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ABSTRACT In this paper, we constructed a new rational fractal interpolation model with scale factors and
shape parameters. The model obtains different expressions by changing the scale factor, according with
the diversity of image features. On the basis of the constructed model, this paper presents a novel adaptive
rational fractal magnification (ARFM) algorithm based on local fractal feature analysis. Firstly, the image
is divided into different regions according to an adaptive threshold determined by a calculated fractal
dimension, and the scaling factor is calculated based on the relationship between global fractal dimension
(GFD) and local fractal dimension (LFD). Secondly, for different regions, different interpolation forms are
selected according to regional characteristics. Thirdly, parameter optimization and sub-block selection are
studied to further enhance the quality of the magnified image. The experimental results illustrate that the
performance of the proposed ARFM algorithm is very competitive compared with the latest magnification
algorithms.

INDEX TERMS Rational fractal model, local fractal analysis, ARFM algorithm, local adaptive threshold,
sub-block selection.

I. INTRODUCTION
In recent years, the high resolution (HR) image has been an
urgent demand as a response to new and various applications.
Without changing the resolution of the image sensor, themag-
nification technique can obtain a HR image with the visual
contents of the original image preserved as much as possible.
For example, standard-definition videos can be upscaled to
match the high definition screen format with the spatial inter-
polator in a high-definition television (HDTV) [1].

Interpolation is widely employed in image magnification.
Many magnification methods have been introduced. These
methods can be roughly divided into linear filtering inter-
polation (LFI) and edge directional interpolation (EDI). LFI
approaches [2]–[6] design a particular interpolation kernel
applied to the entire image. In particular, these methods allow
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the image to be resized arbitrarily, which is a key for image
upscaling applications. The methods in [7]–[9] can preserve
edge structures, but do not preserve image detail very well.
Contrarily, the methods in [10]–[12] can preserve texture
areas, but suffer from blocking and ringing artifacts in the
edges. The Human Vision System (HVS) pays great attention
to both edge structures and texture areas. Therefore, it is
considered a challenge of the interpolation algorithm to retain
the edge structure while keeping the details of the magnified
image.

To improve the performance of the aforementioned meth-
ods, several adaptive methods have been proposed. Li and
Orchard [7] proposed a new edge oriented interpolation
(NEDI) method, which estimates local covariance features at
low resolution and uses them to guide high resolution inter-
polation based on resolution invariance in the edge direction.
Takeda et al. [8] presented an adaptive steering kernel regres-
sion (KR) method. In KR, the dominant direction is estimated
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by the initial estimate of the image gradient, which is then
applied to adaptively guide the local edge structure according
to the local edge structure. Zhang and Wu [12] developed a
directional filtering and data fusion (DFDF) method where
the two orthogonal directions are used for the interpolation
of the missing pixel and a linear minimum mean square error
estimation is used to fuse the results. Zhang and Wu [13]
proposed a soft-decision interpolation method where missing
pixels can be estimated in groups rather than one. Based
on a 2-D piecewise autoregressive model, this technique is
capable of learning diverse scene structures with the ability
of estimating parameters in a moving window. Considering
that the conventional sparse representation model (SRM)
became less effective due to the lack of structural constraint of
the data fidelity term on the missing pixels, Dong et al. [14]
developed an image interpolation method by nonlocal autore-
gressive modeling (NARM) which is further embedded in the
SRM. In NARM, the coherence between samplingmatrix and
sparse representation dictionary is reduced, which improves
the performance of SRM in image interpolation. Recently,
Dong et al. [15] proposed a deep learning method (SRCNN)
based on image super-resolution reconstruction, which can
directly learn the end-to-end mapping between LR and HR
images. Compared with almost current classical magnifica-
tion methods, it improves the visual effect well. However,
from the perspective of human vision, there is still space for
improvement in respect to preserve the image details and
edge structures. Furthermore, it is the incapability to resize
images with arbitrary ratios, which meets the needs of image
magnification applications well.

Presently, the rational function has been applied as a
new method to image interpolation, which has the ability to
approximate the ideal kernel [16]. The reconstructed images
based on rational function generally show good visual result
with no blocky artifacts and less blurring and ringing arti-
facts. Based on an adaptive osculatory rational interpolation
kernel function, Hu and Tan [16] presented a method for
preserving edges. Compared with linear polynomial inter-
polation kernel functions, this function can more accurately
approximate the ideal interpolation because it is established
on the approximation to the ideal interpolation kernel func-
tion. Carrato and Tenze [17] proposed an interpolator with
good interpolation performance not only on synthetic images
but also on real-world images, where the interpolation of
edge sensitive data is implemented by the rational operator
to obtain images without artifacts. Liu et al. [18] developed
an adaptive interpolation function with weight whose coeffi-
cients can keep the edge attributions through adaptive calcu-
lation of distance, gradient, and difference quotient based on
point sampling. Although rational interpolation function can
eliminate ringing artifact and other artificial marks efficiently
and has capabilities of efficiently preserving texture features,
it shows powerless in dealing with edge structure.

Fractal analysis has been a powerful tool in image
processing due to that the fractal can effectively describe
texture details. They have found application in

classification [19]–[21], segmentation [22], [23], synthe-
sis [24] and other important texture problems [25], [26].
At present, the fractal is widely used in image super resolu-
tion. The fractal method is one of the techniques with themost
potential, which can achieve a high-resolution enhancement
for the sharpness across edges. Generally, global fractal anal-
ysis can fully describe the texture features because the global
self-similarity shown in the texture of the image. However,
the image which has a complex geometric structure usually
contains texture and non texture region, it means that image
measurement has local adaptation. For the representation
and analysis of the image, the local fractal is more suitable
than the global fractal. Thus, as for image magnification,
according to local fractal feature, various interpolation forms
which coincide with image features should be chosen to
estimate the unknown point. Themagnificationmethod based
on local fractal analysis is an effective means to improve the
quality of the interpolated image.

To preserve the edge structure and the details of the image
and resize the image with arbitrary ration simultaneously,
we propose a novel rational fractal interpolation model on
the basis of previous researches on rational spline [27]–[29],
which can be uniquely identified by the values of scaling fac-
tor and shape parameters. The expression of the model varies
with the scale factors, which accords with diverse image
features. Rational fractal form and rational form are used for
fractal feature salient region (FFSR) and non-fractal feature
salient region (NFFSR) of the image, respectively. Shape
parameters can be optimized to further enhance the quality
of the magnified image. Hence, we present a novel adaptive
rational fractal magnification (ARFM) algorithm based on
local fractal feature analysis. First, based on the calculated
fractal dimension, an adaptive threshold is determined, which
can be used to divide the image into different regions. Second,
different interpolation forms are selected in different regions
according to regional characteristics. Third, the scaling factor
is determined through the calculation of fractal dimension.
Finally, the quality of the interpolation image is improved by
a parameter optimization technique. The schematic diagram
of the proposed ARFM algorithm is shown in Fig. 1.

The major contributions of this work are summarized as
follows: (1) We construct a new type of rational fractal inter-
polation model, which is organic unity that integrate rational
fractal model with rational spline model. (2) According to
image features, a new adaptive threshold selection method is
employed to regional division, which is based on the distri-
bution characteristics of local fractal dimension. (3) Based on
the relationship between scaling factor and fractal dimension,
a new method for accurately calculating scaling factor is
proposed.

The remainder of this paper is organized as follows:
Section II introduces the basic knowledge of fractal and
rational functions briefly. In section III, based on the clas-
sical binary rational fractal interpolation method, a novel
binary rational fractal interpolation method is proposed.
In section IV, a hybrid interpolation algorithm with fractal
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FIGURE 1. Display processing flow diagram.

dimension and local adaptive threshold is proposed. Finally,
the quality of the interpolation image is further improved by
an optimization technology. In section V, the validity of the
algorithm is discussed.

II. BASIC KNOWLEDGE
A. REVIEW OF FRACTAL
A typical fractal can be constructed with the following strate-
gies. Firstly, we decompose a geometry G into N similar
copies, each of which is scaled down by a multiple s. Simi-
larly, the decomposition process can be applied to each of the
N copies. Then, through repeating the similar decomposition

infinitely, a fractal F can be obtained. Fractal geometry con-
tains the feature that the Hausdorff-Besicovitch dimension
exceeds the topological dimension strictly. Such characteris-
tics determine the fractals with infinite complexity. Besides,
fractals are self-similar, that is, every single part of the object
is similar to the whole.

Recently, some definitions of fractal dimensions have
been proposed. Among these, what we know and cite is the
Hausdorff-Besicovitch dimension, the box-counting dimen-
sion, etc. All these methods have a common point that they
are measured for a different scale. The fractal dimensionmust
express the behavior of the measure as ε → 0. In fact,
a measure Mε(F) of a set F must generally obey the power
law:

Mε(F) ∝ c−D,

where c is a constant and D represents the fractal dimension
of F . The value of D can be acquired from:

D = − lim
ε→0

log(Mε(F))
log(ε)

. (1)

B. REVIEW OF BIVARIATE RATIONAL INTERPOLATION
FUNCTION
Let [a, b; c, d] be the plane region, and {(xi, yj, fi,j), i =
1, 2, ...N ; j = 1, 2, . . . ,M} be a given set of data points,
where a = x1 < x2 < ... < xN = b, c = y1 < y2 <
... < yM = d represent the knot spacing. fi,j represents
fi,j(x, y). d∗i,j, di,j are all provided partial derivative values
∂fi,j(x,y)
∂x , ∂fi,j(x,y)

∂y respectively. Let hi = xi+1−xi, lj = yi+1−yi
and for any point(x, y) ∈ [xi, xi+1; yj, yj+1] in the (x, y)−
plane, and let θ = x−xi

hi
and η = y−yj

lj
. First, for each

y = yj, j = 1, 2, ...m, the x-direct interpolating curve P∗i,j(x)
is constructed in x ∈ [xi, xi+1], as follows:

P∗i,j(x) =
p∗i,j(x)

q∗i,j(x)
, i = 1, 2, . . . , n− 1, (2)

where

p∗i,j(x) = (1− θ )3α∗i,jfi,j + θ (1− θ)
2V ∗i,j + θ

2(1− θ )W ∗i,j
+ θ3β∗i,jfi+1,j,

q∗i,j(x) = (1− θ )α∗i,j + θβ
∗
i,j,

and

V ∗i,j = (2α∗i,j + β
∗
i,j)fi,j + hiα

∗
i,jd
∗
i,j,

W ∗i,j = (α∗i,j + 2β∗i,j)fi+1,j − hiβ
∗
i,jd
∗

i+1,j,

with α∗i,j > 0, β∗i,j > 0. This interpolation is a rational cubic
interpolation based on function value and derivative values,
which satisfies the following conditions,

P∗i,j(xi) = fi,j, P∗i,j(xi+1) = fi+1,j,

P′i,j =
∂fi,j
∂x

, P′i+1,j =
∂fi+1,j
∂x

.

It is obvious that the interpolating function P∗i,j(x) on

[xi, xi+1] is unique for the given data {xr , fr,j,
∂fr,j(x,y)
∂x ,
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r = i, i + 1} and the positive parameters α∗i,j, β
∗
i,j. The

bivariate function Pi,j(x) on [xi, xi+1; yj, yj+1] is defined by
using the x-direction function P∗i,j(x) as follows [30]:

Pi,j(x, y) =
pi,j(x, y)
qi,j(y)

,

where

pi,j(x, y) = (1− η)3αi,jP∗i,j(x)+ η(1− η)
2Vi,j

+ η2(1− η)Wi,j + η
3βi,jP∗i,j+1(x),

qi,j(y) = (1− η)αi,j + ηβi,j,

and

Vi,j = (2αi,j + βi,j)P∗i,j(x)+ ljαi,jDi,j,

Wi,j = (αi,j + 2βi,j)P∗i,j+1(x)− ljβi,jDi,j+1,

with αi,j > 0, βi,j > 0, f ∗i,s(x, ys) = (1 − θ ) ∂fi,s
∂y +

θ
∂fi+1,s
∂y , θ ∈ [0, 1], s = j, j + 1. This term pi,j(x, y) is

a bivariate rational interpolation based on function values
and partial derivative values, which satisfies the following
conditions.

Pi,j(xr , ys) = f (xr , ys),
∂Pi,j(xr , ys)

∂x
=
∂fr,s
∂x

,

∂Pi,j(xr , ys)
∂y

=
∂fr,s
∂y

.

Obviously, this form of the interpolating function
Pi,j(x, y) on [xi, xi+1; yj, yj+1] is unique for the given data
xr , ys, fr,s,

∂fr,s
∂x ,

∂fr,s
∂y , r = i, i+ 1, s = j, j+ 1 and parame-

ters α∗i,j, β
∗
i,j, α

∗

i,j+1, β
∗

i,j+1 and αi,j, βi,j.

III. CONSTRUCTION OF RATIONAL FRACTAL
INTERPOLATION FUNCTION
Rational fractal interpolation functions are the basis of the
proposed blending algorithm. This section proposes a new
rational fractal interpolation based on the classical binary
interpolation function.

Let [a, b; c, d] be the plane region, and {(xi, yj, fi,j), i =
1, 2, ...N ; j = 1, 2, . . . ,M} be a given set of data points,
where a = x1 < x2 < ... < xN = b, c = y1 <

y2 < ... < yM = d represent the knot spacing. fi,j
represents fi,j(x, y). d∗i,j, di,j are all provided partial deriva-

tive values ∂fi,j(x,y)
∂x , ∂fi,j(x,y)

∂y respectively. Set In = [xn, xn+1]
for n ∈ I = {1, 2, · · · ,N − 1}, Jm = [ym, ym+1] for
m ∈ J = {1, 2, · · · ,M − 1}. Set φn(x) are contractive
homeomorphisms: I → In,

φn(x1) = xn, φ(xN ) = xn+1,

|φn(c1)− φn(c2)| ≤ λ|c1 − c2|, ∀c1, c2 ∈ I ,

where 0 ≤ λ < 1. Set ϕm(y) are contractive homeomor-
phisms: J → Jm,

ϕm(y1) = ym, ϕm(yM ) = ym+1,

|ϕm(d1)− ϕm(d2)| ≤ µ|d1 − d2|, ∀d1, d2 ∈ J ,

where 0 ≤ µ < 1.

φn(x) = anx + bn,

ϕm(y) = cmy+ dm,

where

an =
xn+1 − xn
xN − x1

, bn =
xN xn − x1xn+1

xN − x1
,

cm =
ym+1 − ym
yM − y1

, dm =
yMym − y1ym+1

yM − y1
.

Set hi = xi+1 − xi, lj = yi+1 − yi, θ =
x−xi
hi
, η =

y−yi
lj

.
First, for each y = yj, j = 1, 2, ...M , the x-direct interpolating
curve P∗i,j(x) is constructed in x ∈ [xi, xi+1], as follows:

P∗i,j(x) =
p∗i,j(x)

q∗i,j(x)
, (3)

where

p∗i,j(x) = (1− θ )3α∗i,jfi,j + θ (1− θ)
2V ∗i,j + θ

2(1− θ )W ∗i,j
+ θ3β∗i,jfi+1,j,

q∗i,j(x) = (1− θ )α∗i,j + θβ
∗
i,j,

and

V ∗i,j = (2α∗i,j + β
∗
i,j)fi,j + hiα

∗
i,jd
∗
i,j,

W ∗i,j = (α∗i,j + 2β∗i,j)fi+1,j − hiβ
∗
i,jd
∗

i+1,j,

with α∗i,j > 0, β∗i,j > 0. This function satisfies P∗i,j(xi) =
fi,j,P∗i,j(xi+1) = fi+1,j, (P∗i,j)

(1)(xi) = d∗i,j, (P
∗
i,j)

(1)(xi+1) =
d∗i+1,j.
The interpolating function P∗i,j(x) on [xi, xi+1] is unique for

the positive parameters xi, fi,j, d∗i,j and the given data α
∗
i,j, β

∗
i,j.

The bivariate function Pi,j(x) on [xi, xi+1; yj, yj+1] is defined
by using the x-direction function P∗i,j(x) as follows:

Pi,j(x, y) =
pi,j(x, y)
qi,j(y)

,

where

pi,j(x, y) = (1− η)3αi,jP∗i,j(x)+ η(1− η)
2Vi,j

+ η2(1− η)Wi,j + η
3βi,jP∗i,j+1(x),

qi,j(y) = (1− η)αi,j + ηβi,j,

and

Vi,j = (2αi,j + βi,j)P∗i,j(x)+ ljαi,jDi,j,

Wi,j = (αi,j + 2βi,j)P∗i,j+1(x)− ljβi,jDi,j+1,

with αi,j > 0, βi,j > 0,

Di,j = (1− θ )di,j + θdi+1,j,

Di,j+1 = (1− θ )di,j+1 + θdi+1,j+1).

Consider the Iterated Function System (IFS) {I × J ×
R; (φi(x), ϕj(y),Fi,j(x, y, z), i ∈ I , j ∈J }

φi(x) = aix + bi,
ϕj(y) = cjy+ dj,
Fi,j(x, y, z)=si,jz+Pi,j(φi(x), ϕj(y))

−si,jBi,j(x, y).

(4)
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DenoteHN = xN−x1,LM = yM−y1, for [x1, xN ; y1, yM ] and
θ = x−x1

xN−x1
,η = y−y1

yM−y1
, the function Bi,j(x, y) is expressed as:

Bi,j(x, y) =
bi,j(x, y)
qi,j(y)

,

where

bi,j(x, y) = (1− η)3αi,jB∗i,j(x)+ η(1− η)
2Ri,j

+ η2(1− η)Ti,j + η3β(i, j)B∗i,M (x),

qi,j(x, y) = (1− η)αi,j + ηβi,j,

with

Ri,j = (2αi,j + βi,j)(x)+ LMαi,jDi,1,

Ti,j = (αi,j + 2βi,j)B∗i,M (x)− LMβi,jDi,M ,

Di,1 = (1− θ )d1,1 + (θ )dN ,1,

Di,M = (1− θ )d1,M + (θ )dN ,M ,

and

B∗i,j(x) =
b∗i,j(x)

q∗i,j(x)
,

where

b∗i,j(x) = (1− θ)3α∗i,jf1,j + θ (1− θ )
2R∗i,j

+ θ2(1− θ)T ∗i,j + θ
3β∗i,jfN ,j,

q∗i,j(x) = (1− θ )α∗i, j+ θβ∗i,j,

R∗i,j = (2α∗i,j + β
∗
i,j)f1,j + HNα

∗
i,jd
∗

1,j,

T ∗i,j = (α∗i,j + 2β∗i,j)fN ,j − HNβ
∗
i,jd
∗

1,j,

si,j is treated as vertical scaling factor of the iterated function
system and |si,j| < 1. Bi,j(x, y) satisfies that Bi,j(x1, y1) =
f1,1,Bi,j(xN , y1) = fN ,1,Bi,j(x1, yM ) = f1,M ,Bi,j(xN , yM ) =
fN ,M . Thus, the iterated function system {F; (φi(x), ϕj(y),
Fi,j(x, y, z)) : i ∈ I , j ∈ J } defined above admits a
unique graph of continuous functions ψ(x, y) which is called
attractor G. The bivariate rational fractal interpolation func-
tion (BRFIF) is defined by Eq. (3), which has the following
form:

ψ(φi(x), ϕj(y))=si,jψ(x, y)+P(φi(x), ϕj(y))−si,jBi,j(x, y).

Remark : The interpolation model is uniquely determined
by scaling factor si,j and shape parameters αi,j, βi,j. When
there is scaling factor si,j = 0 for all i ∈ I , j ∈ J , the Fractal
Interpolation Function (FIF) ψ(x, y) is consistent with the
bivariate rational interpolation function P(x, y). When there
is scaling factor si,j 6= 0 for all i ∈ I , j ∈ J , the FIF ψ(x, y)
is rational fractal interpolation function. It means that the
model has advantages over the current interpolation schemes
in terms of flexibility and diversity.

IV. RATIONAL FRACTAL INTERPOLATION FOR IMAGE
MAGNIFICATION
A. LOCAL FRACTAL ANALYSIS
Fractal dimension (FD), also known as a global fractal dimen-
sion (GFD), is an important concept in fractal theory. FD and

partial shape dimension (LFD) are powerful tools to describe
the texture, which are closely related to human’s recognition
of image roughness. FD represents the complexity of the
entire image, while LFD only describes the complexity of
a single block [31]. ε− blanket method is widely used in
dimension calculation. The fractal dimension calculated by
ε− blanket method can cover the whole range of dimensions.
Next, we introduce the calculation of FD and LFD using
ε− blanket method.

1) CALCULATION OF FRACTAL DIMENSION
The image can be thought as function H (i, j), the covering
blanket is defined by the upper surface Tε and the lower
surface Bε. Initially, the function H (i, j) is given.

Tε = max{Tε−1(i, j)+ 1, argmax
d(i,j,m,n≤1)

Tε−1(m, n)},

Bε = min{Bε−1(i, j)− 1, argmin
d(i,j,m,n≤1)

Bε−1(m, n)},

where d(i, j,m, n) is distance of two points. Expansion and
corrosion technology are applied in image processing. Choos-
ing size of structure elements, the corresponding surface area
can be obtained by the following formula:

A(ε) =

∑
[T (i, j, ε)− B(i, j, ε)]

2ε
, (i, j) ∈ ε, (5)

where Tε represents the area of the upper surface, Bε rep-
resents the area of the lower surface lower. Surface area is
expressed as:

A(ε) = kε2−D, (6)

where A(ε) is the area with thickness of ε. When plotting
A(ε) versus ε on a log-log scale, the straight line of slope as
follows:

D = 2− k. (7)

2) THRESHOLD DETERMINATION
As a simple texture detection method, threshold method can
detect the sharp change of gray value, which is the most obvi-
ous features of the texture. Obtaining an accurate threshold is
the key of region division, which directly affects the perfor-
mance of the interpolated algorithm. The algorithm treats the
non-fractal feature salient region as a fractal feature salient
region when the value of the threshold is small. Conversely,
the fractal feature salient region is considered to be a non-
fractal feature salient region when the value of the threshold
is large.

The automatic threshold based on image features is an
automatic calculation of the threshold and has been widely
used. The equation for calculating the automatic threshold is
as follows [32],

Thr = a× ω,ω =

√∑
(xi − x)2

n− 1
, a = 3 ∼ 5,
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where n represents the number of points, and x denotes the
gray scale of each point. Average gray level of images is given
as follows,

Thr = a× median{
|x|

0.6475
}, a = 5.

This method ignores the structural information of the image
itself, and threshold value based on global gray value is
not accurate. Therefore, on the basis of the local fractal
dimension, we introduce an automatic threshold method to
describe complexity of texture. It is found that the local fractal
dimension of image is approximate compliance with normal
distribution. Normal distribution, also known as the gaussian
distribution, played a vital role in fields of mathematics,
physics, and engineering, etc. Here given the definition of
normal distribution: as for a random variable x, which obeys
a position parameter forµ, scale parameter for the probability
distribution of σ and probability density function is given.

G(x) =
1

√
25σ

exp(−
(x − µ)2

2σ 2 ) (8)

is denoted as x ∼ N (µ, σ 2). Gaussian model is used to
quantify things with Gaussian probability density function in
image processing, and has been widely used. The principle
and procedure of establishing the gaussian model for texture
area of fractal image are as follows: the LFD histogram
reflects the estimate of the probability density of the fractal
dimension of the image. If the difference between the frac-
tal texture area and the non-texture area is relatively large,
the histogram of the LFD will display a Bell-shaped curve.
Hence, the whole image can be easily divided into two parts:{

fractal feature salient region, LFD > µ

non fractal feature salient region, LFD < µ
(9)

In our interpolation algorithm, ε - Blanket method is used
to estimate the local fractal dimension in each block of the
size 5×5. Asmentioned above,µ can be treated as a threshold
to distinguish textures from images. That is, the block is
regarded as the texture region the value of LFD is greater
than µ. Otherwise, it is regarded as the non-textured region.
Fig. 2 is an original image that consists of fractal feature
salient region and non fractal feature salient region. The LFD
values are ranged from 2.0 to 3.0. LFD shows a greater value
in fractal feature salient region. The distribution and density
functions of LFD values are respectively shown in Fig. 3 and
Fig. 4. Threshold images generated by fractal dimension are
shown in Fig. 5.

3) SCALING FACTOR DETERMINATION
Apparently, it is meaningless to give the scaling factor in
random. Hence, it is imperative that we should calculate the
value of the scale factor with the given information. The more
suitable the value of si,j is, the more accurate the fractal func-
tions are. Scaling factor is usually given a range of values or as
a free parameter [33], [34]. In this paper, the scaling factor is
calculated by fractal dimension, since the fractal dimension

FIGURE 2. Images for discriminating textures comparison.

FIGURE 3. The distribution of LFD values of images.

FIGURE 4. Density functions of LFD values of images.

has a strong correlation with the scaling factor. Scaling factor
is obtained from the following formula.

si,j =

{
N ∗ (lnLFD− lnFD) (LFD > FD),
0 (LFD ≤ FD),

(10)

where N=2, FD and LFD are the fractal dimensions of the
entire image and a block with the size of 5× 5 respectively.

Considering the effect of the scaling factor, we keep all free
shape parameters on the fractal surface and change the scaling
factors si,j. It can be found from Fig. 6 that the interpolation
is very sensitive to scaling factor si,j. Furthermore, we find
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FIGURE 5. Binarization through the threshold.

FIGURE 6. The interpolation with different scaling factor.

out that the appropriate conditions of si,j can ensure that the
interpolation function is monotonic and convex.

B. ADAPTIVE IMAGE MAGNIFICATION
In this section, we discuss how to get a high-resolution (HR)
images from a low-resolution images (LR) using our pro-
posed method. First, we divide the image into FFSR and
NFFSR by calculating the fractal dimension of the image.
Second, according to regional characteristics, interpolation
models are adopted in different regions. FFSR and NFFSR
adopt rational fractal interpolation and rational interpolation,
respectively. Third, the scaling factor is determined by the
fractal dimension. Finally, the quality of the interpolation
image is improved by an optimization technique.

The proposed model is a hybrid interpolation model that
is effective for FFSR and NFFSR interpolation by adjusting
parameters. In NFFSR, the bivariate rational interpolation is
used, and in FFSR, the rational fractal interpolation is used.
The proposed method based on rational fractal function and
rational spline function is showed in Fig. 7.

1) FRACTAL FEATURE SALIENT REGION
For fractal feature salient region, interpolation function is
written as follows:
ψ(φi(x), ϕj(y))=si,jψ(x, y)+P(φi(x), ϕj(y))−si,jBi,j(x, y),

(11)

FIGURE 7. Illustrations for interpolation process.

where α and β are optimized shape parameters. They can be
settled in Section V. Except for α and β, another parameter
named scaling factor needs to be settled in fractal interpola-
tion formula.

2) FRACTAL FEATURE NON-SALIENT REGION
For fractal feature non-salient region, interpolation function
is written as follows:

Pi,j(x, y) =
pi,j(x, y)
qi,j(y)

, (12)

where

pi,j(x, y) = (1− η)3αi,jP∗i,j(x)+ η(1− η)
2Vi,j

+ η2(1− η)Wi,j + η
3βi,jP∗i,j+1(x),

qi,j = (1− η)αi,j + ηβi,j,

where

Vi,j = (2αi,j + βi,j)P∗i,j(x)+ ljαi,jDi,j,

Wi,j = (αi,j + 2βi,j)P∗i,j+1(x)− ljβi,jDi,j+1,

where αi,j > 0, βi,j > 0,Di,j = (1−θ )di,j+θdi+1,j,Di+1,j =
(1− θ )di,j+1 + θdi+1,j+1.

V. EXPERIMENTS
A. PARAMETERS OPTIMIZATION
Image quality assessment (IQA) [35] aims to use computa-
tional models to measure the image quality consistently with
subjective evaluations. The feature-similarity (FSIM) index
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is proposed according to the fact that HVS understands an
image from its low-level features, which brings IQA from
pixel based stage to structure based stage. The FSIM index
is calculated in two stages: the local similarity map is first
calculated, which is then pooled into a single similarity score.
There are two components, phase congruency (PC) and gra-
dient magnitude (GM) need the measurement of feature sim-
ilarity. For the PC values PC1(x) and PC2(x), the similarity
measure is defined as:

SPC (x) =
2PC1(x) ∗ PC2(x)+ T1
PC2

1 (x)+ PC
2
2 (x)+ T1

, (13)

where T1 represents a positive constant used to improve the
stability of SPC . Similarly, the similarity measure of G1(x)
and G2(x), the values of GM, is defined as:

SG(x) =
2G1(x) ∗ G2(x)+ T2
G2
1(x)+ G

2
2(x)+ T2

, (14)

where T2 represents a positive constant depended on the
dynamic range of GM values. To make the FSIM more con-
venient to use, T1 and T2 are fixed to all databases. Define
SL(x) as SL(x) = SPC (x) ∗ SG(x). The FSIM index between
f1 and f2 is given as follows:

FSIM =

∑
x∈� SL(x) ∗ PCm(x)∑

x∈� PCm(x)
, (15)

Substitute Eq. (9) into Eq. (15), denote as U (α, β), the
local optimal parameters, α and β are obtained byminimizing
U (α, β) as follows:

∂U (α, β)
∂α

= 0,
∂U (α, β)
∂β

= 0.

Obviously, the method of obtaining the optimal parameters
has a high degree of complexity. Here, a numerical method
for optimizing the parameters will be given. The detail of the
method is shown in Algorithm 1.

Algorithm 1 Parameter Optimization Based on FSIM
1) As for {(α, β)|α > 0, β > 0}, calculate FSIM for

every(α, β).
2) Find the domain of α, β, which FSIM is greater than

threshold.
3) Set α as fixed value, the values of β is obtained when

FSIM reached the peak value.
4) Set β as fixed value, the values of α is obtained when

FSIM reached the peak value.
5) The intersection of α, β are the optimal value.

For assigned interpolation function, the interpolation qual-
ity is improved by adjusting parameters. Shape parameters
are optimized by FSIM as the objective function. Optimal
parameters can be obtained by the experiment, which is the
intersection of two parameters optimized respectively.

As shown in Fig. 8(a), FSIM varies with the parameter
values. When α ∈ [4, 5], β ∈ [14, 16], FSIM reached
the peak value. In Fig. 8(c), when α takes a fixed value,

FIGURE 8. FSIM changes with α, β.

FSIM achieved peak when β ∈ [13, 15]. Similarly, when
β takes a fixed value, FSIM also reached maximal value as
α ∈ [3, 5]. The intersection of α, β are the optimal value. The
constructed model is highly consistent with image features.
Shape parameters contained in the model pave the way for
improving the accuracy of interpolation to some degrees. The
quality of interpolated images can be further improved by
optimizing shape parameters.

B. PERFORMANCE ANALYSIS
In this subsection, the proposed method is compared
with state-of-the-art image interpolation methods, containing
directional cubic convolution interpolation (DCCI) [9], KR
[8], NEDI [7], iteractive curvature based interpolation (ICBI)
[10], SRCNN [15], NARM [14]. In our experiments, the six
color images listed in Fig. 9 are applied to test, including
Snow, River, Night, Build, Hall and Farm. For color images,
since the human visual system is more sensitive to changes in
brightness, we only exploit the method proposed in this paper
to the luminance channel and apply the bicubic interpolation
to the color channel. We down-sampled HR images to obtain
the corresponding LR images, from which the original HR
images are reconstructed through the presented and com-
paring methods. In the following subsections, we present
some cropped portions of HR images reconstructed by the
competing methods, and conduct qualitative and quantitative
analysis of experimental results.

1) QUANTITATIVE ANALYSIS
The quantitative results of the test images (magnified by
2 times) are displayed in Table 1, with the best results in bold
type. For color images, we compare the PSNR and SSIM
metrics for the luminance channel. From these results, it is
apparent that the proposed method performs the approximate
optimal results in the comparison algorithms of the two quan-
titative evaluations. For the image of Night, the proposed
algorithm has achieved the best PSNR and SSIM values
compared with other methods in Table 1. For the Farm image,
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TABLE 1. Objective quality assessment of different methods.

FIGURE 9. Images used for quantitative comparison.

FIGURE 10. Comparison of Snow with different methods.

the performance of NARM and the proposed method in terms
of quantitativemeasures are roughly equivalent, which is con-
sistent with qualitative analysis. The results acquired by the
presented method are nearly the best among all the methods
of comparison.

2) QUALITATIVE ANALYSIS
We tested natural images to verify the visual improvements
of the proposed algorithm. These images were visually

FIGURE 11. Comparison of River with different methods. (a) Original
Image. (b) DCCI. (c) KR. (d) NEDI. (e) ICBI. (f) SRCNN. (g) NARM. (h) Our
Method.

examined to demonstrate that the proposed method can
reduce common known artifacts (containing blurring, ring-
ing, and blocking) and successfully reconstruct image detail
information.

Fig. 10 gives the portions of the enlagred image Snow. The
proposed algorithm has clear advantages comparedwith other
algorithms, which shows a strong image texture preservation
ability. The KR image suffers from blurred artifacts and
loses shape, as shown in Fig. 10(c). It can be observed from
Fig. 10(d) that the resulting image of the NEDI method has
directional artifacts. In the SRCNN magnified image, fewer
artifacts appear. Although the visual quality of NARM is
similar to the presented algorithm, NARM is time consuming.

As shown in Fig. 11, the proposed method performs bet-
ter on both edge preservation and texture preservation due
to that the algorithm can appropriately interpolate different
structures in LR images. The magnified KR image indicates
that the algorithm is not good enough for preserving the edge
structure in the River cropped image as shown in Fig. 11(c).
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TABLE 2. Objective quality assessment of different methods (SET 5,SET 14).

FIGURE 12. Comparison of Night with different methods.

In the magnified images of KR, DCCI and NEDI, the block-
ing artifacts around the tree are evident and the texture twist
heavily. The image magnified by ICBI suffers from blocking
artifacts and ringing artifacts as shown in Fig. 11(e). The
texture in the magnified image of SRCNN does not get well
preserved as shown in Fig. 11(f). It can be observed from
Fig. 11(g) that the texture regions of the tree are relatively
preserved by the NARM. Another image is presented to
further evaluate the proposed algorithm. The comparisons are
given in Fig. 12.

As shown in Fig. 13 and Fig. 14, smooth edges can be
observed by the proposed algorithm, and noise artifacts in the

FIGURE 13. Comparison of Build with different methods.

magnified image can be greatly reduced. However, the mod-
els used in DCCI, KR, NEDI, ICBI, SRCNN, and NARM
are not effective in adapting to changing scene structures in
the edge region. Further, Fig. 15 is used to verify the ability
of algorithm to preserve both edge structures and details.
As shown in Fig. 15(c), the edge structure is not efficiently
preserved in KR. In the images magnified by DCCI and
NEDI, artifacts appear and the texture twist heavily as shown
in Fig. 15(b) and Fig. 15(d). Similarly, the ICBI and SRCNN
magnified images suffer from texture distortion at the wall
as shown in Fig. 15(e) and Fig. 15(f). The magnified NARM
image has almost the same visual effects as our method, but
our method has an advantage in edge preservation and spends
less time than NARM.
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FIGURE 14. Comparison of Hall with different methods.

FIGURE 15. Comparison of Farm with different methods.

3) CLASSICAL DATABASE ANALYSIS
To further evaluate the performance of the proposed algo-
rithm, we tested the Set 5 and Set 14 database. Table 2 present
the objective quality of the test images magnified by all
methods.As shown in Fig. 16 and Fig. 17, this method can

FIGURE 16. Comparison of Face with different methods.

FIGURE 17. Comparison of Barbara with different methods.

restore more details compared to other comparison methods.
The images generated by DCCI, NEDI, ICBI are fuzzy and
distorted. In KR and SRCNN magnified images, artifacts
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appear and the texture is severely distorted. The images mag-
nified by NARM produce overly smooth edges and lose some
texture details. In summary, our method is superior to other
algorithms in terms of the objective quality of the magni-
fied images. Furthermore, from the presented visual results,
the proposed algorithm outperforms other methods in retain-
ing edge structures and keeping texture structures. In view
of this application, the proposed algorithm can be used
to efficiently magnify LR images and applied to different
applications.

VI. CONCLUSION
This work proposes an novel image magnification algorithm
based on interpolation. Firstly, based on a rational fractal
interpolation method, a novel method of surface modeling
is proposed, which integrates rational fractal interpolation
with rational spline. The model can coincide with diversity of
image features due to its different expression with different
values of scaling factor and shape parameters, and thus it
shows good performance in describing complex geometric
structure of image. Further, the quality of image can be
improved by adjusting shape parameters in respect of image
quality assessment; scaling factor reveals the complexity of
texture; the model is stable for window selection. Next, a new
adaptive rational fractal magnification (ARFM) algorithm on
the basis of surface model is proposed. Basically, ARFM
algorithm has advantages from fractal interpolation and ratio-
nal spline, and it can preserve the edge structures and the
details of the image efficiently. The experimental results
illustrate that the proposed method achieves competitive per-
formance both subjectively and objectively.
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