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ABSTRACT The health condition of rolling bearing possesses a significant impact on the safety and
efficiency of rotating machinery. Accordingly, to diagnose the faults in rolling bearings effectively and
accurately, a novel hybrid approach coupling variational mode decomposition (VMD), composite multiscale
fine-sorted dispersion entropy (CMFSDE) and support vector machine (SVM) optimized by mutation sine
cosine algorithm and Harris hawks optimization (MSCAHHO) is proposed in the paper. Firstly, VMD
is employed to decompose raw vibration signals with various fault types into different sets of intrinsic
mode functions (IMFs) to weaken the non-stationarity of signals, before which the parameter K of VMD
is decided through central frequency observation method. Subsequently, CMFSDE is put forward in this
paper to analyze the complexity of fault signals by fully considering the relationship between neighboring
elements based on composite multiscale technique, with which the representative features of different fault
samples are extracted to construct feature vectors. Later, an enhanced hybrid optimization approach called
MSCAHHO is proposed by integrating sine cosine algorithm (SCA) and a periodic mutation strategy to
improve Harris hawks optimization (HHO). Then, MSCAHHO is employed to optimize the parameters
of SVM, after which the optimal SVM model is utilized for fault classification. Finally, the performance
of the proposed methodology is evaluated with four validity indices through comparative experiments. The
experimental results reveal that the proposedVMD-CMFSDE-MSCAHHO-SVMmethod achieves favorable
diagnosis results comparing with other relevant methods.

INDEX TERMS Fault diagnosis, variational mode decomposition, composite multiscale fine-sorted disper-
sion entropy, support vector machine, hybrid mutation SCA-HHO.

I. INTRODUCTION
Rolling bearings, as the most important supporting compo-
nent, are widely employed in rotating machinery systems,
such as large generator sets, aero engines and advanced preci-
sionmachine tools [1], [2]. Due to their low impact resistance,
rolling bearings are relatively susceptible to fatigue, damage
and various types of faults [3]. A small fault can affect
the operating safety and reliability of the entire mechanical
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equipment, thus resulting in huge economic losses and even
casualties to varying degrees [4], [5]. Therefore, effective
and achievable methods are of critical significance for fault
diagnosis of rolling bearing in industrial production.

Considering that the operating state of equipment can
be reflected by vibration signals, vibration analysis based
on vibrational signals has been generally accomplished for
diagnosing faults of rolling bearings [6], [8]. Extracting
fault features from the collected vibration signals is not
only the key process of the vibrational analysis method, but
also the premise for state recognition and fault diagnosis.
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However, owing to the complexity and non-stationarity of
the vibration signals, fault feature extraction cannot be
always carried out effectively. For this purpose, several
time-frequency approaches have been designed for process-
ing non-stationary signals in previous studies, including
wavelet transform (WT) [9], empirical mode decomposi-
tion (EMD) [10], ensemble empirical mode decomposi-
tion (EEMD) [11], and variational mode decomposition
(VMD) [12]. Among the above methods, WT based on
Fourier transform method has an outstanding performance
of analyzing non-stationary signals, but different signals
need to be analyzed by selecting different basis functions in
WT, which brings applicability problem to signal process-
ing. Unlike WT, EMD does not require pre-selected basis
functions and is extensively utilized to process non-stationary
signals into sets of time sequences adaptively. Nevertheless,
EMD also exists some limitations, such as end effect and
mode mixing. To address these limitations, based on the
theory of EMD, an improved version called EEMD with
the assistance of added gaussian white noise is proposed,
but the results decomposed by EEMD may be influenced
by the added noise: (1) the residual noise still exists in the
reconstructed signal in application, which can easily inundate
the fault-related information [13]; (2) different realizations
of signal assisted with noise may produce different number
of modes, making it difficult to calculate the means of
these modes [13]. Different from the mentioned methods,
VMD is a novel adaptive signal decomposition method by
constructing and solving a constrained variational problem to
achieve signal decomposition, thus avoiding themodemixing
in EMD, the noise effect in EEMD and the basis function
selection in WT. Additionally, the ability and effectiveness
of VMD in signal decomposition have been demonstrated in
previous literature [14]–[16]. Therefore, VMD is adopted to
preprocess the non-stationary vibration signals in this paper.

After decomposing the non-stationarity signals, the next
procedure is to extract fault features effectively. Entropy, as
an effective tool for estimating the irregularity and uncer-
tainty of the signal, has been widely employed to extract
features within non-stationary time series, such as sample
entropy (SampEn) [17], permutation entropy (PE) [18], fuzzy
entropy (FE) [19]. Nevertheless, these classical entropies
remain some drawbacks and needmuch effort to be improved.
For example, SampEn and FE trouble from computational
cost; PE does not consider the relationship between signal
amplitudes. In recent years, a new technique named disper-
sion entropy (DE) [20] is designed to measure the complexity
and uncertainty of time series, which is time-saving and
less affected by mutation signal as well as can consider the
relationship between amplitudes, thus to overcome the draw-
backs stated above to some extent. Unfortunately, DE remains
two weaknesses. First, the relationship information between
neighboring amplitudes is not fully considered, leading to that
different vectors may be mapped to the same dispersion pat-
tern, which would impact the assessment accuracy. Second,
DE only analyzes time series under a single scale. As a result,

a lot of valuable fault information hidden in other scales will
be ignored. To tackle the first problem, a new dispersion
entropy termed fine-sorted dispersion entropy (FSDE) [21]
is proposed by adding an additional factor to distinguish the
different sequences that are mapped to the same pattern. For
overcoming the second weakness, the concept of composite
multiscale dispersion entropy (CMDE) is emerged through
composite multiscale coarse graining procedure to avoid the
loss ofmuch potentially useful information [22].While FSDE
and CMDE have made considerable improvements over DE,
these methods only concern on solving a single weakness
existing within DE. Therefore, in this paper, a promoted
version of DE called composite multiscale fine-sorted disper-
sion entropy (CMFSDE) is put forward by incorporating the
advantages of FSDE and CMDE for extracting representative
features of time series. The contrastive experiments among
FSDE, CMDE and CMFSDE are conducted later, indicating
CMFSDE has better capability of feature extraction than
FSDE and CMDE.

The essence of fault diagnosis is a classification issue.
Various well-known approaches have been developed for the
classification issue in engineering applications, containing
Bayesian decision [23], k-nearest neighbor (KNN) [24], arti-
ficial neural network (ANN) [25], support vector machine
(SVM) [26], etc. Among the above methods, Bayesian deci-
sion has a notable ability in recognition considering class con-
ditional probability and prior probability. But the accuracy of
Bayesian decision is reached through the assumption of an
appropriate prior model. Based on Euclidean or Manhattan
distances, KNN can be realized simply and is affected by the
distribution of samples easily. ANN performs strong capacity
in terms of pattern recognition with large data samples, yet
it is time-consuming for adjusting the parameters in net-
work structure. Based on statistical learning theory, SVM
possesses the ability to solve small-sample, nonlinear and
high-dimension classification problems with suitable kernel
functions [27]. By mapping samples to high-dimensional
space, the hyperplane of optimal classification is con-
structed in the space to satisfy the classification requirements.
At present, combining with feature extraction method, SVM
has been successfully and broadly applied for pattern recog-
nition in fault diagnosis [28], [29]. Due to its remarkable and
powerful property, SVM is utilized as the fault classifier in
this study.

When deducing the fault pattern recognition, the perfor-
mance of SVM is greatly influenced by the penalty factor C
and kernel parameter g [21]. For a machine learning model,
intelligent optimization algorithm can determine the suitable
parameters of SVM to improve its performance [30]. There-
fore, many optimization algorithms have been presented and
employed to search the optimal parameters of SVM, such
as particle swarm optimization (PSO) [31], grey wolf opti-
mizer (GWO) [32] and sine cosine algorithm (SCA) [28].
Although the performance of the above algorithm has been
verified in past publications, there may still be two defects
within them, i.e., premature convergence and trapping into the
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local optimum [33]. Hence, researchers from different areas
have successfully developed several newmodified and hybrid
algorithms to alleviate defects of these standard algorithms
that include PSO combinedwith SCA [34], quantum-behaved
PSO [35], multi-objective hybrid GWO [36], integration of
GWO, SCA and mutation operator [28], etc. Recently, Harris
hawks optimization (HHO) [37] is proposed by Heidari et al.
in 2019, which is a novel population-based optimization
method with better behaviors than other swarm optimizers on
benchmark functions and real constrained engineering prob-
lems. Nevertheless, similar to other optimization algorithms,
the original HHOmay still suffer from the troubles described
above. On this account, an enhanced hybrid optimization
method termed as mutation SCA-HHO (MSCAHHO) com-
bining the respective advantages of periodic mutation strat-
egy [38], SCA and HHO is proposed in this study, which
has fast convergence speed and can approximate the best
global optimum based on test of several benchmark functions,
including unimodal, multi-modal and composite functions.
In consideration of the favorable performance of the proposed
MSCAHHO method, it is applied to optimize the parameters
of SVM.

To sum up, a novel hybrid diagnosis model with the fusion
of VMD, CMFSDE, MSCAHHO optimization strategy and
SVM is put forward in this paper. Firstly, the vibration signals
are decomposed by VMD into sets of intrinsic mode func-
tions (IMFs), before which the decomposing mode number
K is predefined by observing center frequencies of the IMFs.
Later, the feature arrays of various fault categories are con-
structed by the improved novel dispersion entropy CMFSDE.
Afterwards, the proposed MSCAHHO optimization method
is introduced to search the optimal parameters of SVM.
Subsequently, the SVM model optimized by MSCAHHO is
applied to classify different fault samples. Lastly, the perfor-
mance of the proposed model is verified with engineering
application and contrastive experiment.

According to the above description, the innovative contri-
butions of this research are made as follows:
(1) An improved version of DE, namely CMFSDE, is pro-

posed for solving the shortages of DE by further consid-
ering the relationship information between neighboring
amplitudes under multiscale. Subsequently, CMFSDE is
applied to extract representative fault features from IMFs
obtained by VMD.

(2) MSCAHHO optimization method, in which HHO is
enhanced with SCA and a periodic mutation strategy,
is originated for discovering the optimal parameters of
SVM.

(3) A novel hybrid diagnosis model is systematically pre-
sented, whose superiority and effectiveness are verified
quantitatively and objectively with four indices in con-
trastive experiments.

The organization of this article is arranged below:
Section II aims at presenting the fundamental theories of
VMD, dispersion entropy and SVM. Section III is devot-
ing to describe the mathematical models of CMFSDE and

MSCAHHO in detail. Subsequently, Section IV introduces
an improved hybrid diagnosis model integrating VMD,
CMFSDE, MSCAHHO optimization strategy and SVM.
Next, the proposed methodology is validated with engineer-
ing application and comparative experiments in Section V.
Finally, in Section VI, conclusions of the study are drawn.

II. BASIC THEORY
A. VARIATIONAL MODE DECOMPOSITION
VMD is a new method of adaptive and quasi-orthogonal
signal preprocessing technique [39], through which a non-
stationary signal can be decomposed into a sum of band-
limited IMFs. By solving the optimal solution of constrained
variational problem, the central frequency and band-limited
of each mode can be decided [40], which can be construed as
follows:

min
mk ,wk

{∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ mk (t)

]
e−jwk t

∥∥∥∥2
2

}

s.t.
K∑
k=1

mk (t) = f (t), k = 1, 2, . . . ,K (1)

where K denotes the decomposition number of IMFs. mk
and wk represent the time-domain signal and the central
frequencies of the k-th IMF, respectively. While f (t) is the
input signal. ∂t is the partial derivative function, and δ(t) is
unit pulse function.

To transform the above constrained variational problem
into unconstrained problem, quadratic penalty factor and
Lagrange multiplier are utilized to modified the Equation (1),
and then the augmented variational problem is expressed as:

L(mk ,wk , β)

= α
∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ mk (t)

]
e−jwk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
k

mk (t)

∥∥∥∥∥
2

2

+

〈
β(t), f (t)−

∑
k

mk (t)

〉
(2)

where β(t) is the Lagrange multiplier, α is the quadratic
penalty factor.

Subsequently, following the dual decomposition and
Lagrange theory, the alternate direction method of mul-
tipliers (ADMM) [41] is added to deal with this varia-
tional problem (2) by optimizing mk , wk and β alternately.
The optimization issues of mk and wk are constructed by
Equations (3) and (4), respectively.

mn+1k =min


α

∥∥∥∂t [(δ(t)+ j
π t

)
∗ mk (t)

]
e−jwk t

∥∥∥2
2

+

∥∥∥∥f (t)−∑
i
mi(t)+

β(t)
2

∥∥∥∥2
2

 (3)

wn+1k =min

{∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ mk (t)

]
e−jwk t

∥∥∥∥2
2

}
(4)
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Addressing Equations (3) and (4), the iterative equations
are obtained in frequency domain as Equations (5) and (6):

mn+1k (w) =
f (w)−

∑
i6=k mi(w)+

β(w)
2

1+ 2α(w− wk )2
(5)

wn+1k =

∫
∞

0 w |mk (w)|2 dw∫
∞

0 |mk (w)|
2 dw

(6)

Meanwhile, the Lagrange multipliers can be updated as
follows,

L(mk ,wk , β)

= α
∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ mk (t)

]
e−jwk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
k

mk (t)

∥∥∥∥∥
2

2

+

〈
β(t), f (t)−

∑
k

mk (t)

〉
(7)

where r presents an updating coefficient.
The calculation processes of VMD is the following:
Step 1: Initialize m1

k , w
1
k , β

1, n = 1;
Step 2: Start iteration, n = n+ 1;
Step 3: Update mk and wk according to Equa-

tions (5) and (6);
Step 4: Update β using Equation (7);
Step 5: For a given solution accuracy ε, if∑
k

∥∥∥mn+1k − mnk

∥∥∥2
2
< ε, stop the iteration, else turn to

Step 2 for the next iteration.

B. DISPERSION ENTROPY
DE is a recently proposed approach for evaluating the irreg-
ularity or complexity of time sequences [20]. For a given
time sequence x = {xi, i = 1, 2, . . . ,N } with length N , x is
firstly mapped into by using the standard normal cumulative
distribution function, that is:

yi =
1

σ
√
2π

∫ xj

−∞

e
−(t−µ)2

2σ2 dt (8)

where µ and σ represent the expectation and variance of the
normal distribution, respectively. yi ∈ (0, 1).
Subsequently, the phase space reconstruction matrix is

generated by:

ymj =
[
yj, yj+τ , . . . , yj+(m−1)d

]
(9)

where j = 1, 2, . . . ,N − (m− 1) d , m and d represent the
embedding dimension and time delay, respectively.

Future, ymj is mapped to the range [1, 2, · · · , c] by the
following equations.

zcj = R
(
c · yj + 0.5

)
(10)

zm,cj =

[
zcj , z

c
j+d , . . . , z

c
j+(m−1)d

]
(11)

where c is the number of classes. zcj is the j-th member of
the class series zm,cj , while R denotes rounding. If zcj =
v0, zcj+d = v1 ,. . . , zcj+(m−1)d = vm−1, then the time
series zm,cj is corresponded to a dispersion pattern πv0v1...vm−1 .

Since πv0v1...vm−1 is composed of m number and each number
has c values, thus the number of possible dispersion patterns
equal cm. The corresponding rate of a dispersion pattern
πv0v1...vm−1 is calculated by

p =
Number

{
j|j ≤ N − (m− 1)d, πv0v1...vm−1

}
N − (m− 1)d

(12)

where Number
{
j|j ≤ N − (m− 1)d, πv0v1...vm−1

}
means the

emergence number of each dispersion pattern πv0v1...vm−1 that
is assigned to zm,cj .
Finally, according to Shannon entropy, the DE value of the

time series x is defined as

DE(x,m, c, d) = −
cm∑
π=1

p · ln(p) (13)

The higher DE value demonstrates more irregularity of a
time series, while the lower one means more regularity.

C. SUPPORT VECTOR MACHINE
SVM is designed for the classical two-classification issue
and has unique advantages in solving small samples, non-
linear and high-dimension data classification problems [21].
The basic principle of SVM is to map samples to a high-
dimensional feature space by nonlinear transformation and
construct an optimal hyper-plane to solve the corresponding
nonlinear problem in low-dimensional space. Assuming a
sample set {(xi, yi) |i = 1, 2, . . . , n}, xi is the i-th input feature
vector and yi is the category label of xi, the hyper-plane
function is modeled by:

w · x + b = 0 (14)

where b and w are bias parameter and weight vector, respec-
tively. Dot · presents the inner product.

For a binary classification issue, to correctly identify sam-
ples, all samples should be satisfied the constraint, that is:

w · xi + b

{
> 1 for yi = 1
< −1 for yi = −1

(15)

The maximum classification interval is 2/ ‖w‖2, which
can be obtained by minimizing ‖w‖2. By bringing slack
term ξ and penalty factor C into Equation (15), the linear
indivisibility problem of SVM is converted into the following
constrained optimization issue:

min f =
1
2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi(w · xi + b) ≥ 1− ξi, i = 1, 2, . . . , n (16)

The computation of sample vectors in high-dimensional
space is transformed into inner product by the kernel function.
Since a kernel function determines the mapping of samples to
feature space, the selection of kernel function is very mean-
ingful for the classification of SVM. Due to the excellent
property of radial basis function (RBF), it is always employed
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as the kernel function of SVM in the utilization of pattern
identification, describing by:

K (xi, xj) = φ(xi) · φ(xj) = exp(−g||xi − xj||2) (17)

where g represents the kernel parameter.
To solve Equation (16), the Lagrange function is intro-

duced to converted such quadratic programming problem to
the corresponding dual problem, constructing by:

maxL =
n∑
i=1

µi −
1
2

n∑
i,j=1

µiµjyiyjK (xi, xj)

s.t.
n∑
i=1

µiyi = 0, µi ≥ 0, i = 1, 2, . . . , n (18)

where µi is the Lagrange multiplier. Finally, by solving
Equation (18), the linear classification decision function with
RBF function is given by:

f (x) = sgn(
n∑
i=1

µiK (xi, x)+ b) (19)

III. THE PROPOSED METHOD FOR FAULT DIAGNOSIS OF
ROLLING BEARINGS
A. COMPOSITE MULTISCALE FINE-SORTED DISPERSION
ENTROPY
1) FINE-SORTED DISPERSION ENTROPY
DE is a powerful tool formeasuring irregularity of time series,
and can be adopted to process the fault signals of rolling
bearings effectively [42]. However, according to the origi-
nal definition of DE, the extent of the differences between
samples are not fully considered. Consequently, the different
sample vectors may be mapped into the same dispersion
pattern, which makes DE unable to reflect fault information
comprehensively. Figure 1 exhibits an example of different
samples mapped into the same dispersion pattern [2 2 3 3],
in which the left one presents the dispersion pattern, and the
right one shows three different samples mapped into the same
dispersion pattern.

FIGURE 1. An example of different samples mapped into the same
dispersion pattern.

Considering this account, a fine-sorted dispersion entropy
(FSDE) [21] is proposed to improve the assessment accuracy
of DE. In FSDE, factor f is introduced to measure the dif-
ference between elements in the vector ymj and then added in

the class zm,cj as an additional element to distinguish different
samples that are mapped into the same pattern. Thus, the
relationship information between elements is taken into DE.
The factor f is calculated by:

f =

⌊
max

(∣∣dy∣∣)
ρ · std (|dx |)

⌋
dx = {xi+1 − xi|i = 1, 2, . . . , n− 1}

dy = {yi+1 − yi|i = 1, 2, . . . ,m− 1} (20)

where b.c rounds the element to the nearest integer less
than or equals to that element. std means the standard devia-
tion. ρ is the adjusting coefficient.

To be specific, if ρ > max(|dy|)
std(|dx |)

, f has only one possible
value, that is 0, which means that FSDE is the same as
original DE. While, if ρ ∈

(
0, max(|dy|)

std(|dx |)

]
, f will have more

possible value. The closer ρ tends to 0, the more disper-
sion patterns will be subdivided. For example, different time
series [0.5326, 0.5249, 0.5158, 0.5072] and [0.5114, 0.5131,
0.5134, 0.5130] are mapped to the same class sequences
based on DE with τ = 1,m = 4, ρ = 1, c = 6, i.e.,
[4, 4, 4, 4] and [4, 4, 4, 4]. Meanwhile, adding a factor f
as an additional element to the end of the class sequence,
the new class sequences mapped by FSDE are [4,4,4,4,2]
and [4,4,4,4,0], respectively. Obviously, the different time
series originally mapped to the same pattern are mapped into
different patterns. Figure 2 exhibits that f as an additional
element is inserted to the end of the sequence zm,cj to further
refine the sequence.

FIGURE 2. Different f values are added as an additional element at the
end of the class sequence.

Subsequently, a new class sequence zm,c,fj is constructed

by the above procedures. π fv0v1...vm−1 is a dispersion pattern
corresponding to a zm,c,fj . Thus, the corresponding frequency
of a new dispersion pattern can be measured by:

pf =
Number

{
j|j ≤ N − (m− 1)d, π fv0v1...vm−1

}
N − (m− 1)d

(21)

At last, like the calculation of DE, FSDE is computed as:

FSDE(x,m, c, d, f ) = −
cm∑
π=1

pf · ln
(
pf
)

(22)
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2) COMPOSITE MULTISCALE DISPERSION ENTROPY
DE is a single-scale entropy method, which inevitably will
cause many useful and important information hidden in
multiple scales to be neglected. Therefore, the application
of DE might be limited by analyzing non-linear and non-
stationary fault signals of rolling bearings with one single
scale. To overcome this shortage of DE, the composite mul-
tiscale dispersion entropy (CMDE) is proposed by employ-
ing composite multiscale coarse-grained procedure [22],
in which multiple coarse-grained time series at the same
scale are generated to capture more feature information of
signals. Frist of all, assume an input time series with length
N : u = {ui, i = 1, 2, . . . ,N }, u is divided into the composite
multiscale coarse graining sequence xτk =

{
xτk,j
}
defined as:

xτk,j=
1
τ

jτ+k−1∑
i=(j−1)τ+k

ui, 1 ≤ j ≤
⌊
N
τ

⌋
=p, 1 ≤ k ≤ τ

(23)

where xτk,j is the k-th coarse grained time series with a scale
factor τ , b.c means the nearest integer less than or equal to
that element. p is the length of xτk,j, j represents the j-th point
of k-th coarse grained time series xτk,j. Thus, in CMDE, for a
given scale factor τ , τ different time series are generated by
dividing the original signals into some segments with a length
based on the different starting points. Figure 3 illustrates the
coarse-grained procedure of CMDE under the scale τ = 2.
As seen from Figure 3 two different time series are obtained
for a scale factor τ = 2. There is a similar process for other
scale factors.

FIGURE 3. The coarse-grained procedure of CMDE under the scale τ = 2.

Then, the DEs of each coarse-grained sequence are calcu-
lated at a scale factor τ based on Equation (13).
Finally, CMDE is expressed by averaging all τ DEs in the

scale τ , such that,

CMDE(u, τ,m, c, d) =
1
τ

τ∑
k=1

DE
(
xτk , τ,m, c, d

)
(24)

According to the calculation procedure of CMDE, com-
pared with DE, more information among elements is taken
into full consideration by introducing the composite mul-
tiscale coarse-grained procedure in processing the original
signals. In addition, averaging DEs can effectively weaken
the influence of starting point position on the DE value.

3) COMPOSITE MULTISCALE FINE-SORTED DISPERSION
ENTROPY
FSDE and CMDE only focus on adequately overcoming
one problem of DE. Thus, the enhanced dispersion entropy
CMFSDE is proposed by assembling the advantages of FSDE
and CMDE to address the problems of DE comprehensively.
Primarily, the coarse graining procedure of time series is the
same as the procedure in CMDE. Subsequently, the FSDEs
of each coarse-grained sequence xτk are calculated at a scale
factor τ based on Equation (22). Finally, CMFSDE is defined
by averaging all τ FSDEs in the scale τ , that is,

CMFSDE(u, τ,m, c, d, f )=
1
τ

τ∑
k=1

FSDE
(
xτk , τ,m, c, d, f

)
(25)

The flowchart of the proposed CMFSDE method is pre-
sented in Figure 4, and its main steps are described in detail
as follows:

Step 1: Set paraments τmax,m, c, d, ρ, where τmax is the
largest scale factor;

Step 2: Generate coarse graining time series based on
Equation (23);

Step 3: Calculate the factor f as an additional element in
each class sequence based on Equation (20);

Step 4: Calculate FSDEs of all time series at the same scale
based on Equation (22);

Step 5: Calculate CMFSDE based on Equation (25);

FIGURE 4. The flowchart of CMFSDE.
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Step 6: If τ = τmax, stop the procedure, else turn to Step 2
and τ = τ + 1.

A contrastive experiment among CMDE, refined com-
posite multiscale dispersion entropy (RCMDE) [43] and
CMFSDE was conducted. To obtain more objective compar-
ison results, 100 groups of white gaussian noise (WGN) are
generated to measure these three entropy values. Each group
noise signal has data length of 1000 points. To make a fair
comparison, the parameters of three entropies are the same:
m = 2, d = 1, c = 6, and τmax = 20, as set in [43].
Subsequently, the mean values and standard deviations (SD)
of the generated 100 groups are measured by three entropies.
The coefficient of variation (CV) [43] defined as the SD
divided by the mean is adopted to compare the results.
As done in [43], the results of WGN are investigated at
scale factor 10 as a trade-off between short and long scales.
Figure 5 shows the waveform of WGN. Table 1 records the
CV values and computation time of three entropies at scale
factor 10 for WGN. From Table 1, CVs of RCMDE and
CMFSDE are significantly less than that of CMDE. More-
over, the smallest CV for WGN is reached by CMFSDE.
Besides, the computation time of three entropies is close by
measuring 100 groups of WGN, among which the computa-
tion time of CMFSDE is the second. Overall, CMFSDE is
more suitable for detecting dynamic changes of the complex
signal comparing with CMDE and RCMDE.

FIGURE 5. The waveform of WGN.

TABLE 1. CV values of three entropies at scale factor 10 for WGN as well
as computation time.

B. MUTATION SCA-HHO OPTIMIZATION
1) SINE COSINE ALGORITHM
A new stochastic optimization algorithm called SCA is pro-
posed by Mirjalili [44] using simple sine and cosine func-
tions as operators to tackle optimization issues. A simple
and elaborate process of exploration and exploitation enables
SCA to discover optimal results quickly in the search region.
The updating strategy of the search agents is described as
follows:

Z l+1i =

{
Z li + r1 × sin(r2)× |r3Pli − Z

l
i |, r4<0.5

Z li + r1 × cos(r2)× |r3Pli − Z
l
i |, r4≥0.5

(26)

where Z li and Pli are the current position and the best posi-
tion of i-th search agent at l-th iteration, respectively. r1 =
a − l(a/lmax) is a parameter for determining the region of
search agent i at next iteration, where a, l and lmax are a
constant, the current number of iterations and the maximum
number of iterations, respectively. The random parameter r2
inside [0, 2π] defines the distance that the current solution
should towards or away from the target optimal solution;
The parameter r3 randomly assigns a weight in [0, 2] to the
target optimal solution, enhancing (r3 > 1) or weakening
(r3 < 1) the effect of the current optimal solution; Finally,
the parameter r4 selected randomly from [0,1] is to fairly
switch the units of the sine and cosine in Equation (26).

2) HARRIS HAWKS OPTIMIZATION
HHO proposed by Heidari et al. [37] in 2019 is a novel
population-based and nature-inspired optimization method to
solve various optimization problems. HHO algorithm emu-
lates the hunting behaviors of Harris hawks in nature and
contains the exploration phase and exploitation phase.

For the exploration phase, the locations of Harris’ hawks
are randomly updated as follows:

X l+1 =


X lrand − r1

∣∣∣X lrand − 2r2X l
∣∣∣

q ≥ 0.5(
X lrabbit − X

l
m

)
− r3 (LB+ r4(UB− LB))

q < 0.5

(27)

where X l+1 is the position order of hawks in the next iteration
l, X l is the position of rabbit, X lrabbit is the current position
vector of hawks, r1, r2, r3, r4, and q are assigned randomly
in (0, 1) updating in each iteration, LB and UB are the upper
and lower bounds of variables, respectively, X lrand is a ran-
domly selected hawk from the current population, and X lm =
1
n

n∑
i=1

X li is the average position of the current population of

hawks. X li represents the location of i-th hawk in iteration l,
and n is the number of hawks.

For the exploitation phase, there are four stages: soft
besiege, hard besiege, soft besiege with progressive rapid
dives and hard besiege with progressive rapid dives.

In the soft besiege, the behavior of hawk is modeled by:

X l+1 = 1X l − E
∣∣∣JX lrabbit − X l ∣∣∣

1X l = X lrabbit − X
l (28)

where E = 2E0(1−l/lmax) is used to switch from exploration
to exploitation. lmax is the maximum iteration number, and
E0 is the initial value of E .1X l is the difference between the
position of the rabbit and the current location in iteration l,
a random number r5 is in (0,1), and J = 2(1 − r5) changes
randomly about the jump strength of the rabbit in each
iteration.
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In the hard besiege, the update of current positions can be
given by:

X l+1 = X lrabbit − E|1X
l
| (29)

In the soft besiege with progressive rapid dives, the posi-
tions of hawks are performed by:

X l+1 =

{
Y if F(Y ) < F(X l)
Z if F(Z ) < F(X l)

(30)

where Y = X lrabbit −E
∣∣JX lrabbit − X l ∣∣, Z = Y + S×LF (D),

D shows the dimension of problem, S denotes a 1×D random
matrix. LF means the levy flight function, calculating by:

LF(x)= 0.01×
u× σ

|v|
1
β

, σ =

 0(1+ β)×sin
(
πβ
2

)
0
(
1+β
2

)
× β × 2

(
β−1
2

)


1
β

,

β = 1.5 (31)

where random numbers u and v are assigned in (0,1).
In the Hard besiege with progressive rapid dives, the updat-

ing positions are operated by Equation (30), but Y and
Z are calculated using new equations. Y = X lrabbit −
E
∣∣JX lrabbit − X lm∣∣, X lm is introduced in exploration phase,

Z = Y + S × LF (D).

3) MUTATION SCA-HHO OPTIMIZATION METHOD
Although SCA and HHO have their own excellences, some
deficiencies still require to be promoted, involving pre-
mature convergence and trapping into local optima, etc.
Therefore, the enhanced algorithm called mutation
SCA-HHO (MSCAHHO) is proposed with the integration
of mutation operator, SCA and HHO. Also, it is expected
to improve the convergence behavior and the quality of
solutions. Additionally, the application of periodic mutation
strategy can result in a more sufficient search with jumping
greatly and periodically in the search region, trying to escape
from local optimum [38]. Thus, more various solutions may
be produced.

The hierarchical form of the proposedMSCAHHO is illus-
trated in Figure 6, where the top layer is performed with
HHO individuals and the individuals are updated by SCA
in the bottom layer. The top layer contains M HHO search
agents corresponding to M groups in the bottom layer and
each bottom group includes N SCA individuals. The new

FIGURE 6. The hierarchical form of the proposed MSCAHHO.

positions are updated firstly by executing the SCA in the
bottom layer. Subsequently, the optimal solution searched
by each bottom layer group is kept by each corresponding
agent in the top layer. Then, based on the obtained optimal
solutions, the positions of HHO individuals are iterated in the
top layer. Thus, the bottom layer individuals are updated by:

Z l+1ij =

 Z lij + r1 × sin (r2)×
∣∣∣r3X li − Z lij∣∣∣ , r4 < 0.5

Z lij + r1 × cos (r2)×
∣∣∣r3X li − Z lij∣∣∣ , r4 ≥ 0.5

(32)

where Z lij describes the position of j-th individual in the
bottom layer corresponding to the i-th search agent in the top
layer. X li denotes the position of i-th search agent in the top
layer. l is the number of current iterations.
To enrich diversity of individuals and run away from local

optima, mutation operator [38] is introduced to periodically
change the location update strategy in Equation (32). Thus,
the following updating rules contained the mutation operator
are constructed in the bottom layer.

Z l+1ij

=




Z lij + r1 × sin (r2)×

∣∣∣r3X li − Z lij∣∣∣ ,
r4<0.5

Z lij + r1 × cos (r2)×
∣∣∣r3X li − Z lij∣∣∣ ,

r4≥0.5
l 6= nT

Z lij × [1+ A× (0.5− rand)]
l = nT

, n=1, 2, ...

(33)

X l+1

= X l × [1+ A× (0.5− rand)] , l = nT , n = 1, 2, ...

(34)

where T (T < lmax) and A are the mutation periodicity and
mutation amplitude, respectively. randmeans the real random
number in accordance with uniform distributionU (0,1) [28].
X l means the set of positions of all top groups. It can be seen
that the position of Z lij and X

l will be mutated periodically
as the updating process, which may enable the algorithm to
jump out of the local optima.
It is a common approach for evaluating stochastic opti-

mization algorithms by adopting benchmark functions with
various property, which can ensure that the obtained results
of the algorithm are not accidental [45]. Following this
fact, several benchmark functions are introduced to verify
the validity of the proposed MSCAHHO method, includ-
ing unimodal, multimodal and fixed-dimension multimodal
benchmark functions [37], [46], which are listed in Table 2.
In addition, MSCAHHO is compared with the standard SCA,
HHOand PSO. The parameter settings of these algorithms are
the same to make a fair comparison in the experimental test.
The number of search agents are set to 30 with 150 iterations.
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TABLE 2. The description of benchmark function.

Moreover, all tests are performed 10 times independently on
each benchmark function. The average convergence curves
of four algorithms are plotted in Figure 7, where the exper-
imental results appear that the newly modified MSCAHHO
makesmore outstanding performance as comparison to others
on different testing classical functions with respect to conver-
gence speed and searching optimal solutions.

The following gives main steps of the proposed
MSCAHHO optimization approach:

Step 1: Set mutation parameters and initializeM searching
agents in the top layer. M· N individuals in the bottom layer
randomly in the given range of variables;

Step 2: Calculate the fitness value of each search agent;
Step 3: Execute iteration, l = l + 1;
Step 4: For the bottom layer, update Z lij and X according to

Equations (33) and (34);
Step 5: Update Xi based on the best solution searched by

the corresponding group in the bottom layer;
Step 6: For the top layer, update in HHO;
Step 7: If l 6= lmax, turn to Step 3;
Step 8: Return the position Xrabbit as the optimal

solution.

IV. FAULT DIAGNOSIS BASED ON CMFSDE AND SVM
OPTIMIZED BY MSCAHHO
In this research, a novel fault diagnosis approach is proposed
based on CMFSDE as the feature extractor and MSCAHHO
optimized SVM as the fault classifier to diagnose faults in
rolling bearings effectively, which can be divided into the
following main steps:

Step 1: Set the modal decomposition number K with cen-
tral frequency observation technique;

Step 2: Decompose the raw vibration signals into sums of
IMFs by VMD;

Step 3: Calculate the CMFSDE value of each IMF;
Step 4: Construct feature vectors of different fault samples

with CMFSDE values;
Step 5: Optimize the parameters C and g of SVM by the

proposed MSCAHHO;
Step 6: Train the SVM model with optimal parameters C

and g;
Step 7: Apply the optimal SVM model to classify various

fault samples.
From the above, Figure 8 shows the detailed scheme of

the proposed fault diagnosis model. As seen from Figure 8,
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FIGURE 7. Convergence curves of PSO (blue), SCA (magenta), HHO (black) and proposed MSCAHHO (red) on various benchmark
functions after 10 runs.

the scheme of the proposed approach comprises four main
parts: signal processing, feature extraction, parameter opti-
mization and fault classification. At first, the original vibra-
tion fault signals are decomposed into groups of IMFs by
VMD in signal processing part. Then, CMFSDE is utilized
as the feature extractor to extract representative features.
Later, the parameters C and g of SVM are optimized by
the proposed MSCAHHO optimization approach. At last,
the fault feature vectors constructed with extracted represen-
tative features are imported into the SVM employed for fault
classification.

V. ENGINEERING APPLICATION
A. DATA COLLECTION
In the paper, the experimental vibration signals are col-
lected from Bearings Data Center of Case Western Reserve

University [47] due to that these data are well-known for
their diversities and efficacities in validating new assessment
techniques. The establishment procedure of original fault
dataset is described as follows. To begin with, the collection
of vibration signals was from the drive end under the sample
frequency of 12000Hz and the rated load of 2 hp at the
rotation speed of 1750 rpm in fault database; Furthermore,
to fully investigate the fault characteristics, fault conditions
were set to nine types, namely inner race fault, ball fault,
and outer race fault with defect sizes of 0.007, 0.014, and
0.021 inches, respectively. In other words, each fault location
has three different defect sizes; Subsequently, to demonstrate
the effectiveness of the proposed method, the vibration signal
of each fault type was split into 59 non-overlapped samples,
as well as each sample has equal length data segment con-
tained 2048 sample points. Thus, the dataset was established
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FIGURE 8. The detailed scheme of the proposed fault diagnosis model.

TABLE 3. The description of experimental data under 2 hp load.

with a total of 59×9 samples. The detailed experimental fault
data adopted in this research are listed in Table 3. The raw
vibration signal waveforms of various fault types under 2 hp
load are shown in Figure 9, presenting that the waveforms of
various fault types are non-stationary and quite different.

B. ENGINEERING APPLICATION IN FAULT DIAGNOSIS OF
ROLLING BEARING
1) COMPARATIVE EXPERIMENT AND EVALUATION INDICES
To verify the availability of the developed fault diagno-
sis method based on VMD-CMFSDE-MSCAHHO-SVM,

comparative experiments were performed in the feature
extraction and parameter optimization stages. In the fea-
ture extraction stage, FSDE and CMDE were compared
with CMFSDE; While, HHO and SCA were added as com-
parison to MSCAHHO in the parameter optimization part.
The parameter settings of contrastive methods were set as
the same in the comparative experiments to make a fair
comparison.

Four commonly measured evaluation metrics were intro-
duced to assess the classification performance of differ-
ent methods statistically [21], [48], including Adjusted
Rand Index (ARI), Normalized Mutual Information (NMI),
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FIGURE 9. Time-domain waveforms of vibration signals of various fault
types under 2 hp load.

TABLE 4. Four evaluation metrics for assessment in the experiment.

F-measure (F), and Accuracy (ACC), which were noted
in Table 4. The range of ARI is [−1, 1], while the other indices
are inside [0, 1]. The value closer to 1, the better classification
performance of a method.

The following notations are adopted: 8 and � present
the sets of given actual label classified result, respectively;
n11 is the number of sample pairs with the same label in both
8 and �; n00 is the number of sample pairs with different
labels in 8 and �; C2

n is all possible combinations of sam-
ple pairs; p (ϕ, ω) denotes the joint probability function of
8 and �; p (ϕ) and p (ω) are the probability functions of
8 and �, respectively; TP, FP, FN, TN mean true positive,
false positive, false negative, true negative according to actual
label and classification result, respectively.

2) SIGNAL PROCESSING
In the signal processing stage of the proposed method,
the sample of each fault type was decomposed to a group
of IMFs by VMD. The number of IMFs plays a significant

impact on results of fault diagnosis. If K is set too large,
center frequencies of neighboring IMFs may be relatively
similar, something that might lead to mode mixing. On the
contrary, if K is taken too small, the input signal may be
not decomposed effectively, resulting in the neglect of more
valuable information. Accordingly, the number K of IMFs is
determinedwith central frequency observationmethod firstly.

To determine the appropriate K , the ball fault with a defect
size of 0.007 inches (L4) was employed as an example in the
experiment. The normalized center frequencies of IMFs with
different K are displayed in Table 5 while the distribution
of central frequency during the iterative calculation of VMD
with various K values are plotted in Figure 10.

As seen from Table 5, similar normalized center frequen-
cies appear when K equals 5 or larger, meaning that the phe-
nomenon of excessive decomposing happens. Similarly, there
arise two curves of normalized central frequencies whose dis-
tance interval is relatively close whenK is 5 or 6 in Figure 10.
According to the above analysis, K is recommended to 4 in
this paper as highlighted in bold in Table 5.

Subsequently, the original fault signals were decomposed
into four IMFs by VMD. The time-domain waveforms of
the IMFs decomposed from nine kinds of fault sequences
are presented in Figure 11, in which the IMFs of each fault
category have their own fluctuation characteristic and can be
employed to identify faults to a certain extent.

3) FEATURE EXTRACTION
After obtaining the IMFs through signal decomposition,
CMFSDE of each component was calculated to construct
the feature vector of sample. As an entropy-based method,
the parameters of CMFSDE should be determined before-
hand. Here, five parameters need to be pre-set, including
maximum scale factor τmax, embedding dimension m, time
delay d , adjusting coefficient ρ and the number c of classes.
Referring to previous literature [21], [43], the parameters of
CMFSDE chosen in the experiment are listed in Table 6.

For all the first three samples of different fault types
(L1–L9), CMFSDE and CMDE of the IMF1 component
under different scale factors are recorded in Table 7, in which
both CMFSDE and CMDE of the IMF1 component from the
same fault type under the same scale are similar. For instance,
the CMFSDE values of the classification label L1 are similar
when τ = 1. In addition, for different fault types, the entropy
values of each IMF1 are distinct at the same scale factor.

TABLE 5. Normalized central frequencies with different decomposition number K.
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FIGURE 10. The distribution of central frequency with various K values for each iteration.

FIGURE 11. The decomposition results of all fault signals by VMD: (a) inner race fault (L1, L2, L3), (b) ball fault (L4, L5, L6), (c) outer
race fault (L7, L8, L9).

Moreover, the CMFSDE value of every IMF1 is higher than
the corresponding CMDE value, which means that the pro-
posed CMFSDE is expected to represent the complexity of

signals. Thus, the representative fault feature vectors con-
structed with CMFSDE values are introduced for the fault
classification application later.
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TABLE 6. Parameter setting of CMFSDE.

4) PARAMETER OPTIMIZATION
To confirm the validity of the proposed approach, 59 feature
vectors of fault types were divided randomly into two groups:
30 vectors selected for training and the remaining 29 ones for
testing. After that, an important issue is the suitable parameter
selection of SVM to boost its classification performance.
Hence, the proposed MSCAHHO method is employed to
search the optimal values of the penalty factor C and the ker-
nel parameter g. The optimization experiment was carried out
with 30 searching agents and 100 iterations. The searching
region of parameter C and g were both in [2−10, 210]. The
mutation amplitude andmutation periodwere set 1 and 5 [28],
respectively. The five-fold cross-validation was adopted in
the experiment. Subsequently, the SVM model was trained
withC and g optimized by the proposedMSCAHHOmethod,
thus to achieve the fault classification. Moreover, to demon-
strate the effectiveness of this method, the experiment was run
10 times with different random training samples repeatedly.
Later, the average fitness value was calculated in each itera-
tion. The optimal parameter values of C and g were recorded
corresponding to the highest training accuracy.

The distribution of convergence curves of MSCAHHO
method in 10 times is represented with the shaded area in
Figure 12, where the averaged fitness values are marked
with the solid black line. As seen from Figure 12, the aver-
age fitness value keeps rising and changes in stages. Then
it tends to be stable as the iteration progresses, which
means the method approaches the global optimum solution.
In addition, the utilization of the mutation operator brings
in more effective search by mutating periodically, which
tries to escape from the local optima without impacting
the overall convergence tendency. To verify the superiority
the proposed MSCAHHO, the convergence curves of SCA
and HHO as well as MSCAHHO are plotted in Figure 13
simultaneously. Through comparative analysis of the curves,
it can be concluded the proposed MSCAHHO is superior to
SCA and HHO.

5) FAULT CLASSIFICATION AND COMPARATIVE ANALYSIS
Based on the obtained optimal parameters C and g, the opti-
mal SVM model was trained and then applied to identify
testing samples. Each diagnosis result and computation cost
were averaged on 10 independence runs with different ran-
dom training samples on a laptop with Core i5 2.3GHz /
8GB RAM. Evaluation metrics including ARI, NMI, F and
ACC were adopted to assess the performance of different
models. The higher value of the four metrics means better
performance.

TABLE 7. The CMFSDEs and CMDEs of IMF1 of three same samples of all fault signals (L1–L9) under different scale factors.
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FIGURE 12. The distribution of convergence curves of MSCAHHO method
in 10 times.

To illustrate the effectiveness of the proposed method, nine
relevant methods were selected for comparison. Fault diag-
nosis results of the methods in terms of the four evaluation

indices are exhibited in Table 8 and Figure 14, from which
several conclusions can be found below:

(1) Comparing the results of all methods, the proposed
VMD-CMFSDE-MSCAHHO-SVM method is superior to
other methods with the highest values of four metrics about
0.9897, 0.9896, 0.9954 and 0.9954, which are highlighted in
bold. Meanwhile, the evaluation deviations of the proposed
method are also within a small range.

(2) In terms of feature extraction, as comparison to
the results obtained by VMD-FSDE-MSCAHHO-SVM
(No.3), VMD-CMDE-MSCAHHO-SVM (No.6) and VMD-
CMFSDE-MSCAHHO-SVM (No.9), the average classifica-
tion accuracies (ACC) of FSDE-based, CMDE-based and
CMFSDE-based methods are 0.9816, 0.9927 and 0.9954,
respectively. The results show that all versions of DE
can extract fault features effectively with high recognition
accuracy. Among these methods, CMFSDE-based method
achieves the highest accuracy with 0.9954, indicating that
CMFSDE is more suitable for feature extraction than

FIGURE 13. MSCAHHO compared with SCA and HHO: (a) overall tendency, (b) local detail.

FIGURE 14. Comparison of evaluation results of different methods.
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TABLE 8. Fault diagnosis results of different methods.

TABLE 9. Parameters of PSO and BPNN.

FSDE and CMDE. Besides, the proposed CMFSDE-based
method still has the highest values of the other three indices,
i.e., 0.9897, 0.9896 and 0.9954. Similarly, it can be con-
cluded from other CMFSDE-based methods, such as VMD-
FSDE-SCA-SVM (No.1), VMD-CMDE-SCA-SVM (No.4)
and VMD-CMFSDE-SCA-SVM (No.7). In brief, these com-
parative results demonstrate the availability of the proposed
CMFSDE to extract fault features.

(3) Taking CMDE-based methods (No.4, No.5, No.6) as
examples for validity analysis, four evaluation values of
CMDE-MSCAHHO are the highest (0.9835, 0.9797, 0.9937,
0.9927) compared with those of CMDE-SCA (0.9766,
0.9740, 0.9797, 0.9897) and CMDE-HHO (0.9717, 0.9680,
0.9874, 0.9874), revealing that the proposed MSCAHHO is
superior to SCA and HHO in terms of optimizing the parame-
ters of SVM. Additionally, MSCAHHO performs better eval-
uation results than SCA and HHO both in FSDE-based and
CMFSDE-based methods, which also testifies the superiority
of MSCAHHO.

(4) As seen from Table 8, the computation time of each
model is close. To be specific, the computation time of the
proposed model is the third, while the accuracy of the pro-
posed is the highest (0.9954). This verifies the efficiency and
capacity of the proposed model considering the accuracy and
computation cost in fault diagnosis of rolling bearings.

Based on the above results and analyses, the pro-
posedVMD-CMFSDE-MSCAHHO-SVMmodel (No. 9) can
achieve the highest evaluation results and competitive stabil-
ity in comparison with other methods.

6) COMPARISION AMONG DIFFERENT CLASSIFIERS
Among previous literature, various classification algorithms
have been researched and applied in different fields, among
which support vector data description (SVDD) [49] and back-
propagation neural network (BPNN) [5] are two typical ones.
In this section, a comparative experiment among BPNN,
SVDD and SVM was conducted. In the comparative exper-
iment, the parameters of BPNN are set the same as in [5],
and the parameters of SVM and SVDD are selected by a
classical optimization algorithm PSO. The parameters of
PSO and BPNN are listed in Table 9. Thus, three compar-
ative models are: VMD-CMFSDE-BPNN, VMD-CMFSDE-
PSO-SVDD, VMD-CMFSDE-PSO-SVM. For each model,
the final diagnosis results and computation time are the
average of 10 trials on the same computer. The diagnosis
results and computation time of different classifiers are exhib-
ited in Table 10. Figure 15 shows the performance errors of
different classifiers.
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TABLE 10. Comparison results among different classifiers.

FIGURE 15. Performance errors of different classifiers.

As shown in Table 10, the average time of BPNN-based
model is the lowest, but its diagnosis accuracy is about
0.9801, which is lower than those of SVM-based meth-
ods. The average time of PSO-SVM-based model is very
close to that of PSO-SVDD-based model, but the diagno-
sis performance of PSO-SVM-based model (0.9625, 0.9630,
0.9838 and 0.9835) is much better than that of PSO-SVDD-
based model (0.9432, 0.9423, 0.9744 and 0.9743). These
results verify the advantage of SVM over BPNN and SVDD
in fault diagnosis of rolling bearings. Compared with other
three models, the proposed model combining MSCAHHO-
SVM can achieve the best diagnosis performance (0.9897,
0.9896, 0.9954 and 0.9954), and its computation time is
the second. Moreover, as seen from Figure 15, the perfor-
mance error of the proposedmodel is the smallest. The results
illustrate that MSCAHHO outperforms PSO for improving
the performance of SVM. Overall, considering the diagnosis
performance as well as computation time, SVM optimized by
optimization algorithm is more suitable for fault diagnosis of
rolling bearings.

VI. CONCLUSION
To analyze the complexity of vibration signal and promote the
accuracy of fault diagnosis in rolling bearing, a novel hybrid
fault diagnosis approach is proposed based on CMFSDE as
the feature extractor and MSCAHHO optimized SVM as the
fault classifier in the paper.

Within the proposed approach, the non-stationary origi-
nal vibration signals were firstly decomposed into several
IMFs by VMD whose decomposition number K is deduced

with central frequency observation method. Afterwards,
to overcome some problems existing in FSDE and CMDE,
CMFSDE was put forward to construct the representative
feature vectors from different fault samples. Theoretically,
the proposed CMFSDE coupled the advantages of FSDE and
composite multiscale coarse-grained process. Compared with
FSDE, CMDE and RCMDE, CMFSDE is more suitable in
feature extraction of fault signals. Subsequently, the improved
optimization method namedMSCAHHO, in which HHOwas
enhanced with SCA andmutation operator, outperforms stan-
dard SCA and HHO in terms of convergence speed and local
optima avoidance by testing with the benchmark functions.
Thereafter, the optimized SVM model, which employed
MSCAHHO for optimization of the penalty factor C and
kernel parameter g, was adopted to recognize and classify dif-
ferent fault samples. Lastly, the proposed VMD-CMFSDE-
MSCAHHO-SVM method was compared to several relevant
methods in terms of four evaluation indices including ARI,
NMI, F and ACC in the contrastive experiments. The exper-
iment results confirm that CMFSDE-based method performs
the highest level of accuracy in classification comparing with
FSDE-based and CMDE-based methods, and MSCAHHO is
superior to the standard PSO, SCA and HHO in optimizing
the parameters of SVM. Furthermore, the proposed method
not only achieves much better classification performance, but
also attains distinguished precision and stability as compar-
ison to others. These results demonstrate that the proposed
novel hybrid methodology could be effectively employed to
the area of fault diagnosis of rolling bearings.

REFERENCES
[1] W. Gong, H. Chen, Z. Zhang, M. Zhang, R. Wang, C. Guan, and Q. Wang,

‘‘A novel deep learning method for intelligent fault diagnosis of rotating
machinery based on improved CNN-SVM and multichannel data fusion,’’
Sensors, vol. 19, no. 7, p. 1693, Apr. 2019.

[2] J. W. Tan, W. L. Fu, K.Wang, X. M. Xue, W. B. Hu, and Y. H. Shan, ‘‘Fault
diagnosis for rolling bearing based on semi-supervised clustering and
support vector data description with adaptive parameter optimization and
improved decision strategy,’’ Appl. Sci., vol. 9, no. 8, p. 1676, Apr. 2019.

[3] Z.-X. Hu, Y. Wang, M.-F. Ge, and J. Liu, ‘‘Data-driven fault diagnosis
method based on compressed sensing and improved multiscale network,’’
IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 3216–3225, Apr. 2020.

[4] Y. Qi, C. Shen, D. Wang, J. Shi, X. Jiang, and Z. Zhu, ‘‘Stacked sparse
autoencoder-based deep network for fault diagnosis of rotating machin-
ery,’’ IEEE Access, vol. 5, pp. 15066–15079, 2017.

[5] X. Yan and M. Jia, ‘‘Intelligent fault diagnosis of rotating machinery using
improved multiscale dispersion entropy and mRMR feature selection,’’
Knowl.-Based Syst., vol. 163, pp. 450–471, Jan. 2019.

13102 VOLUME 8, 2020



W. Fu et al.: Fault Diagnosis for Rolling Bearings Based on CMFSDE and SVM

[6] J. Ben Ali, N. Fnaiech, L. Saidi, B. Chebel-Morello, and F. Fnaiech,
‘‘Application of empirical mode decomposition and artificial neural net-
work for automatic bearing fault diagnosis based on vibration signals,’’
Appl. Acoust., vol. 89, pp. 16–27, Mar. 2015.

[7] Z. Li, Y. Tao, A. Abu-Siada, M. A. S. Masoum, Z. Li, Y. Xu, and X. Zhao,
‘‘A new vibration testing platform for electronic current transformers,’’
IEEE Trans. Instrum. Meas., vol. 68, no. 3, pp. 704–712, Mar. 2019.

[8] J. Zheng, Z. Dong, H. Pan, Q. Ni, T. Liu, and J. Zhang, ‘‘Composite multi-
scale weighted permutation entropy and extreme learning machine based
intelligent fault diagnosis for rolling bearing,’’ Measurement, vol. 143,
pp. 69–80, Sep. 2019.

[9] S. Wan and X. Zhang, ‘‘Teager energy entropy ratio of wavelet packet
transform and its application in bearing fault diagnosis,’’ Entropy, vol. 20,
no. 5, p. 388, May 2018.

[10] W. Fu, K. Wang, J. Tan, and K. Zhang, ‘‘A composite framework coupling
multiple feature selection, compound prediction models and novel hybrid
swarm optimizer-based synchronization optimization strategy for multi-
step ahead short-term wind speed forecasting,’’ Energy Convers. Manage.,
vol. 205, Feb. 2020, Art. no. 112461.

[11] Q. Fu, B. Jing, P. He, S. Si, and Y.Wang, ‘‘Fault feature selection and diag-
nosis of rolling bearings based on EEMD and optimized Elman_AdaBoost
algorithm,’’ IEEE Sensors J., vol. 18, no. 12, pp. 5024–5034,
Jun. 2018.

[12] W. Fu, K. Wang, C. Li, and J. Tan, ‘‘Multi-step short-term wind speed
forecasting approach based on multi-scale dominant ingredient chaotic
analysis, improved hybrid GWO-SCA optimization and ELM,’’ Energy
Convers. Manage., vol. 187, pp. 356–377, May 2019.

[13] R. Abdelkader, A. Kaddour, A. Bendiabdellah, and Z. Derouiche, ‘‘Rolling
bearing fault diagnosis based on an improved denoising method using
the complete ensemble empirical mode decomposition and the optimized
thresholding operation,’’ IEEE Sensors J., vol. 18, no. 17, pp. 7166–7172,
Sep. 2018.

[14] W. Fu, K. Wang, J. Tan, and K. Shao, ‘‘Vibration tendency prediction
approach for hydropower generator fused with multi-scale dominant ingre-
dient chaotic analysis, adaptive mutation grey wolf optimizer and KELM,’’
Complexity, vol. 2020, no. 2020, 2020, Art. no. 4516132.

[15] M. Zhang, Z. Jiang, and K. Feng, ‘‘Research on variational mode
decomposition in rolling bearings fault diagnosis of the multistage cen-
trifugal pump,’’ Mech. Syst. Signal Process., vol. 93, pp. 460–493,
Sep. 2017.

[16] W. Fu, K. Wang, C. Li, X. Li, Y. Li, and H. Zhong, ‘‘Vibration trend
measurement for a hydropower generator based on optimal variational
mode decomposition and an LSSVM improved with chaotic sine cosine
algorithm optimization,’’ Meas. Sci. Technol., vol. 30, no. 1, Jan. 2019,
Art. no. 015012.

[17] H. Shang, K. Lo, and F. Li, ‘‘Partial discharge feature extraction based on
ensemble empirical mode decomposition and sample entropy,’’ Entropy,
vol. 19, no. 9, p. 439, Aug. 2017.

[18] W. Zhang and J. Zhou, ‘‘Fault diagnosis for rolling element bearings
based on feature space reconstruction andmultiscale permutation entropy,’’
Entropy, vol. 21, no. 5, p. 519, May 2019.

[19] J. Zheng, J. Cheng, and Y. Yang, ‘‘A rolling bearing fault diagnosis
approach based on LCD and fuzzy entropy,’’ Mechanism Mach. Theory,
vol. 70, pp. 441–453, Dec. 2013.

[20] M. Rostaghi and H. Azami, ‘‘Dispersion entropy: A measure for time-
series analysis,’’ IEEE Signal Process. Lett., vol. 23, no. 5, pp. 610–614,
May 2016.

[21] W. Fu, J. Tan, Y. Xu, K. Wang, and T. Chen, ‘‘Fault diagnosis for rolling
bearings based on fine-sorted dispersion entropy and SVM optimized with
mutation SCA-PSO,’’ Entropy, vol. 21, no. 4, p. 404, Apr. 2019.

[22] J. Zheng, L. I. Congzhi, and H. Pan, ‘‘Application of composite multi-scale
dispersion entropy in rolling bearing fault diagnosis,’’ (in Chinese), Noise
Vibrat. Control, vol. 38, no. S2, pp. 653–656, 2018.

[23] B. Cai, L. Huang, and M. Xie, ‘‘Bayesian networks in fault diagnosis,’’
IEEE Trans. Ind. Informat., vol. 13, no. 5, pp. 2227–2240, Oct. 2017.

[24] J. Tian, C. Morillo, M. H. Azarian, and M. Pecht, ‘‘Motor bearing fault
detection using spectral Kurtosis-based feature extraction coupled with K-
nearest neighbor distance analysis,’’ IEEE Trans. Ind. Electron., vol. 63,
no. 3, pp. 1793–1803, Mar. 2016.

[25] Y. Yu, D. Yu, and J. Cheng, ‘‘A roller bearing fault diagnosis method based
on EMD energy entropy and ANN,’’ J. Sound Vibrat., vol. 294, nos. 1–2,
pp. 269–277, Jun. 2006.

[26] S. Zhou, S. Qian, W. Chang, Y. Xiao, and Y. Cheng, ‘‘A novel bearing
multi-fault diagnosis approach based on weighted permutation entropy and
an improved SVM ensemble classifier,’’ Sensors, vol. 18, no. 6, p. 1934,
Jun. 2018.

[27] W. Fu, K. Wang, C. Zhang, and J. Tan, ‘‘A hybrid approach for mea-
suring the vibrational trend of hydroelectric unit with enhanced multi-
scale chaotic series analysis and optimized least squares support vector
machine,’’ Trans. Inst. Meas. Control, vol. 41, no. 15, pp. 4436–4449,
Nov. 2019.

[28] W. Fu, J. Tan, X. Zhang, T. Chen, and K. Wang, ‘‘Blind parameter identifi-
cation of mar model and mutation hybrid GWO-SCA optimized SVM for
fault diagnosis of rotating machinery,’’ Complexity, vol. 2019, pp. 1–17,
Apr. 2019.

[29] H. Zhou, T. Shi, G. Liao, J. Xuan, J. Duan, L. Su, Z. He, and W. Lai,
‘‘Weighted Kernel entropy component analysis for fault diagnosis of
rolling bearings,’’ Sensors, vol. 17, no. 3, p. 625, Mar. 2017.

[30] S. Zhu, X. Yuan, Z. Xu, X. Luo, and H. Zhang, ‘‘Gaussian mixture
model coupled recurrent neural networks for wind speed interval forecast,’’
Energy Convers. Manage., vol. 198, Oct. 2019, Art. no. 111772.

[31] Z. Liu, H. Cao, X. Chen, Z. He, and Z. Shen, ‘‘Multi-fault classification
based on wavelet SVM with PSO algorithm to analyze vibration signals
from rolling element bearings,’’ Neurocomputing, vol. 99, pp. 399–410,
Jan. 2013.

[32] Z. Dong, J. Zheng, S. Huang, H. Pan, and Q. Liu, ‘‘Time-shift multi-
scale weighted permutation entropy and GWO-SVM based fault diag-
nosis approach for rolling bearing,’’ Entropy, vol. 21, no. 6, p. 621,
Jun. 2019.

[33] Z. Zhao, J. Yang, W. Yang, J. Hu, and M. Chen, ‘‘A coordinated opti-
mization framework for flexible operation of pumped storage hydropower
system: Nonlinear modeling, strategy optimization and decision making,’’
Energy Convers. Manage., vol. 194, pp. 75–93, Aug. 2019.

[34] M. Issa, A. E. Hassanien, D. Oliva, A. Helmi, I. Ziedan, and A. Alzohairy,
‘‘ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with
particle swarm for pairwise local sequence alignment,’’ Expert Syst. Appl.,
vol. 99, pp. 56–70, Jun. 2018.

[35] W.-J. Niu, Z.-K. Feng, C.-T. Cheng, and J.-Z. Zhou, ‘‘Forecasting daily
runoff by extreme learning machine based on quantum-behaved parti-
cle swarm optimization,’’ J. Hydrol. Eng., vol. 23, no. 3, Mar. 2018,
Art. no. 04018002.

[36] C. Li,W.Wang, and D. Chen, ‘‘Multi-objective complementary scheduling
of hydro-thermal-RE power system via a multi-objective hybrid grey wolf
optimizer,’’ Energy, vol. 171, pp. 241–255, Mar. 2019.

[37] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen,
‘‘Harris hawks optimization: Algorithm and applications,’’ Future Gener.
Comput. Syst., vol. 97, pp. 849–872, Aug. 2019.

[38] Y. V. Pehlivanoglu, ‘‘A new particle swarm optimization method enhanced
with a periodic mutation strategy and neural networks,’’ IEEE Trans. Evol.
Comput., vol. 17, no. 3, pp. 436–452, Jun. 2013.

[39] K. Dragomiretskiy and D. Zosso, ‘‘Variational mode decomposition,’’
IEEE Trans. Signal Process., vol. 62, no. 3, pp. 531–544, Feb. 2014.

[40] W. Fu, K. Wang, J. Zhou, Y. Xu, J. Tan, and T. Chen, ‘‘A hybrid approach
for multi-step wind speed forecasting based onmulti-scale dominant ingre-
dient chaotic analysis, KELM and synchronous optimization strategy,’’
Sustainability, vol. 11, no. 6, p. 1804, Mar. 2019.

[41] R. H. Chan, M. Tao, and X. Yuan, ‘‘Constrained total variation Deblur-
ring models and fast algorithms based on alternating direction method of
multipliers,’’ SIAM J. Imag. Sci., vol. 6, no. 1, pp. 680–697, Jan. 2013.

[42] M. Rostaghi, M. R. Ashory, and H. Azami, ‘‘Application of dispersion
entropy to status characterization of rotary machines,’’ J. Sound Vibrat.,
vol. 438, pp. 291–308, Jan. 2019.

[43] H. Azami, M. Rostaghi, D. Abásolo, and J. Escudero, ‘‘Refined com-
posite multiscale dispersion entropy and its application to biomedical
signals,’’ IEEE Trans. Bio-Med. Eng., vol. 64, no. 12, pp. 2872–2879,
Dec. 2017.

[44] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving optimization
problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133, Mar. 2016.

[45] S. N. Chegini, A. Bagheri, and F. Najafi, ‘‘PSOSCALF: A new hybrid PSO
based on sine cosine algorithm and levy flight for solving optimization
problems,’’ Appl. Soft Comput., vol. 73, pp. 697–726, Dec. 2018.

[46] N. Singh and S. Singh, ‘‘A novel hybrid GWO-SCA approach for optimiza-
tion problems,’’ Eng. Sci. Technol., Int. J., vol. 20, no. 6, pp. 1586–1601,
Dec. 2017.

VOLUME 8, 2020 13103



W. Fu et al.: Fault Diagnosis for Rolling Bearings Based on CMFSDE and SVM

[47] Bearing Data Center of the Case Western Reserve University.
Accessed: Dec. 28, 2018. [Online]. Available: http://csegroups.case.edu/
bearingdatacenter/pages/download-data-file

[48] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya,
S. Foufou, and A. Bouras, ‘‘A survey of clustering algorithms for big data:
Taxonomy and empirical analysis,’’ IEEE Trans. Emerg. Topics Comput.,
vol. 2, no. 3, pp. 267–279, Sep. 2014.

[49] D. M. J. Tax and R. P. W. Duin, ‘‘Support vector data description,’’Mach.
Learn., vol. 54, no. 1, pp. 45–66, Jan. 2004.

WENLONG FU received the B.S. and Ph.D.
degrees in hydraulic and hydropower engineering
from the Huazhong University of Science and
Technology (HUST), Wuhan, China, in 2011 and
2016, respectively. He is currently an Associate
Professor with the College of Electrical Engi-
neering and New Energy, China Three Gorges
University. His research interests include machine
learning, signal processing, and fault diagnosis.

KAIXUAN SHAO is currently pursuing the master’s degree in electrical
engineering with China Three Gorges University (CTGU). His research
interests include machine learning, signal processing, and fault diagnosis.

JIAWEN TAN is currently pursuing the master’s degree in electrical engi-
neering with China Three Gorges University (CTGU). His research interests
include machine learning, signal processing, and fault diagnosis.

KAI WANG is currently pursuing the master’s degree in electrical engi-
neering with China Three Gorges University (CTGU). His research interests
include machine learning and signal processing.

13104 VOLUME 8, 2020


