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ABSTRACT In the past ten years, civil drone technology has developed rapidly, and UAV (Unmanned
Aerial Vehicle) has been widely used in various industries. Especially in the field of aerial remote sensing,
the emergence of UAV technology has enabled the geographical information of remote areas that are not
concerned to be quickly presented. However, UAV aerial photography is greatly affected by the weather.
Pictures that use aerial drones for aerial photography in rainy weather will appear noise. In this paper, how
to eliminate the noise of aerial image is to be talked, the multi-channel pruning technology is used to pruning
the RnResNet network. Based on this, a new anti-convergence-convolution neural network noise reduction
system for the operation of UAV airborne embedded equipment is proposed. The system is used to eliminate
noise in the aerial image. This type of noise reducer has got rid of the current situation that the neural network
noise reducer consumes too much power and is inefficient, and has certain advantages.

INDEX TERMS SlimRGBD, ResNet, generative adversarial networks, image noise reduction, UAV, channel
pruning, sparse training.

I. INTRODUCTION
UAV technology has been an important part of human early
aviation and has a history of more than 100 years. At present,
many countries have adopted drone technology as a fron-
tier technology. Civil drone applications have less than one
decade. In modern society, remote sensing technology has
become an important means for humans to acquire geo-
graphical environment and change information [1]. With
the advent of the information age, the demand for remote
sensing data has increased dramatically in various countries.
Existing satellite remote sensing and aerial remote sensing
technologies have the characteristics of obtaining large-scale
macro geographic information [2]. However, formany remote
sensing technology applications with high resolution require-
ments and fast update time, it is difficult to guarantee. The use
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of drones as remote sensing platforms for aerial photography
and ground observations provides a new technical approach
to this emergency response [3]. With the development and
improvement of low-altitude drone photogrammetry technol-
ogy, a large number of experiments have shown that the
accuracy of UAV mapping topographic map can meet the
requirements of 1:2000 topographic map.

UAV as an aerial remote sensing platform has the fol-
lowing advantages: (1) Fast maneuvering response capabil-
ity. The low-altitude drone system has a short lift-off time,
simple operation, and convenient transportation, and can
quickly reach the monitoring area. Fly fast and photography
quickly [4]. (2) High resolution images and high precision
positioning capabilities. The spatial resolution of the image
acquired by the system reached the decimeter level. They are
high-resolution digital images acquired for high-resolution
3D landscape maps [1]. (3) The cost of using a drone is
low. UAVs are inexpensive to design and produce because
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they do not install flight crew driving equipment, voice com-
munications, and security equipment. The highly integrated
design of the drones due to the universal application of digital
technology makes the production cost low. UAVs are inex-
pensive to produce tooling and materials due to the ability to
properly reduce safety requirements and allow for the exten-
sive use of composite materials and their new manufacturing
processes [5]. (4) UAV can undertake high-risk or high-tech
task flights. Drivers or researchers can work safely on the
ground. Flight does not cause accidents due to human error
or flight measurement failure. When conducting real-time
information research, the number of people working is not
limited. Long-term or continuous real-time data transmission,
real-time and dynamic of fidelity. Especially for environmen-
tal monitoring that cannot be reached by vehicles and ships,
environmental monitoring in toxic areas, disaster monitoring
and command and rescue, the UAV remote sensing system
can show its unique advantages [6].

However, most of the aerial surveys of drones are subject
to weather and light conditions. In the environment with
good weather and sufficient sunlight, the quality of remote
sensing images is higher. Remote sensing images with poor
shooting conditions on rainy or weak lighting conditions are
of poor quality. This is because light good or bad is the main
influencing factor for shooting quality of the images [7].
Under low light conditions, the image taken by the drone
camera is likely to form a noisy image. It mainly refers to
the rough part of the image generated by CCD (CMOS) in
the process of receiving and outputting light as the receiving
signal. Digital photos taken by drones may not be noticed
if they are reduced by a personal computer, if you magnify
the image, then there will be a color (false color) that is
not present. This false color is image noise. The cause of
the noise generated by the drone camera: (1) Image noise
caused by long exposure. This phenomenon mainly occurs in
low-light shooting, and in the dark areas of the image, some
isolated bright spots appear. It can be said that the reason is
that the CCD cannot handle the huge workload caused by
the slow shutter speed, causing some specific pixels to lose
control. (2) Image noise generated by compressing an image
in JPEG format. Since images in JPEG format still appear
natural after reducing the image size, special methods can
be used to reduce image data. At this point, it will process
pixels in a row above and below. Therefore, especially at
the edge of the pixel edge, an unnatural combination with
the next pixel unit occurs. Image noise generated by com-
pression in JPEG format is also called Block Noise. The
higher the compression ratio, the more obvious the image
noise. Although the noise becomes invisible after the image
is reduced, the color compensation is very obvious. Such
image noise can be solved by using the highest possible
image quality or by recording images other than the JPEG
format. (3) Image noise caused by blur filtering. Image noise
caused by fuzzy filtering, like JPEG, causes image noise
when processing images. Sometimes it is generated during
the internal processing of a digital camera, sometimes when

it is processed by image retouching software. For smaller
images, image noise is produced in order to make the image
appear sharper and emphasize its color edges [8].

GAN have proven to be outstanding in image noise reduc-
tion. However, compared with UAV equipment, the common
GAN method for image noise reduction requires high hard-
ware resources of the device, but the memory and computing
power of UAV embedded devices are limited. It is a big
challenge to use the GANmethod to achieve image denoising
on embedded devices with limited computing power while
ensuring superior noise reduction performance. The goal of
this study was to develop a model that would allow drones to
produce realistic images even after processing aerial images
with noisy images. The main challenges are twofold: First,
the model of this study should be flexible and robust to handle
the same image corrupted by different levels of noise; second,
we must ensure that the denoised image is real and visually
pleasing. To solve these challenges, we propose a new type
of computing lightweight SlimRGBD (Slim ReCNN-GAN
Blind Denoising) for image noise reduction on UAV.

The rest of this paper is orginzed as follows: In the second
section, this article will introduce the efforts and shortcom-
ings of the previous research on image noise reduction, and
the problems that this article will try to solve. In the third
chapter, the paper elaborates the model design and system
principle of the image noise reducer in this study. The fourth
chapter describes in detail the experimental process of this
study, as well as the comparison of the methods used in this
study with the historical advanced methods. The fifth chapter
summarizes some of the characteristics of this study and the
work to be carried out in the future.

II. RELATED WORK
A. LIGHTWEIGHT CONVOLUTIONAL NEURAL
NETWORK FOR UAV VISUAL RECOGNITION
UAVs or Universal UAVs, which are computer vision enabled
by onboard cameras and embedded systems, are popular
in a wide range of applications. However, due to the lim-
ited memory and computing power of embedded devices,
real-time scene analysis by target detection running on a
drone platform is very challenging. In order to solve the
problem of reducing the memory footprint of the ResNet
type convolutional network architecture, Pierre Stock et al.
proposed a vector quantization method. The goal is to main-
tain the quality of the network output refactoring, not the
weight. The advantage of the vector quantization method is
that it minimizes the loss reconstruction error of the input
in the domain and does not require any tag data. Pierre
Stock et al. also used a byte-aligned codebook to generate a
compressed network for efficient reasoning on the CPU [9].
The vector quantization method was verified by quantify-
ing a high-performance ResNet-50 model to a memory size
of 5 mb (20 compression factors) while maintaining a 76.1%
top-1 accuracy on the ImageNet object classification. The
method can be easily adapted to simultaneously compress
and transfer ResNet trained on ImageNet to other domains.
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However, no consideration is given to nonlinearity, and there
is a certain range of reconstruction errors.

As we all know, power consumption is always pos-
itively related to the size of the function implemented
by the application. UAV applications usually require low
power consumption to ensure the endurance of the drone.
In order to solve these problems, Pengyi Zhang et al.
proposed a highly efficient target detector on the UAV
through channel pruning of the convolutional layer [10].
They enhanced the channel-level sparsity of the convolu-
tional layer by applying L1 regularization to the channel
scale factor, and pruning the feature channel with less infor-
mation to obtain a sparse target detector. Based on this
method, Pengyi Zhang et al. proposed SlimYOLOv3, which
has fewer promising parameters and floating point opera-
tions (FLOPs) than the original YOLOv3. It is a promis-
ing real-time target detection solution for drones. They
evaluated SlimYOLOv3 on the VisDrone2018-Det bench-
mark dataset. SlimYOLOv3 achieved convincing results
compared to unpruned convolutional neural networks, with
PLOPs reduced by approximately 90.8% and parameter sizes
reduced by approximately 92.0%. The running speed is twice
that of YOLOv3 [11], and the detection accuracy is also quite
good. This proves that the L1 regularization is applied to the
channel scale factor to enhance the channel-level sparsity of
the convolutional layer, and the convolutional neural network
obtained by pruning the feature channel with less information
is more efficient, faster and better. It is more suitable for the
realization of tasks such as image denoising using the deep
learning method on the drone.

B. ADVANTAGES AND DISADVANTAGES OF MAINSTREAM
METHODS FOR IMAGE NOISE REDUCTION
Existing image denoising methods mostly assume Gaussian
white noise of known intensity with a uniform Gaussian
distribution of noise. However, in real noise images, the noise
model is usually unknown and may be more complicated.
In response to this problem, Fengyuan Zhu et al. proposed
a new blind image denoising algorithm for recovering clean
images from noise images containing unknown noise mod-
els [12]. In order to model the empirical noise of an image,
their method introduces a mixture of Gaussian distributions
that is flexible enough to approximate different continuous
distributions. Redefine the blind image denoising problem
as a learning problem. First, a two-layer structural model
of noise plaque is established, and the net spot is used as a
latent variable. In order to control the complexity of the noise
plaque model, Fengyuan Zhu et al. proposed a new Bayesian
nonparametric prior, that is, relying on the Dirichlet process
tree to build the model [12]. Then, a variational inference
algorithm is derived to estimate the model parameters and
restore a clean patch. This method is applied to the synthesis
and real noise images of different noise models.

Convolutional neural networks have always been a
research hotspot to solve image denoising problems, but their
performance is still not satisfactory in most applications.

The synthetic noise distribution of these network trainings
does not accurately reflect the noise captured by the image
sensor. Data sets for some clean noise image pairs are often
used for benchmarking or for specific applications. The main
reason is that the model being studied is easily over-fitting
on the simplified AWGN model, which seriously deviates
from the complex actual noise model. In order to improve the
generalization ability of deep CNN denoiser, Shi Guo et al.
proposed a method of training convolutional blind denoising
network (CBDNet) [13]. In order to further provide an inter-
active strategy to easily correct the denoising results, they
embedded a noise estimation sub-network with asymmetric
learning into the CBDNet to suppress low estimation of
noise levels. The main findings of this work are twofold.
First, real noise models, including miscellaneous Gaussian
and ISP pipelines, are key to making composite image learn-
ing models suitable for real-noise photos. Secondly, adding
synthetic and real noise images to the training can improve
the denoising performance of the network. Benoit Brummer
et al. introduced the Natural Image Noise Data Set (NIND),
a dataset of SLR-like images with different ISO noise levels,
which is large enough to train the model for blind noise
reduction over a wide range of noise [14]. They demonstrated
a denoising model trained with NIND and showed that it is
significantly better than BM3D in terms of ISO noise from
unseen images, even when it is extended to images from
different types of cameras.Most of Benoit Brummer’s experi-
ments are conducted on a single U-Net [15], [16] network, but
modern methods, such as conditionally generated confronta-
tional networks (GANs), may yield better performance.

Kai Zhang et al. took a step more forward by studying
the construction of feedforward denoising of convolutional
neural networks (DnCNNs), witch introduced a very deep
architecture, learning algorithms and regularization methods
into image denoising [17]. Specifically, the residual learning
and batch normalization are applied to accelerate the denois-
ing model training process and promote the performance of
image denoising. Their proposed DnCNN model is capa-
ble of dealing with Gaussian Gaussian noise (ie, Gaussian
white noise) denoising at unknown noise levels, blind Gauss
denoising). Using the residual learning strategy, DnCNN
implicitly removes hidden images hidden in the hidden layer.
This feature motivate they to train a DnCNN model to deal
with some common image denoising tasks such as Hybrid
Noise denoising, single image super resolution, and JPEG
format image denoising. This method not only has good
image denoising performance in quantitative and qualitative,
but also has good running timeliness in a device with a GPU
implementation [17].

Based on discriminative learning DnCNN, the most
advanced denoising effect can be achieved, but these methods
are not suitable for this problem due to the lack of paired
training data. To tackled this problem, Jingwen Chen et al.
proposed a two-step solution: (1) The training generates
a Generative Adversarial Network (GAN) to estimate the
noise distribution on the input noise image to generate the
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FIGURE 1. SlimRGBD method framework. ‘‘Generator’’ is a neural network for generating noise-reduced images, and
‘‘Discriminator’’ is a convolutional neural network for determining the quality of noise-reduced images. ‘‘Generator’’ and
‘‘Discriminator’’ have different neural network architectures.

noise samples. (2) The noise block generated by the first
step is constructed to denoise the training datasets and the
training deep convolutional neural network (CNN) [18].
They attempted to improve the performance of image blind
noise reduction using a deep learning-based approach in the
absence of paired training data. On this basis, they proposed
the GCBD algorithm [18]. The GAN is used to learn the noise
distribution, establish a paired training dataset, and train the
CNN for denoising. One limitation of this approach is to
assume that the noise is zero mean additive noise. This type
of noise is common in the natural environment and includes
a wide variety of noise.

Majed El Helou et al. proposed a theory-based Gaussian
noise blind learning general image denoiser (blind universal
image fusion denoising network, BUIFD) [8]. This method is
called fusion denoising. It has a strong generalization ability
for invisible noise levels. Their approach improves the PSNR
of real-world grayscale image denoising with up to 0.7 dB of
training noise levels. It also improves the single-noise perfor-
mance of each of the most advanced color image denoising
performance, averaging 0.1 decibels.

III. SYSTEM MODEL AND DEFINITIONS
The new SlimRGBD (Slim ReCNN-GAN Blind Denois-
ing) we proposed for UAV image noise reduction can be
seen semantically that our SlimRGBD model uses: ReCNN,
neural network punning for ReCNN, GAN, blind noise
reduction and other technologies. A simple framework dia-
gram of the entire method is as Figure 1. This section
will explain in detail how these technologies are applied in
SlimRGBD.

A. GENERATIVE ADVERSARIAL NETWORK
The main inspiration of GAN comes from the idea of
zero-sum game in game theory [19]. When applied to
deep neural networks, it is to generate G (Generator) and
D (Discriminator) to continuously play, so that G learns
the distribution of data. If image generation is used, G can
generate realistic images from a random number after training

is completed [20]. The main functions of G and D are: (1)
G is a generative network that receives a random noise z
(random number) and generates an image through this noise;
(2) D is a discriminant network that discriminates whether
the picture is ‘‘real’’. Its input is x, which represents a pic-
ture, and the output D(x) represents the probability of a
real picture. If D(x) is 1, it means that it is a real picture,
and if D(x) is 0, it means that it is impossible to be a real
picture [21].

Compared with the traditional model, it has two different
networks instead of a single network, and the training method
adopts the gradient update information of G in the confronta-
tion training mode GAN from the discriminator D, instead
of from the data sample [22]. GAN is a generative model
that uses only backpropagation compared to other generation
models (Boltzmann machines and GSNs [23]) without the
need for complexMarkov chains. Compared to all other mod-
els, GAN can produce clearer, more realistic samples [24].
GAN uses an unsupervised learning style training that can
be widely used in unsupervised learning and semi-supervised
learning. Compared to variational self-encoders, GANs does
not introduce any deterministic bias, variational methods.
Deterministic biases are introduced because they optimize the
lower bound of the log likelihood rather than the likelihood
itself, which seems to result in instances of VAEs being
generatedmore ambiguous thanGANs. Comparedwith VAE,
GANs has no variation lower bound [25]. If the discriminator
is well trained, the generator can perfectly learn the distribu-
tion of training samples. In other words, GANs are gradual,
but VAE is biased. GAN is applied to some scenes, such as
image style migration, super resolution, incomplete image,
denoising, avoiding the difficulty of loss function design,
no matter what, as long as there is a benchmark, you can
use the discriminator directly, and then leave the rest The
task is handed over to the confrontation training. Training
GAN needs to achieve Nash equilibrium, sometimes it can
be done with gradient descent, sometimes it can’t. There is no
best Nash equilibrium method, so training GAN is unstable
compared to VAE or PixelRNN, but in practice it is much
more stable than training Boltzmann [25].
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FIGURE 2. The dotted rectangle is applied to build the loss function to learn the feature-class prior.

FIGURE 3. Constructing a loss function with a dashed rectangle to learn pixel-class priors.

B. NOISE MODEL
Most classic and practical image denoising models can be
applied to tackled the following problems [26]:

m̃ = arg min
m

1
2µ
‖n− m‖2 + ξ ·W (m) (1)

The first portion 1
2µ ‖n− m‖

2 is a data fidelity item having
a different noise level ξ , and the second portion W (m) is
a regularization term having a generally predefined image
prior. ξ is the hyperparameter that balances the two parts.
The discriminative denoising model employed in this work
is intended to learn the nonlinear mapping function m =
F (n) parameterized by P to predict the potentially sharp
image m from the noise image n. Therefore, the solution of
equation (1) is given by:

m̃ = G (n, µ, ξ,W ;P) (2)

The hinge to the implementation of this framework is
the pre-defined image. This observation prompted us to
learn image priors directly from the datasets. In particular,

two data-driven image priors are learned at the feature level
and pixel level, respectively. Before constructing a paired
training data set, an approximate noise block needs to be
extracted from a given noise image. These modules are then
applied to train the GAN for noise modeling and noise data
generation.

Properly training the GAN to simulate unknown noise is
a significant step, as the noise distribution will be better
estimated from the noise dominant data. Equation 2 requires
a predefined noise level µ, so the trained image denoising
model is not flexible enough to handle different noise levels
through a GAN network. In order to complete blind image
denoising, this study seeks to combine noise level infor-
mation by previously learning images in the feature-class
level space [26]. In particular, this study trains multiple types
of discriminators at the fusion feature level and pixel level
output of local and global paths to understand different level
noise images, as shown in Figs. 2 and 3.

The perceptual discriminator stabilizes and improves the
performance of the GAN by embedding a convolutional
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portion of the pre-trained deep classification network. Specif-
ically, the extracted features of the output image from the
pre-training network are connected to the output of the pre-
vious layer and then processed by the learnable convolu-
tion operation block. In this study, three-step convolutional
blocks were used to implement spatial downsampling, and
RnResNet was used for image feature extraction. The final
classification is processed from each activation in the fea-
ture map. Since the valid receptive field for each activation
corresponds to an image block on the original input image
data, the discriminator actually predicts each label of each
image block. The patch-based discriminator makes it useful
for high-frequency modeling in image denoising by limiting
the focus of the structure in the local image block.

In order to reduce the influence of the training image
background, it is necessary to extract a group of approximate
noise blocks from the image with weak background. In this
way, noise distribution becomes the main target of model
training, so as to make GANmodel more accurate. Under the
assumption that noise distribution variance is zero, approxi-
mate noise data can be obtained by subtracting the average
value of relatively smooth modules in the noise image. The
smooth module we’re talking about here is a very similar area
within a component.

Based on the above, a smooth and fast patch search algo-
rithm is utilized in this research. Make ui and vij denote a
size k × k global patch and a local patch ui of size l × l,
respectively. Each ui is gotten by scanning the entire noise
image with the stride eg, and each vij is gotten by scanning ui
with the stride el . Whether or not ui is a smooth patch in the
algorithm is determined by the difference between the mean
and the variance between ui and vij of each j. In other words,
there need first define two constraints [18]∣∣∣Avg (vij)− Avg (ui)∣∣∣ ≤ φ · Avg (ui) (3)

And ∣∣∣Var (vij)− Var (ui)∣∣∣ ≤ ϕ · Var (ui) (4)

Avg (1) calculate the mean, and Var (1) calculate the vari-
ance, respectively, φ, ϕ ∈ (0, 1). If for each j, two constraints
are met, ui will be considered as a smooth patch and added to
the set E .

When E = {e1, e2, · · · , et } is obtained by applying an
algorithm to all noise images, the set of approximate noise
blocks R = {r1, r2, · · · , rt } can be derived by ri = ei −
Avg (ei). The devices used in this research often produce
high-resolution images. There are a large number of smooth
areas that meet requirements in these images, such as rooms,
agriculture and rivers. Therefore, a sufficiently smooth plaque
can be found in some limited images, which in other words
is that enough noise blocks can be extracted to train the GAN
model in the following steps.

When the input noise image is insufficient, the number
of noise blocks extracted in the previous section is very
limited.In this case, deep RnResNet training using only these

blocks would be unsatisfactory. In order to better promote the
denoising performance of the model, one method is to model
the noise distribution on these extracted blocks and generate
more noise data (in other words, generate any number of
samples with more diversity) for RnResNet training.

This study try to minimize the aforementioned loss of
the discriminator and maximize it compared to the conver-
sion network. This can be achieved by generating a training
strategy for the antagonistic network. As a framework for
estimating the generation model, GAN has the ability to learn
complex distribution.What’s more, GAN can generate noise
samples through forward propagation without involving other
components. In addition, it can also train data through back-
propagation algorithm.In this study, GAN is used to esti-
mate the noise distribution on a group of approximate noise
blocks. Due to WGAN [27] can improve the training of GAN
and generate high quality samples, as previously described
in the relevant work section. Therefore, in this research,
WGAN-GP [28] is a evolutionary version of WGAN for
learning noise distribution. The loss function in this task is

LossGAN = E
m̃∼Dg

[
W (m̃)

]
− E

m∼Dg
[W (m)]

+ E
m̃∼Dm̃

[
‖∇m̃W (m̃)‖2 − 1

]2 (5)

where Dr is the distribution on R, Dg is the destruction of
the generator, and Px̃ is defined as a uniform distribution
along the line between the pairs of points sampled from Dr
and Dg. The trained image noise model is applied to generate
noise samples for increasing R and ultimately to obtain larger
Datasets R′ =

{
r ′1, r

′

2, · · · , r
′
w
}
.

C. DEEP RESNET RETROFIT & USING
Many previous studies have proposed to use a large number
of pairs of datasets which contained different noise levels to
train CNN to solve the problem of image noise reduction, and
achieved significant results. CNN has the power of a network
architecture that implicitly learns potential noise models from
paired training datasets, thereby relaxing the dependence on
image prior knowledge of human knowledge [29]. Therefore,
the ResNet [29] module is used in our framework.
The prediction of clean images can be gotten by yi −

R (yi;2) (as shown in Fig. 4). The filter number of the last
block is equal to the output channel number. Each other block
contains 64 filters. In order to train ResNet, you need to
first establish a paired training data set. The set V ′ obtained
by noise modeling using GAN, another set of images is
divided into small blocks of size k × k , forming a set X =
{x1, x2, · · · xe}. Randomly add the noise block in V ′ to the
patch in X to get Y =

{
y1, y2, · · · yf

}
, where y1 = xj + v′k .

The set X and Y form a paired training datasets {X,Y}.
In fact, the data set was built during the denoising network
training. In each training epoch, the combination of xj and v′k
is changed and a new dataset

{
X,Y‘} is gotten, which results

data increase in next step [30].
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FIGURE 4. Convolutional network architecture of the DnResNet. The input on the left is the noise image dataset yi and the output result on the right is
R

(
yi ; 2

)
which is the difference between the input and the potentially clean image.

FIGURE 5. Convolutional network architecture of the image denoising network proposed by this study. The input noise image dataset is first processed
by the N Residual Blocks (a depth residual network) to calculate low feature-class and pixel-class level features that are then divided into two paths to
learn other local and global features. Our image denoising model then fuses the two paths to produce the final output.

When the paired noise-clean training dataset is established,
DnResNet can be trained to eventually denoise (as shown
in Fig. 5). In this experiment, a network structure similar
to DnCNN was employed. DnResNet is considered to be a
single residual block which predicts the residual image data,
in other words is that predicts the difference between the input
noise image and the potentially clean image data [31], [32].
The loss function to be minimized is set as following

LossDnResNet(2) =
1
2θ

θ∑
i=1

∥∥∥R2 (yi;2)− (yi − xi)2∥∥∥ 1
2

F
(6)

where 2 is the parameter of the DnResNet, θ is the size of
the training image dataset, yi is the noisy image data, and xi is
the base image data. Batch normalization, ReLU and residual
learning strategies are also used to improve the training of
deep networks.

The image noise reduction network in this paper consists of
three parts: a pile of residual blocks (as shown in Fig. 4 or 5)
for extracting low-level features of the input image; and two
asymmetric paths for extracting local and global features,
respectively. Then our architecture fuses these two paths to
produce the final output.

The input noise image is first processed by a 16-layer
residual network with skip connections to extract low-level
features (Fig. 4). The ‘‘pre-activated’’ residual block is used
because it is easier to train and promote than the original
ResNet. For all residual blocks, use kernel size and zero
rewrite to keep the size of the input space. This study also
keep the number of features in all remaining blocks at 32.
In addition, a skip join is added between the input feature
and the output of the last residual block. As a result, large
space support can be utilized to extract complex patterns [33].
The coding features are further processed by two asymmetric
networks for local and global feature extraction. The local
path is fully convolved and consists of two residual blocks,
as shown in Fig. 4. It is designed to learn local features while
preserving spatial information. The remaining connections
make it easy to learn the same function, considering that the
output image shares many structures with the input image,
which is an attractive feature for the conversion network. The
global path uses two fully connected layers to learn global
features. Each fully connected layer is followed by a ReLU
layer as an activation function. The global average merge
layer is used to ensure that our model can handle images of
any resolution [34], [35]. Finally, the global information is
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FIGURE 6. Representative process of incremental model pruning. There
are four iterative steps: (1) assessing the importance of each component
in the pre-trained depth model; (2) removing components that are less
important to model inference; and (3) fine-tuning the trim model to
compensate for potential temporary performance degradation; 4)
Evaluate the fine-tuning model to determine if the pruning model is
suitable for deployment. Make sure that the incremental pruning strategy
is preferred to prevent over-pruning.

summarized as a fixed dimension vector and used to nor-
malize the local features produced by the local path. The
local and global features are then fused into a common set
of features that are fed to the convolutional layer to produce
an output [36].

D. MODEL PRUNING
When deploying a depth model on a resource-constrained
device, model compression is a useful tool for researchers
to re-adjust the resource consumption required by the depth
model. Existing model compression methods mainly include
model pruning [37], knowledge distillation [38], [39], param-
eter quantification and dynamic calculation. In this section,
we discuss model pruning methods in detail.

The representative process of incremental model pruning
is shown in Fig. 6. The components removed from the deep
model in the model pruning method can be separate neural
connections or network structures. The weight trim method
trims less important connections with less weight. It is con-
ceptually easy to understand, but due to the generated irreg-
ular network architecture, it is difficult to store the pruned
model and speed it up. Technically, weight trimming may
not be suitable for practical applications unless a dedicated
software library or dedicated hardware is designed to support
the trim model. Unlike weight pruning, structured pruning is
more likely to produce a regular and manageable network
architecture. In order to obtain the structural importance of
structured pruning, the researchers used sparse training [40],
using structured sparsity regularization, including structured
sparsity learning and channel scaling factor sparsity. Liu et al.
proposed a simple but effective channel clipping method
called network weight loss [40]. They directly use the scaling
factor in the bulk normalization (BN) layer as the channel
mode scaling factor, and perform L1 regularization training
networks on these scaling factors to obtain channel mode
sparsity. Channel pruning is a coarse-grained but effective
method and, more importantly, it is convenient to implement
a pruning model without dedicated hardware or software
requirements [41]. They applied a network slimming method
to pruning CNN-based image classifiers and significantly

FIGURE 7. Iterative process of efficient depth image denoiser learning
through SlimRGBD sparse training and channel pruning.

reducedmodel size and computational operations [40]. In this
paper, we follow Liu’s work and extend it to a coarse-grained
neural structure search method to find effective depth image
noise reducers using the pruned RnResNet.

Manually designing the network architecture of the depth
image noise reducer does not guarantee that each compo-
nent plays an important role in forward reasoning. It is rec-
ommended to learn an effective depth image noise reducer
by performing channel clipping on the convolutional layer.
Specifically, the goal of this paper is to search for amore com-
pact and efficient convolutional channel configuration to help
reduce trainable parameters and FLOP. To this end, channel
trimming is applied in SlimRGBD to obtain SlimRGBD by
following the procedure shown in Fig. 7.

After sparsity training, this study introduce a global thresh-
old ξ to determine if the feature channel is to be trimmed.
The global threshold ξ is set to the nth percentile of all n
to control the trim ratio. In addition, This study introduced
local security thresholds to prevent excessive convolution
of the convolutional layer and maintain the integrity of the
network connection. The local security threshold is set in
a hierarchical manner to the kth percentile of all ks in a
particular layer. This study trim the feature channel whose
scale factor is less than the minimum of the minimum.
In SlimRGBD, several special connections between layers
need to be carefully handled. During the pruning process,
this study discard the maxpool layer and the upsampled layer
directly because they are independent of the channel number.
Initially, This study constructed a trim mask for all convo-
lutional layers based on global thresholds and local safety
threshold constructs. For path layers, this study connect the
clipping masks of their incoming layers in order and use
the connection mask as their clipping mask. The shortcut
layer in SlimRGBD is similar to the residual learning in
ResNet. Therefore, all layers connected to the shortcut layer
need to have the same channel number. To match the feature
channels of each layer connected by the shortcut layer, this
study traverse the trim masks of all the connection layers and
perform an OR operation on these trim masks to generate
the final trim mask for these tie layers. After trimming the
channel, it is recommended to perform a fine-tuning opera-
tion on the trim model to compensate for potential temporary
degradation. In fine-grained object inspection tasks, detection
performance is often sensitive to channel pruning. Therefore,
fine-tuning is important to make the pruning model recover
from a potential reduction in performance.
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FIGURE 8. Experimental process.

E. SPARSE TRAINING
The channel mode sparsity of the depth model helps channel
trimming and describes the number of less important chan-
nels that may be deleted later. To facilitate channel pruning,
we assign a scale factor to each channel, where the absolute
value of the scale factor represents the channel importance.
Specifically, in addition to detecting the header, the BN layer
after each convolutional layer in SlimRGBD accelerates con-
vergence and improves generalization [42]. The BN layer
uses small batch static to normalize the convolution feature,
which is formulated as equation (7).

y = γ ×
x − x̄
√
σ 2 + ε

+ β (7)

x̄ and σ 2 are the mean and variance of the input elements
in the mini batch, and γ and β represent the scale factors and
deviations that can be trained. Of course, we directly use the
trainable scale factor in the BN layer as an indicator of chan-
nel importance. In order to effectively distinguish between
important channels and unimportant channels, we perform
channel mode sparsity training by implementing L1 regular-
ization on γ [43]. The training goal of sparse training is given
by equation (8).

L = lossGCBD + a
∑
y∈0

f (γ ) (8)

where f (γ ) = |γ | represents the L1 norm and α represents
the penalty factor that balances the two loss terms.

IV. EXPERIMENT AND ANALYSIS
A. DATASETS
Train the model on the LY_Datasets, which is a remote
sensing image dataset. In the present study, all of them were
randomly tailored to 64 × 64 image patches for training.
The input noise image is added by the noise level σ in the
[10, 80] range, and the corresponding sharp image is used as
the GroundTruth.

B. EXPERIMENT
For the proposed SlimRGBD in this research, a set of clean
image datas is applied to construct a paired noise-clean train-
ing dataset with noise image data generated by the GAN
network. In order to simulate the environment for actually

processing a large image, noise data is added in another set
of high resolution clean image dataset to form a noise image
dataset for SlimRGBD in the estimate of the synthesized data.

In the image noise extraction procedure, the parameter:
d, h, sg, sl and γ is set to 64, 16, 32, 16, 0.1 and 0.25, sever-
ally. For noise GAN modeling, this article generally follows
the parameter settings in DCGAN [44], [45]. For RnResNet,
it trains 50 periods with an initial learning rate of 0.0001 and
an Adam [46] optimizer (as shown in Fig. 8, the experimental
flow of the study is shown. As shown in Fig. 9, this study also
compares the process of using SGD [47] training).

The competition methods compared in this study include
BM3D [48], EPLL [49] , NCSR [50], WNNM [51], Multi-
scale [50], DnCNN [17] and the proposed SlimRGBD. In par-
ticular, in order to reveal the limitations of the method based
on discriminative learning in dealing with blind denoising
problems, a blind model of DnResNet available for Gaussian
image denoising is employed in the evaluation. Specifically,
the DnCNN is trained with accurate Gaussian noise image
data from different class levels, which achieves the prior art
blind Gaussian denoising results.

The SlimRGBD in this paper uses a 3 × 3 core for the
transform network and all convolutional layers in both dis-
criminator networks. After each convolution layer is constant
followed by a batch normalization layer to stabilize and accel-
erate deep network training. The model was trained using
Adam optimizer to achieve a random optimization of 64 in 45
epoches with a convergence time of approximately 43 hours.
The initial learning rate is 0.0001, and the introduced cosine
shape learning rate table smoothes the initial learning rate.
Implement a deep learning framework based on TensorFlow
and a single GTX 1080Ti GPU.

C. INTEGRATED NOISE ASSESSMENT
In this segment, different types of zero-avg synthesized noise
image data are generated and added to LY_Datasets to eval-
uate all competing methods. In this evaluation, in addition
to DnCNN and SlimRGBD, other methods have actual noise
levels (ie, standard deviation σ ).

This section evaluates the SlimRGBDmethod for synthetic
and actual data. Several representative methods were com-
pared. Four sections of experiments were carried out: (1) eval-
uating the accuracy of noise GAN modeling, and comparing
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FIGURE 9. Under two gradient-based optimization algorithms ((a) SGD, (b) Adam), four specific image denoising models are trained in different
combinations of residual learning (RL) and batch normalization (BN). Gaussian denoising results are shown in the two figures (with a noise level of 20).
The results were evaluated on 80 natural images from LY_Datasets.

TABLE 1. Results of PSNR (DB) for all comparison methods on LY_datasets in the synthetic noise denoising environment.

FIGURE 10. Left: Noise sensitivity curve for the SlimRGBD model of noise level training. The average PSNR results at different input noise levels were
evaluated on LY_Datasets. Right: Based on the UAV power consumption baseline, Loading 4 kinds of intelligent noise reduction algorithms the power
consumption. It can be seen that the RGBD noise reducer without pruning consumes a large amount of power. The SlimRGBD algorithm proposed in this
study consumes less power than DnCNN in some cases.

SlimRGBD with the prior art denoising method, especially
based on the discriminative learning method DnCNN, in the
Gaussian blind denoising task; (2) In order to show that
SlimRGBD can process more complex noises than Gaussian

noise, this experiment uses mixed noise to evaluate; (3) dis-
cusses the selection of noise modeling methods, shows noise
samples, and shows that the reason which GAN is selected
and not other traditional methods is selected, such as GMM.
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TABLE 2. Time spent testing various noise reduction methods on DJI phantom 4 pro V2.0 (in seconds).

FIGURE 11. The first set of test samples. Test 1&2 is the original two aerial image of drones randomly extracted from the LY
Datasets. The shaded squares in the figure are the parts we will show in Fig. 12.

FIGURE 12. The second set of test samples. Test 3&4 is the original aerial image of two drones randomly extracted from the LY
Datasets data set. The shaded squares in the figure are the parts we will show in Fig. 13.

A large number of experiments have proved the superiority
of SlimRGBD in image blind denoising.

Since Gaussian noise is one of the widely studied noises,
it is important to perform blind Gaussian denoising exper-
iments. Table 1 shows the different results for all compar-
ison methods. Although no noise information is provided,
SlimRGBD is still superior to BM3D, EPLL, WNNM and
Multiscale. In particular, SlimRGBD and DnCNN achieve
comparable results. This is impressive because DnCNN uses
accurate data for training, while SlimRGBD uses the approx-
imate data generated by GAN for training. This experiment
demonstrates the accuracy of noise modeling by using GAN.

In addition to Gaussian noise (which a noise of Hybrid
Noise), we further evaluated the performance of other several
methods in complex noise denoising environment. The mixed
noise used in the experiment includes 10% uniform noise,
20% Gaussian noise, and 70% Gaussian noise. Table 1 shows
the quantitative results. In this research, SlimRGBD also
performs better than EPLL, BM3D, Multiscale and WNNM,
which further demonstrates the superiority of SlimRGBD
in blind denoising problems. In particular, DnCNN does
not perform well due to the paired training data set is not
available. In contrast, the proposed SlimRGBD uses GAN
to estimate the image noise distribution of the noise image
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FIGURE 13. Comparison of housing areas when evaluating real noise denoising. The contrast areas in the figure are from the shaded squares
in Fig. 10, respectively. Here, zoom in for a better visual comparison. The serial numbers in the figure: (a) (b) (c) (d) (e) (f) (g) (h) represent (a) original
image; (b) EPLL; (c) NCSR; (d) WNNM; (e) Multiscale; (f) DnCNN; (g) GCBD; (h) results graph after SlimRGBD processing. As can be seen from their
comparison results, SlimRGBD is a very competitive image denoising method.

and solves the problem of lack of training image data,
thereby achieving significant denoising effects, as shown
in Fig. 10 (left). Fig. 10 (right) is based on the UAV power
consumption baseline, Loading 4 kinds of intelligent noise

reduction algorithms, the power consumption. It can be seen
that the RGBD noise reducer without pruning consumes
a large amount of power. The SlimRGBD algorithm pro-
posed in this study consumes less power than DnCNN in
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FIGURE 14. Comparison of agricultural and forestry areas when assessing true noise denoising. The contrast areas in the figure are from the shaded
squares in Fig. 12, respectively. Here, zoom in for a better visual comparison. The serial numbers in the figure: (a) (b) (c) (d) (e) (f) (g) (h) represent
(a) original image; (b) EPLL; (c) NCSR; (d) WNNM; (e) Multiscale; (f) DnCNN; (g) GCBD; (h) Results graph after SlimRGBD processing. As can be seen
from their comparison results, SlimRGBD is a very competitive image denoising method.

some cases. For the above cases (Mixed noise or Gaus-
sian noise), the proposed method in this research performs
well. Specifically, the deviation value of the GAN from the
distribution of the extracted noise block learning to the
GroundTruth distribution is about 0.25% of the average value

and 1.14% of the standard deviation. Time spent testing
various noise reduction methods on DJI Phantom 4 Pro
V2.0 is as Table 2. It can be seen that although our method
uses more time consuming than some traditional methods,
it is the best among all neural network methods.
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D. SLIMRGBD PERFORMANCE AND
APPLICATION ANALYSIS
The most vital part of the proposed system is noise modeling,
which involves extracting noise blocks and learning the noise
distribution through the GAN. In this section, it will first
study the effects of the first step and then discuss the accuracy
of noise modeling which used GAN.

To check the effectiveness of GAN noise modeling, Effect
of Noise Modeling Using GAN was been used, which accu-
rate synthetic noise data is used as input to train SLIMRGBD
system. In addition, SLIMRGBD can well learn the noise
distribution and generate good samples when dealing with
complex real-world noise (see Figs. 11, 12, 13, 14). All these
facts show that using GAN to simulate noise may be accurate.

V. CONCLUSION AND FUTURE WORK
This study attempts to improve the performance of image
blind denoising by using a deep learning-based approach
without paired training data. The proposed SlimRGBD can
improve blind denoising performance. The GAN is used to
learn the noise distribution and construct a paired training
data set to train the DnResNet for denoising. A large number
of experiments have proved the superiority of our method.
In the future work, we will integrate our work into more
embedded platforms to improve the image noise reduction
performance of other devices.
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