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ABSTRACT This paper focuses on the problem of distributed adaptive estimation over dynamic multi-task
networks, where a set of nodes is required to collectively estimate some parameters of interest from noisy
measurements. Besides, since nodes in the network are constrained by communication power consumption
and external interference in a non-stationary environment, the objective pursued by the node is prone to
change or abnormality. The problem is worth considering in several contexts including multi-target tracking,
multi-model classification and heterogeneous network segmentation. We propose a distributed adaptive
clustering strategy, which is mainly composed of two procedures: normal task adaptation and the same
task cluster. The task anomaly detection based on non-cooperative least-mean-squares (NC-LMS) algorithm
and task switching detection based on diffusion maximum correntropy criterion (D-MCC) algorithm are
provided. A series of scenarios, such as dynamic network, time-varying tasks and non-stationary (Gaussian
and pulse interference) are simulated. We also discuss optimization schemes to design the NC-LMS and
D-MCC weights and examine the estimate performance and clustering effects of the proposed algorithm by
simulation results.

INDEX TERMS Adaptive clustering, distributed estimation, multi-task, maximum correntropy criterion.

I. INTRODUCTION
Distributed estimation for adaptation, learning, modeling,
and optimization through cooperation between nodes plays
an key role in reinforcement learning, signal processing,
and online supervised learning and many other application
areas, which aims to estimate a single parameter vector col-
laboratively. However, in reality, there are many parame-
ters of interest happening to be multitask-oriented. In other
words, there are multiple optimum parameter vectors that are
simultaneously inferred in a collaborative manner. Multi-task
problems have been studied in many important applica-
tions, such as multi-task clustering [1]–[4], multi-target
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tracking [5]–[7], and multi-model classification [8]–[10].
In our work, we consider the situation where there are con-
nected clusters of nodes, and each cluster has a parameter
vector to estimate.

In recent years, several useful distributed strategies have
been proposed in the literature, including incremental strate-
gies [11]–[13], consensus strategies [14], [15] and diffusion
strategies [21]–[23], [48]. In particular, many researchers are
attracted by diffusion strategies because of their scalability
and reliability. It is worth noting that [22] has proved that the
diffusion strategy in data processing on adaptive networks has
better stability and robust performance than consensus-based
strategies. Accordingly, the diffusion adaptive learning algo-
rithm is mainly considered in our work. Adaptive networks
are well-suited for decentralized inference, filtering and
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TABLE 1. Possible motivations.

clustering tasks. However, previous work on topology design
and tuning techniques that was not dynamic [18]–[20], and
in the sense that they cannot track changes in the network.
Motivated by the problem, we develop an adaptive clustering
algorithm over dynamic multi-task network in this paper,
which can reduce the impact of weak links on network esti-
mation by selecting data subsets from neighbour nodes with
normal tasks.

In many previous works, distributed algorithms based on
diffusion strategy have been proposed under the background
of diffusion LMS [24]–[26]. An inspection of the existing
articles on the above algorithms shows that most works
are based on the mean-square error (MSE) cost function
because it has attractive characteristics such as smoothness,
convenience, low computational burden and optimality under
Gaussian assumptions. If the signal is Gaussian, then MSE
is desirable. However, in the case of non-Gaussian, its per-
formance may be significantly reduced. In these cases, the
non-secondary cost is usually better than MSE [27]. The
kernel function in entropy is usually a Gaussian kernel due
to its smoothness and strict positive determination. These
properties showed the effectiveness of maximum corren-
tropy criterion (MCC) for occlusion and corruption problems
[28]–[32], [46], [47]. In particular, MCC is suited for dealing
with impulsive noises.

Motivated by the desirable features of correntropy and oth-
ers(see Table 1), we propose in this work a novel distributed
clustering strategy based on diffusion maximum correntropy
criterion (D-MMC), for robust distributed multi-task net-
work estimation in a nonstationary environment. Moreover,
we consider a general situation where there are connected
clusters of nodes, and each cluster has a parameter vector to
be estimated.

The main contributions of the paper are three-folds: (i) In
non-stationary multi-task networks, an adaptive clustering
strategy is derived, which can make the nodes in a network
correctly clustered and improve clustering accuracy through
enhanced intra-cluster cooperation. (ii) Normal task adap-
tation based on non-cooperative least-mean-squares (NC-
LMS) algorithm is developed, which can discriminate the
abnormality of the task to combat interference effectively.
(iii) The same task clustering based on adaptive D-MCC
algorithm is provided to solve the distributed estimation over
multi-task networks. In addition, simulations are conducted
to illustrate the performance of the proposed methods under
mixed noise (Gaussian and impulsive) disturbances.

This work is organized as follows. Section II describes the
system model. Section III describes the problem statement
and presents a solution. In Section IV, we motivate and derive
a family of diffusion LMS algorithms under the MCC for
distributed clustering estimation. In Section V, we simulate
different choices of weighting rules for the diffusion algo-
rithms over MCC, and discuss the effect of kernel size on
the MSD performance. In addition, we conclude our work in
Section IV.
Notation: We use (·)T and |·| represent the transpose and

represents the absolute value respectively, E for expectation
and ‖·‖ for Euclidean norm. In addition, we use the symbol
1N denote the vector with unit entries, and other used symbols
are defined in the context of the article.

II. SYSTEM MODEL
In the section, we describe the system model and give a
brief review of adaptive diffusion strategy based on minimum
mean-square-error (MMSE) criterion.

A. NETWORK MODEL
We focus mainly on a set V = {1, 2, · · ·,N } of N nodes
with limited processing capabilities, which are divided into
Q clusters. Particularly, the nodes are distributed over a given
geographical area, and the position of them changes over
time. The nodes are connected directly by an edge if they are
neighbors, and note that nodes from different clusters may be
connected, which forms a partially connected network. The
neighborhood of an arbitrary node k is denoted as N k , and
its size as |Nk | by the notation nk . Fig. 1 provides a graphical
representation of a connected network withN = 9 nodes, and
Fig. 1 illustrates the neighborhood of node 6, which consists
of nodes {3, 4, 8, 9}. Accordingly, node 6 has degree 5, which
is the size of its neighborhood.

FIGURE 1. A network consists of a collection of cooperating nodes.

In our work, we consider the situation where each node
k in the connected network observes random measurements
{dk,i, uk,i}, where dk,i is a scalar data and uk,i is 1 × L
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regression vector data, which are assumed to be related to
some unknown L × 1 parameter vector wok,i by a linear
regression model of the form:

dk,i=uk,iwok,i+vk,i, (1)

where uk,i, at time instant i, is temporally white and
independent over space with covariance matrix Ru,k =
Euk,iuTk,i > 0 and zero means. vk,i is an additive temporally
and spatially independent zero-mean noise process with a
time-independent variance σ 2

v,k , and it is independent of every
other signal over space. It is considered that nodes of different
clusters track different objectives (which also call tasks) [26],
and there is one task per cluster, namely,

wok = woCq , for ∀ k ∈ Cq. (2)

In wireless sensor networks, sensors are responsible for
information collection, and different ocean buoys carry
different sensors. When the sensor is accelerating or deceler-
ating, the sensor chooses to change the target due to the con-
straints of communication distance and power consumption
to ensure the integrity and accuracy of information collection.
To understand this dynamic process of each node’s tasksmore
clearly, we introduce the task time-varying model as follows:

wok,i = sk,iwok,i−1 + (1− sk,i)woCp + zk,i−1, (3)

where zk,i−1 is the process noise for node k at time instant
i − 1, which is independent of measurement noise vk,i and
regression vector uk,i. When sk,i = 1, then the task wok,i
pursued by the node kat time iwill switch fromwok,i−1 tow

o
Cp .

In our work, we assume that the cost of one information
communication between adjacent nodes is equal to c0, and
the potential communication cost of each node at the time i
is ck,i = c0nk,i, where nk,i represents the number of neighbor
nodes of node k at time i. When the communication cost
ck,i−1 of each node k exceeds the threshold cr tolerated by
the node k , then sk,i = 1, otherwise sk,i = 0. Therefore,
we introduce the task switching condition:

sk,i =

{
1, if ck,i−1 > cr
0, otherwise

(4)

Although the cost c0 may vary depending on the distance
of the network nodes, we assume that c0 is the same for all
nodes.

B. ADAPTIVE DIFFUSION STRATEGY
Adaptive diffusion strategy based on MMSE criterion has
been studied in previous studies [21], [22], [34], [39] for
single-task problems, which seek the optimal linear estimator
wo that minimizes the following global cost function:

Jglob(w) =
N∑
k=1

Jk (w), (5)

where Jk (w) is the local cost function that is developed based
on MSE by

Jk (w) = E
∣∣dk,i − uk,iwk,i−1∣∣2. (6)

Adaptive diffusion strategy based on MMSE criterion
contains adapt-then-combine (ATC) diffusion strategy and
combine-then-adapt (CTA) diffusion strategy. The ATC algo-
rithm has the same processing and communication complex-
ity as the CTA algorithm while the former outperforms the
latter. Therefore, in what follows, we focus on the ATC
strategy to illustrate the main results. Each node k of the
network tries to learn its optimum vector wok from collected
data {dk,i, uk,i} through the ATC diffusion strategy based on
MMSE, including adaptation and combination steps:
ψk,i = wk,i−1 − µ̄k

∑
`∈Nk

a`k∇J`(wk,i−1)(adaptation)

wk,i =
∑
`∈Nk

c`kψ`,i(combination),
(7)

where µ̄k is a positive constant step-size for the pro-
cess repeated continuously, and the combination coefficients
{a`k , c`k} are used to share the local data between connected
nodes. The matrices A and C are collections of coefficients
{a`k} and {c`k}, respectively, which are required to satisfy

AT 1N = 1N , a`k ≥ 0, a`k = 0 if ` /∈ Nk , (8)

CT 1N = 1N , c`k ≥ 0, c`k = 0 if ` /∈ Nk . (9)

By using instantaneous approximation, the approximate gra-
dient vector can be given by

∇J`(wk,i−1) ≈ −2(d`,i − u`,iwk,i−1)uT`,i. (10)

Substituting the approximate gradient vector∇J`(wk,i−1) into
the steepest descent strategy in (7), we can rewrite ATC
diffusion strategy as

ψk,i = wk,i−1 + µk
∑
`∈Nk

a`k (d`,i − u`,iwk,i−1)uT`,i

wk,i =
∑
`∈Nk

c`kψ`,i,
(11)

where µk = 2µ̄k . Indiscriminate cooperation between
nodes that belong to different clusters pursuing different
task, may bring undesired results and even worse results
than non-cooperative approach. Accordingly, what deserves
our consideration is that solving clustering problems over
multi-task network through ATC diffusion strategy in (11) is
challenging.

III. PROBLEM FORMULATION AND SOLUTION
A. PROBLEM FORMULATION
We consider that every node k in the network has individual
cost function Jk (w) : R1×L

→ R for a vector parameter w
with a unique minimized point wok . Since nodes belonging to
different clusters share different minimizers in the network,
then the goal of nodes in the network is to deal with the
clusteredmulti-task problem through seeking the uniquemin-
imizer of the aggregate cost function Jglob(w), defined as

min
{wq}

Q
q=1

Jglob(w1,w2, · · ·,wQ) ,
Q∑
q=1

∑
k∈Cq

Jk (wq). (12)
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FIGURE 2. Normal task adaptation process.

If the cluster information Cq is available to nodes in the
network, the clustered multi-task problem in (4) above can
be broken down into separate optimization problems through
subnetworks related to the clusters, namely,

min
w
JCq (w) ,

∑
k∈Cq

Jk (w), (13)

for q = 1, 2, · · ·,Q. It is assumed that all cluster topologies
are as connected as possible, and each cluster uses a diffusion
strategy to find the corresponding minimizer woq. The above
process means that the networks connected by different clus-
ter nodes are decomposed into subnetworks connected just to
the same cluster nodes.

In our work, we consider the challenging scenario:
1) the cluster information is entirely unavailable;
2) the network changes dynamically in a non-stationary

environment;
3) the task of nodes changes over time due to noise, power

consumption and communication constraints.
In this case, the problemwe need to solve is how to realize the
decomposition of the network connected by different clusters
into subnetworks connected just for the same cluster nodes.

B. SOLUTION SCHEME
To solve the problem in the previous section, we propose a
distributed clustering scheme based on the maximum entropy
criterion estimation algorithm, which mainly includes the
two processes of normal task adaptation and the same task
clustering. The former is used to provide a normal task inter-
mediate estimate for the fusion step in the latter, which elimi-
nates interference of abnormal tasks on parameter estimation.
Whereas the latter is used to achieve distributed clustering
estimation over the same task detection.

From the viewpoint of implementation, normal task adap-
tation process mainly includes four steps: adaptation, detec-
tion, communication, and adaptation, see the block diagram
given in Fig. 2.

FIGURE 3. The same task clustering process.

(1) Adaptation: each node k updates the estimate based
on its individual measurements {dk,i, uk,i};

(2) Detection: a threshold test is made to detect the
abnormality of the task;

(3) Communication: each node k sends its local mea-
surements for normal task to its neighbors and
also receives the measurements {d`,i, u`,i} from its
neighbors;

(4) Adaptation: each node k updates the intermedi-
ate estimate ψk,i based on local measurements of
neighbors {d`,i, u`,i} for normal task.

The same task clustering process mainly includes four
steps: communication, combination, detection and clustering,
see the block diagram given in Fig. 3.

(5) Communication: each node k sends its intermedi-
ate estimate to its neighbors and also receives the
intermediate estimate ψ`,i from its neighbors;

(6) Combination: the intermediate estimates are com-
bined based on an adaptive fusion weight c`k,i;

(7) Detection: the same task is detected via another
threshold test;

(8) Clustering: adjacent links within the same cluster
are kept active, and adjacent links from different
clusters are dropped.

The distributed clustering algorithm involved in this scheme
will be elaborated in the next section.

IV. DISTRIBUTED CLUSTERING ALGORITHM
In this section, a distributed clustering algorithm is pro-
posed for achieving reliable distributed estimation in a
non-stationary environment. Each node k in the network
can updates the estimate by using the non-cooperative least-
mean-squares (NC-LMS) learning strategy, namely,

_
wk,i =

_
wk,i−1 + µk (dk,i − uk,i

_
wk,i−1)uTk,i. (14)

Through the distributed diffusion strategy, we can see that
each node applies adaptive gain to the measurement, during
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the estimation update process, to limit the impact of abnormal
and damaged measurements. Since the task anomaly can
be detected by the fluctuation of the adaptive gain, Thus,
a hypothesis test judgewhether the task is normal or not based
on the updated estimate

_
wk,i is developed to ascertain whether

the task of node k is abnormal, namely,∥∥∥_wk,i − _
wk,i−1

∥∥∥2H0
≶
H1

θ0, (15)

where theH0 hypothesis denotes the task of node k is normal,
and node k sends data {dk,i, uk,i} to neighbors `. Conversely,
the hypothesis H1 denotes the task of node k is abnormal,
and node k does not send data {dk,i, uk,i} to neighbors `. The
threshold θ0 is predefined. Besides, no exchange of data for
abnormal task is needed during the adaptation, which makes
the communication cost relatively low.

The correntropy between two random variables x and y is
associated with a generalized correlation function [29], which
scales the similarity of x and y via

Vβ (x, y) = E

[
1

β
√
2π

exp(−
(x − y)2

2β2
)

]
, (16)

where β is the Gaussian kernel size. With Gaussian kernel
and local error ek,i = dk,i − uk,iwk,i−1, the instantaneous
correntropy cost function JMCCk (wk,i−1) is

JMCCk (wk,i−1) , GMCCβ (ek,i) = E

[
1

β
√
2π

exp(−
e2k,i
2β2

)

]
.

(17)

To reduce the impact of noise on the estimate, each node
k in the network can updates the intermediate estimate
through the diffusion learning strategy over MCC. The ATC
usually outperforms the CTA. Since the ATC-DMCC algo-
rithm tends to outperform the CTA-DMCC [31], we consider
ATC-DMCC in this work, namely,

ψk,i = wk,i−1 + µk
∑
`∈Nk

a`k∇JMCC` (wk,i−1)

wk,i =
∑
`∈Nk

c`kψ`,i.
(18)

By using instantaneous approximation for (17), an approx-
imation of the gradient vector is obtained

∇JMCCk (wk,i−1) ≈
1
β2
GMCCβ (ek,i)ek,iuTk,i. (19)

Based on the correntropy cost function in (18), a stochastic
gradient for adaptive algorithm, the diffusion algorithm based
on MCC (D-MCC), can be simply derived as

ψk,i = wk,i−1 +
µk

β2

∑
`∈Nk

a`kGMCCβ (e`,i)e`,iuT`,i, (20)

where GMCCβ (e`,i) is a Gaussian kernel, as kernel size β →
∞, then GMCCβ (e`,i) → 1. Note that the kernel size for
correntropy function is quite important, and the Gaussian

FIGURE 4. The Gaussian kernel GMCC
β

(e(i )) versus local error e(i ) for
different values of size β.

kernel GMCCβ (e(i)) versus local error e(i) for different values
of size (We choose in this work β = {0.1, 0.5, 1.0, 1.5, 4.0})
as shown Fig. 4.

Since the network is considered to be dynamically chang-
ing and the adaptive step in (18) only fuses the measurement
data {d`,i, u`,i} for the normal task. Thus, the neighborhood
set Nk will be time-dependent and expressed as Nk,i, and
combination coefficient a`k,i is improved as follows:

a+`k,i =

 a`k , if
∥∥∥_w `,i −

_
w `,i−1

∥∥∥2 < θ0

0, otherwise
(21)

where a`k ≥ 0,
N∑̀
a`k = 1, a`k = 0if ` /∈ Nk for k =

1, 2, . . . ,N . Therefore, the algorithm D-MCC will be rewrit-
ten as

ψk,i = wk,i−1 + ηk
∑
`∈Nk,i

a+`k,iG
MCC
β (e`,i)e`,iuT`,i, (22)

where ηk =
µk
β2

is the step size. It is worth mentioning that the
selection of combination coefficients c`k,i has a significant
impact on the performance of multi-task networks. As men-
tioned earlier, the task of nodes may switch due to power con-
sumption and communication constraints. Blindly blending
intermediate estimates will reduce the accuracy of parameter
estimation and affect clustering accuracy. Hence, an adaptive
combination weights rule should be formulated to help the
nodes ignoring this misleading task. Note that the weights
can be used to minimize the instantaneous mean-square devi-
ation (MSD) of the network:

min
{c`k,i}

MSD(i) ,
1
N

N∑
k=1

E
∥∥wok − wk,i∥∥ . (23)

12406 VOLUME 8, 2020



Q. Shi et al.: Distributed Adaptive Clustering Based on Maximum Correntropy Criterion Over Dynamic Multi-Task Networks

The combination coefficients c`k,i can be obtained through
(24)(see Appendix I), which can be approximated by

c`k,i =



∥∥ψk,i − wk,i−1∥∥−2∑
j∈N−k,i

∥∥ψj,i − wk,i−1∥∥−2 , if ` ∈ N−k,i

1−
∑

m∈N−k,i

c`m,i, if ` = k

0, otherwise,

(24)

where N−k,i
1
= Nk\{k}. From the combination rule in (23)

we can find that the closeness of the local estimate to the
neighboring intermediate estimates is adaptive to adjust the
combination weights. In other word, the combination rule
gives larger weights to neighbors with common cluster and
smaller weights to neighbors that come from different clus-
ters. Then, the combination step in (18) is rewritten by

wk,i =
∑
`∈Nk,i

c`k,iψk,i. (25)

Because wk,i and w`,i can be accessed through local inter-
action in the community, and the estimated error values∣∣wk,i − w`,i∣∣ of neighbors can reflect the similarity of the two
tasks, the larger the error value, the smaller the similarity of
their tasks. Therefore, we introduce another hypothesis test
by using these dynamically-evolving estimates. The hypoth-
esis test is based on the updated estimate wk,i, and it is
developed to ascertain whether the tasks of node k and node
` are the same at time i,namely,∥∥wk,i − w`,i∥∥2H0

≶
H1

θ1, (26)

where θ1 is a predefined threshold. In general, task anoma-
lies have a much greater impact than task similarity, so the
threshold θ0 is greater than θ1. TheH0 hypothesis denotes the
tasks of node k and node ` are the same, and the link between
node k with neighbor ` are active. Conversely, the hypothesis
H1 denotes the tasks of node k and node ` are different, and
the links between node k with neighbor ` are dropped. Then,
the cluster connection coefficient lck`,i is given by

lck`,i = lc`k,i =

{
1, if H0 success
0, otherwise.

(27)

The proposed diffusion clustering algorithm over dynamic
multi-task network with adaptive combination rules is pre-
sented (see Table 2).

V. NUMERICAL EXPERIMENTS
In this section, some numerical simulations are performed
to evaluate the estimate performance and clustering effects
of the proposed method in a variety of different scenar-
ios, i.e., dynamic network, time-varying tasks, non-stationary
(Gaussian interference or pulse interference) and all nodes
have no prior knowledge about the clusters. In addition,
we compare it with those of several other diffusion clustering
strategies.

TABLE 2. Summary of the proposed algorithm.

A. MODEL VALIDATION
The topology of the network consisting of N = 20 nodes
divided into Q = 3 clusters, i.e., C1={1− 5}, C2={7− 14},
and C3={15− 20}, with connection is generated as a random
geometric graph model as shown in Fig. 5. The location
coordinates (xk,i, yk,i) of each node k in the square region
[0, 110] × [0, 110]. In the time-varying scenario, they vary
according to the first-order Markov vector process:

xk (i) = bxk (i− 1)+ h(i),

yk (i) = byk (i− 1)+ h(i). (28)

where b = 0.98 and h(i) is an independent zero-mean Gaus-
sian vector process with variance

σ 2
h =

{
0.01→ Small interference
1→ Big interference.

(29)

The input regression data with size L = 4 and the zero-mean
Gaussian noise are independent in time and space with statis-
tical profiles shown in Fig. 6. The parameters of the algo-
rithms are fixed to µk = 0.04, β = 3, θ0 = 0.3, and
θ1 = 0.04. The loading factors for the three clusters, wo1, w

o
2,

and wo3 are randomly generated set to randn(L,1)
√
L

, where L = 4
and randn(·) is the function of generating Gaussian random.
In the time-varying scenario, they vary as mentioned early
(4)-(5) and cr = 0.03. The corresponding probability density
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FIGURE 5. Network initial topology.

FIGURE 6. Network data statistical profiles.

function of the process noise zi−1 is attained by.

pn(zi)=
1− κi√
2πσ 2

z0

exp

(
−

zi
2σ 2

z0

)
+

κi√
2πσ 2

z

exp
(
−

zi
2σ 2

z

)
,

(30)

where σ 2
z = σ 2

z0 + σ
2
zi . Increasing κi leads to more frequent

impulses:

if κi = 0→ Gaussian

if κi 6= 0→ Impulsive. (31)

B. ILLUSTRATIVE NUMERICAL SIMULATION
In this subsection, to illustrate the adaptive network perfor-
mance, we provide some simulation examples in Figs. 7-9,
and we initialize all nodes with the parameter vectors
wk,−1 = 0. All simulation curves are obtained by an average
of 50 runs, and the number of repetitions for per simulation
is set to 500. In addition, all results are obtained by taking
the overall average of the network MSDs in 300 independent
Monte Carlo runs.

1) THE EFFECT OF KERNEL SIZE ON THE MSD
PERFORMANCE
In this subsubsection, to investigate the effect of kernel size
on the MSD performance, we show the convergence curves
of the proposed algorithm with different kernel size in Fig. 7.
Specifically, four kernel sizes β = {0.1, 0.5, 1.0, 1.5} are
chosen, and all the other parameters remain unchanged to
look into the performance of the proposed algorithm. Accord-
ing to the Fig. 7, the best MSD performance of the proposed
algorithm obtain by using a large kernel size. Thus, we con-
clude that a larger size is able to efficiently aggregate dynamic
nodes of different tasks on the network.

FIGURE 7. The MSD(dB) performance versus different kernel sizes
β = {0.1,0.5,1.0,1.5}.

2) THE EFFECT OF COMBINATION RULE
ON THE MSD PERFORMANCE
For comparison aims, the properties for uniform, metropolis,
laplacian combination rule and the proposed in this work are
presented (see Table 3). In addition, the MSD performances
for diffusion strategy with the above five combination rules
are depicted in Fig. 8. It can be found that since uniform,
metropolis and laplacian cooperation rules simply deal with
the estimates from the neighbors without reasonable error
penalty, these cooperation rules algorithms introduce biases
that cause them to provide lower performance. In comparison,
since in our work nodes with the different task are prevented
to cooperate with each other in non-stationary environments,
the proposed algorithm with cooperation policy based on an
adaptive MCC combination weight attains a superior MSD
learning performance.

3) THE MSD PERFORMANCE FOR DIFFERENT
CLUSTERING ALGORITHMS
In order to investigate the estimated performance of our pro-
posed algorithm, we compare it with the diffusion LMS intro-
duced in previous study [26] by their MSD learning curves,
over a dynamic multi-task network. In more detail, the algo-
rithms that need to be compared are as follows: diffusion
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FIGURE 8. The MSD(dB) performance versus different combination rule.

TABLE 3. Possible combination rules properties.

FIGURE 9. The average MSD(dB) of the network for different algorithms.

LMS (d-LMS) with the cooperation policy over multi-task
networks [26], non-cooperative LMS (NC-LMS), the pro-
posed diffusion algorithm over MCC (D-MCC). The MSD
learning curves of the above three algorithms are depicted
in Fig. 9. From Fig. 9, we can find that the proposed algorithm
has a superior performance in comparison with the other
two algorithms. In another word, the proposed algorithm can
distinguish the tasks well for clustering, resulting in a better
MSD learning performance in comparison with diffusion
LMS in previous work.

FIGURE 10. The resulting topology of the subnetwork over Scenario 1.

C. ADAPTIVE CLUSTERING OVER TIME-VARYING MODEL
In the subsection, under the assumption that all nodes have
no prior knowledge about the clusters, clustering effects of
the proposed method in the following two scenarios are
illustrated. Scenario 1: The location coordinates of nodes in
network fluctuate is gentle (the network structure changes
slightly, i.e., σ 2

h = 0.01), then for zero-mean Gaussian inter-
ference with κi = 0 and σ 2

zi = 0.5, the task of nodes does
not switch and cannot evolve to exceptions. Scenario 2: The
location coordinates of nodes in network fluctuate is dramatic
(the network structure changes wildly, i.e., σ 2

h = 1), then for
Impulse interference with and σ 2

zi = 103, the task of nodes is
switched and abnormal.

1) SCENARIO 1 (NO TASK SWITCHING OR EXCEPTION)
In the first scenario, the network node position fluctuates
slightly, and it suffers from constrained Gaussian interfer-
ence. After approximate 400 iterations of MSD curves, The
clustering decision of the proposed algorithm does not change
with time. The neighboring links within the same cluster
are active whereas the neighboring links, which come from
different clusters, are dropped. Fig. 10 illustrates the resulting
topology when the network is in steady-state. It can be seen
that the underlying topology as shown in Fig. 5 is pruned and
divided into three disjoint subnetworks. This result implies
that the proposed clustering strategy can suppress the interfer-
ence between clusters. From the simulation results, we find
that there is no task switching or exception when the nodes
are under Gaussian interference with small constraint. The
MSD learning curves for the proposed clustering algorithm
consisting of the recursions NC-LMS and D-MCC are plotted
in Fig. 11. It is obvious that three clusters take MCC cooper-
ation clustering policy to improve their MSD performance on
average.

2) SCENARIO 2 (TASK SWITCHING AND EXCEPTION)
In the second scenario, the network node position fluc-
tuates wildly, and it suffers from Impulse interference.
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FIGURE 11. The subnetwork average MSDs for NC-LMS and D-MCC over
Scenario 1.

FIGURE 12. The resulting topology of the subnetwork over Scenario 2.

After approximate 400 iterations of MSD curves, similarly,
the clustering decision of the proposed algorithm does not
change with time. In addition, the neighboring links within
the same cluster are active, whereas the neighboring links that
come from different clusters, are dropped. Fig. 12 illustrates
that the three subnetworks are themselves connected when
network is at steady-state. There is a similar implied result
with scenario 1 that the proposed clustering strategy can
suppress the interference between clusters. From Fig. 12,
we can see that there are task switching and exceptions
when the nodes are Impulse interference. The MSD learning
curves for the proposed clustering algorithm consisting of
the recursions NC-LMS and D-MCC are plotted in Fig. 13.
Obviously, the proposed algorithm for recursion D-MCC has
a superior performance in comparison with recursion NC-
LMS. Additionally, comparing Fig. 11 and Fig. 13, we can
find that the MSD performance of the proposed algorithm
decreases with increasing noise.

In our work, we mainly focus on realistic wireless sensor
networks, and then consider dynamic multi-task networks.
When the network topology changes randomly, the neighbor
domain of the network node changes, and at the same time,

FIGURE 13. The subnetwork average MSD(dB) for NC-LMS and D-MCC
over Scenario 2.

the communication power consumption of the network node
gradually decreases. In order to complete the network com-
munication, the node switches to a task with relatively low
consumption. Therefore, the network we have considered in
this article is general and has certain applicability in other
more complex networks, such as multi-agent networks, com-
plex networks, and wireless sensor networks, etc. For details,
see references [40], [43], [44]

VI. CONCLUSION
In this paper, we consider a dynamic non-stationary multi-
task network where nodes are constrained by communication
power consumption and external interference. To solve the
multi-task problems, we develop a distributed adaptive clus-
tering strategy based on MCC, which can enable nodes that
get a similar normal task to have a collaboration with each
other, and nodes that have discommoned or abnormal tasks
are prevented from collaborating. The clustering approach
can be used not only to segment heterogeneous networks to
enhance intra-cluster collaboration and suppress cross-cluster
interference, but also to prevent intrusions or interference by
isolating abnormal tasks from normal tasks for homogeneous
networks. In addition, we simulate a variety of scenarios and
examine the estimated performance and clustering effect of
the proposed algorithm.

APPENDIX
Let ϑk,i = w◦k −wk,i, At each instant i, following the expres-
sion (23), we can give the instantaneous MSD at node k by

E
{∥∥ϑk,i∥∥2} = E


∥∥∥∥∥∥w◦k −

∑
`∈Nk

c`kψ`,i

∥∥∥∥∥∥
2
 . (32)

Because the matrix C is assumed left-stochastic in (9),
the expression (32) can be rewritten as

E
{∥∥ϑk,i∥∥2}=∑

`∈Nk

∑
p∈Nk

c`kcpkE
{[
w◦k−ψ`,i

]T [w◦k−ψp,i]}.
(33)
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Let ψk be the matrix at each node k with (`, p)-th entry
defined as

[ψk ]`p =

{
E
{[
w◦k − ψ`,i

]T [w◦k − ψp,i]} , `, p ∈ Nk

0, otherwise.
(34)

Let ck = [c1k , . . . , cNk ]T . Minimizing (33) for node k at
time i, subject to left-stochasticity of C and c`k = 0 for
` /∈ Nk , can be formulated as follows:

min cTk ψkck
subject to 1TN ck = 1, c`k ≥ 0,

c`k = 0 if ` /∈ Nk . (35)

Generally, since ψk and w◦k are unknown, it is impossible to
solve (35) at each node k . Thus, we use an approximation
for w◦k to approximate matrix ψk , and to drop its off-diagonal
entries in order to make the problem tractable. The resulting
problem is as follows:

min
N∑
`=1

c2`k
∥∥wk,i−1 − ψ`,i∥∥2

subject to 1TN ck = 1, c`k ≥ 0,

c`k = 0 if ` /∈ Nk . (36)

with wk,i−1some approximation for w◦k . The objective func-
tion shown above has the natural interpretation of penalizing
the combinationweight c`k assigned by node ` to node k if the
local estimate at node ` is far from the objective at node k . The
solution to this problem is given by

c`k,i =

∥∥wk,i−1 − ψ`,i∥∥−2∑
j∈Nk

∥∥wk,i−1 − ψj,i∥∥−2 , for ` ∈ Nk . (37)
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