +

[
0.2
0.3

]
ωk−t ,

Eyk =
[
1 0
0 1

]
xk + Evk + Evk−h,

yk = (1− λk )Eyk + λkEyk−1, (71)

where Exk = [ExT1,k ExT2,k ]
T
∈ R2 is the system state to be

estimated. The scalars t and h are the time delay of the process
noise and the measurement noise, respectively. The vectors
ηk ∈ R, ωk ∈ R and Evk ∈ R2 are zero-mean Gaussian white
noises with covariances 1, 1 and I , respectively. The variables
λk ∈ R is a binary switching sequence taking values on
1 with Prob{λk = 1} = E{λk} = βk = 0.15. Our objective
is to find robust recursive filter Êxi,k|k , predictor Êxi,k+2|k and
smoother Êxi,k|k+1, i = 1, 2, and to give a comparison of their
accuracies.

In the simulation, the initial value Ex0 has mean Ēx0 = [0 0]
and the covariance EP0 = diag(2, 1). The steps of the delayed
process noise and measurement noise are set as t = 2 and
h = 3, respectively. Let MSE1 denote the mean square
error for the estimation of Ex1,k , i.e., (1/K )

∑K
k=1{Ex1,k −

Êx1,k|k}2, where K is the number of the samples. Similarly,
MSE2 is the mean square error for the estimation of Ex2,k ,
i.e., (1/K )

∑K
k=1{Ex2,k − Êx2,k|k}

2. Figures 1-8 are simulation
results.

From Figures 1-8, we can see that, 1) the proposed
robust recursive filter, predictor and smoother have good
performances for the uncertain system (71), this is due to
the fact that efforts have been made to compensate the

FIGURE 1. The signal of Ex1,k and filter Êx1,k|k .

FIGURE 2. The signal of Ex2,k and filter Êx2,k|k .

FIGURE 3. The signal of Ex1,k and predictor Êx1,k+2|k .

stochastic uncertainty, the randomly delayed measurements
and the deterministic delayed process noise andmeasurement
noise; 2) the predictor has the worst performance and the
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FIGURE 4. The signal of Ex2,k and predictor Êx2,k+2|k .

FIGURE 5. The signal of Ex1,k and smoother Êx1,k|k+1.

FIGURE 6. The signal of Ex2,k and smoother Êx2,k|k+1.

smoother has the best performance, this is natural because
that the most information is used in the smoother and the least
information is used in the predictor.

FIGURE 7. MSE1.

FIGURE 8. MSE2.

V. CONCLUSION
In this paper, we have investigated the robust recursive
estimation problem for a class of uncertain systems with
randomly delayed measurements and deterministic delayed
process noises and measurement noises. The dynamic system
under consideration is subject to stochastic uncertainty. The
delay phenomenon of the measurements is randomly and
the delay rate is described as a binary switching sequence
obeying a conditional probability distribution. The process
noise is assumed to be t-step time delay and the measure-
ment noise is assumed to be h-step time delay. By combining
the noise at present time and the delayed noise into a whole
one, the original system is transformed to be a stochas-
tic parameter uncertain system with discrete autocorrelated
noise across time. As shown in Remark 2 and Remark 4,
the discrete autocorrelated noise across time is quite different
from the continuous autocorrelated noises, however, perhaps
fortunately, the orthogonal projection theorem and an innova-
tion analysis approach can be used to treat this complex case,
and the obtained robust recursive estimators including filter,
predictor and smoother are optimal in the linear minimum
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variance sense. A simulation example has been exploited to
show the effectiveness of the proposed approaches.
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