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ABSTRACT Infrastructure as Code (IaC) is an approach for infrastructure automation that is based on
software development practices. The IaC approach supports code-centric tools that use scripts to specify
the creation, updating and execution of cloud infrastructure resources. Since each cloud provider offers a
different type of infrastructure, the definition of an infrastructure resource (e.g., a virtual machine) implies
writing several lines of code that greatly depend on the target cloud provider. Model-driven tools, meanwhile,
abstract the complexity of using IaC scripts through the high-level modeling of the cloud infrastructure. In a
previous work, we presented an infrastructure modeling approach and tool (Argon) for cloud provisioning
that leverages model-driven engineering and supports the IaC approach. The objective of the present work
is to compare a model-driven tool (Argon) with a well-known code-centric tool (Ansible) in order to
provide empirical evidence of their effectiveness when defining the cloud infrastructure, and the participants’
perceptions when using these tools. We, therefore, conducted a family of three experiments involving
67 Computer Science students in order to compare Argon with Ansible as regards their effectiveness,
efficiency, perceived ease of use, perceived usefulness, and intention to use. We used the AB/BA crossover
design to configure the individual experiments and the linear mixed model to statistically analyze the data
collected and subsequently obtain empirical findings. The results of the individual experiments and meta-
analysis indicate that Argon is more effective as regards supporting the IaC approach in terms of defining
the cloud infrastructure. The participants also perceived that Argon is easier to use and more useful for
specifying the infrastructure resources. Our findings suggest that Argon accelerates the provisioning process
by modeling the cloud infrastructure and automating the generation of scripts for different DevOps tools
when compared to Ansible, which is a code-centric tool that is greatly used in practice.

INDEX TERMS Infrastructure as code, DevOps, model-driven engineering, controlled experiments,
crossover design, linear mixed model.

I. INTRODUCTION
One of the most critical challenges in many of today’s orga-
nizations is how to deliver a new idea or software artifact
to customers as fast as possible. Furthermore, since require-
ments and timelines are constantly changing, owing princi-
pally to time-to-market, the information exchanged between
the development team and operation staff must be accurate,
readily available, easily found and, ideally, delivered contin-
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uously in real-time. In order to confront these challenges,
a new movement denominated as DevOps (Development
and Operations) is promoting the continuous collaboration
between developers and operations staff by means of a set of
principles, practices and tools so as to optimize the software
delivery time [1]. DevOps implies a significant transforma-
tion in IT culture, focusing on rapid IT service delivery
through the adoption of agile methodologies and lean prac-
tices in the context of a system-oriented approach [2]. In this
context, software deployments are typically a huge source
of problems and garner much attention from management
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when releases are delivered late or a critical defect makes
it to production [3]. Furthermore, because the deployment
process is the boundary between the developers and opera-
tions staff in the software delivery cycle, practitioners rec-
ommend starting the DevOps journey with this process [3].
In this scenario, automating the provision of the infrastructure
accelerates the deployment process in the software delivery
cycle. Practitioners and researchers are consequently using
the Infrastructure as Code (IaC), which is an approach for
infrastructure automation based on practices originating from
software development that emphasizes the use of consistent
and repeatable routines for infrastructure provisioning [4].
The idea behind the IaC approach is that of both writing
and executing code in order to define, deploy and update the
infrastructure [5].

Cloud Computing has simultaneously become the primary
pay-as-you-go model used by practitioners and researchers
to obtain an infrastructure in a short time. Cloud Comput-
ing is composed of hardware-based services, in which hard-
ware management is highly abstracted and the infrastructure
capacity is highly elastic [6]. According to Brikman [5],
the use of cloud computing along with the IaC approach is
leading to certain changes, such as:

• Rather than managing data centers, many companies are
moving to the cloud.

• Rather than investing heavily in hardware, many oper-
ations teams are spending all their time working on
software.

• Rather than racking servers and plugging in network
cables, many sysadmins are writing code.

The DevOps community provides a considerable number
of IaC tools with which to orchestrate cloud infrastructure
provisioning. In this scenario, developers and operation staff
use definition files or scripts to specify the creation, updating
and execution of the cloud infrastructure resources. How-
ever, since IaC is based on software development practices,
it is possible to use different approaches, such as code-
centric or model-driven development, to write/model and
execute the infrastructure resources on various cloud plat-
forms. We identify two stages in the IaC process for reasons
of understanding: definition and provisioning. The former
writes/models the infrastructure resources that will be pro-
visioned on a cloud platform, while the latter employs IaC
tools to execute the infrastructure and hence orchestrate cloud
infrastructure provisioning. In this work, we focus on the
IaC approach in terms of defining the cloud infrastructure
resources to be provided.

In a previous work [7], we proposed an infrastructure mod-
eling approach and tool called Argon for cloud provisioning,
which leverages model-driven engineering and supports the
IaC approach. The main contributions of our approach are:
i) it abstracts the complexity of managing the particularities
of different cloud providers in order to define the required
infrastructure by using a domain-specific modeling language
called ArgonML (Argon Modeling Language), and ii) it

generates the IaC scripts using Argon in order to support
cloud infrastructure provisioning. However, to the best of
our knowledge, there is insufficient empirical evidence as
to whether model-driven or code-centric development is the
most effectivemeans to support the IaC approach. This is sup-
ported by the results of a recent Systematic Mapping Study
(SMS) of IaC research [8]. This study identified only seven
empirical studies related to IaC, none of which is focused on
evaluating the existing IaC tools. Moreover, all the studies are
individual experiments. According to Carver et al. [9] and
Campbell and Stanley [10], experiments in Software Engi-
neering need to be replicated in different contexts, at different
times and under different conditions before they can produce
generalizable knowledge.

The purpose of this paper is, therefore, to report a fam-
ily of experiments carried out to compare the effective-
ness and the user perceptions of two IaC tools: Ansible
[11] (a code-centric tool) and Argon [7] (a model-driven
tool) in terms of their support for the definition of cloud
infrastructure resources. Note that the IaC approach has two
stages (i.e., definition and provisioning), but that in this
paper we focus solely on the definition stage. We do not
consider the provisioning stage since, once the IaC scripts
have defined the cloud infrastructure resources, there is no
difference at the provisioning level, regardless of whether the
scripts were obtained by using a model-driven or a code-
centric approach. The cloud infrastructure resources are addi-
tionally updated by using the definition (i.e., updating the
model or script) and provisioning (i.e., updating the infras-
tructure in the cloud) stages. The experiments were conducted
with 67 Computer Science Master’s and Bachelor’s degree
students at the Universitat Politècnica de Valencia in Spain.

According to Santos et al. [12], at least three experiments
should be included to be considered a family of experiments.
In this paper, we therefore present a family of three experi-
ments with which to assess the effectiveness of Argon versus
Ansible as regards supporting the IaC approach. This study
makes the following contributions:

1. A baseline experiment and two strict internal replications
are presented. Internal replications are experiments carried
out by the same experimenters that pursue the same goal
as that of the baseline experiment [13]. The value of
replications has been widely recognized as a means to
achieve a greater validity and reliability of experimental
results [14].

2. The data analysis of individual experiments is presented
in a unified manner. We used the AB/BA crossover design
to configure each experiment and the linear mixed model
to analyze the data collected.

3. A meta-analysis aggregating the results obtained after
carrying out the individual experiments is presented.

4. A thorough discussion of the results is reported. The
practical implications of our results are discussed in terms
of the IaC approach and from the perspective of both
researchers and practitioners.
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The theoretical contribution of this work is a TAM-based
model for evaluating IaC tools. The practical contributions
are the application of this model for evaluating two specific
IaC tools (Ansible and Argon) and the empirical evidence
regarding which tool is more effective in supporting human
users when defining the cloud infrastructure.

This paper is organized as follows. In Section II, we discuss
the literature concerning existing studies that comparemodel-
driven with code-centric approaches and empirical studies
related to IaC. In Section III, we present an overview of
the tools being compared in this study, while in Section IV
we present the family of experiments by providing an
overview of the baseline experiment along with the design
and execution of the two replications. This section also high-
lights the AB/BA crossover design used in the experiments.
In Section V, we present the data analysis of the individual
experiments, whereas the results of the family of experi-
ments are discussed in Section VI. The threats to validity
are discussed in Section VII, and our conclusions and future
directions are presented in Section VIII.

II. RELATED WORK
There has been a considerable amount of interest in managing
cloud infrastructure resources in recent years, and several
approaches and strategies have emerged to support it. For
example, Amazon Web Services provides tools with which
to define, manage and execute their infrastructure resources,
such as CloudFormation [15] and OpsWorks [16]. On the
one hand, the DevOps community has developed several
tools whose purpose is to manage the infrastructure provi-
sioning of different cloud providers, such as Ansible [11]
and Terraform [17], and tools with which to install and
manage software in existing servers, such as Chef [18] and
Puppet [19]. On the other, researchers have focused their
efforts on improving infrastructure provisioning and software
deployment by following different approaches. In particular,
the model-driven approach supports automation according
to the IaC approach. For instance, some of the research
efforts made to manage infrastructure resources, and software
deployment based on model-driven techniques, are CloudMF
[20], MUSA Deployer [21] and MORE [22]. Additionally,
Bernal et al. [23] propose a UML-based framework that can
be used to model a cloud system, including the underlying
infrastructure, the user resource requirements and their inter-
actions with the cloud provider.

Although model-driven techniques are popular in
academia, their introduction into industrial practices appears
to be slow [24]–[27]. Some of the obstacles to this are
possibly the difficulty of convincing practitioners of the
advantages of Model-Driven Development (MDD) [28], the
lack of appropriate tools or the lack of evidence regarding its
effectiveness in real-world scenarios. In this respect, the main
advantages of MDD are improvements to productivity, porta-
bility, maintainability and interoperability [29]. Nevertheless,
these claims demand empirical evidence if they are to become
facts that may help practitioners adopt an MDD strategy.

Researchers have, therefore, started to conduct experiments
in order to compare, in this case, model-driven versus code-
centric approaches. Some representative studies in this line
are those of:

• Martínez et al. [30], who compare the model-driven ver-
sus code-centric development concerning their poten-
tial adoption by junior software developers engaged
in the development of the business layer of a Web
2.0 application. In [31], the same authors expand their
empirical evidence by conducting another experiment
to compare the performance and satisfaction of junior
software maintainers while performing maintainability
tasks on Web applications with two different develop-
ment approaches, one of which is model-driven (the
OOH4RIA approach), and the other of which is a code-
centric approach based on Visual Studio .NET.

• Ricca et al. [28], who conducted experiments with Uni-
Mod, a state-based tool for model-driven development,
which was compared with Java-based code-centric pro-
gramming in a software maintenance scenario. The goal
of the experiment was to analyze the effect on the time
required to perform the maintenance tasks, the correct-
ness of the artifacts modified and the efficiency.

• Parra et al. [32], who experimented by comparing ges-
tUI, a model-driven method intended to deal with ges-
tures, with a code-centric method whose purpose is
to include gesture-based interaction in user interfaces,
in order to evaluate the usability of the two methods in
terms of effectiveness, efficiency and satisfaction.

The results of the above-mentioned experiments generally
show that model-driven approaches improve the participants’
performance and perceptions. The participants felt more com-
fortable when using models and they perceived that model-
driven approaches are easy to use and useful in the contexts
in which they have been used.

With regard to empirical studies related to IaC, an SMS
of IaC research carried out by Rahman et al. [8] identified
four topics that have been researched in the area of IaC: a
framework/tool for IaC, the adoption of IaC, empirical studies
and testing. Only seven empirical studies related to IaC have
been found. These studies focus on the following topics:

• Testing: publications presenting approaches for the test-
ing of IaC scripts. Ikeshita et al. [33] presented a method
for the efficient checking of idempotence by combining
the testing and static verification approaches. The IaC
scripts are transformed into a formal model and a graph
that has paths representing all the test cases required
to judge which path of the execution graph is likely to
be redundant is constructed. In contrast, Hummer et al.
[34], [35] assessed the idempotence of IaC scripts using
a model-based testing framework in which an abstracted
system model was utilized to derive state transition
graphs that were subsequently employed as a basis on
which to systematically generate test cases.
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• Co-evolution: this is related to the study of the co-
evolution of IaC scripts with other software artifacts.
In this context, Jiang and Adams [36] performed an
empirical study of 256 OpenStack projects to assess the
co-evolution relationship between the IaC scripts and the
other categories of files in a project, i.e., source code, test
code and build scripts.

• Code quality: this is related to the code quality of
IaC scripts. Sharma et al. [37] analyzed 4,621 Pup-
pet repositories containing 8.9 million lines of code in
order to assess and detect implementation and config-
uration smells. They consequently proposed a catalog
of 13 implementations and 11 design configuration
smells, in which each smell violates recommended
best practices for configuration code. In contrast Weiss
et al. [38] proposed an interactive system with which
to evaluate and repair system configurations and hence
bridge the gap between the shell and system configu-
ration languages. They used imperative configuration
repair, which is a program synthesis-based technique
that allows an IaC script to be automatically repaired
given a sequence of shell commands to guide the desired
system state.

• Practitioners’ survey: Parnin et al. [39] carried out a
survey at the Continuous Deployment Summit on the
Facebook campus in July 2015. This summit focused on
10 adages, which represent a working set of approaches
and beliefs that guide current practice and establish a
tangible target for empirical validation by the research
community. It is worth mentioning that ‘‘configura-
tion is code’’ is an adage that enables the continuous
deployment of infrastructure resources and software
applications.

Most of the existing empirical studies assessing model-
driven versus code-centric approaches provide a global view
of the benefits of model-driven approaches. However, to the
best of our knowledge, only a few studies [33]–[39]) have
evaluated the IaC approach in an empirical manner. This is
in line with the results of the previously mentioned SMS of
IaC research [8]. This SMS identified research works that
focus on assessing both the IaC scripts and the repositories
in which these scripts are stored. However, these studies do
not compare existing IaC tools systematically, nor do they
present controlled experiments involving human participants.
The authors of the SMS identified 32 IaC-related publications
from 9,387 search results and, the number of publications
is, therefore, low when compared with other studies. The
authors provide two possible explanations for this: (1) IT
organizations have not adopted IaC on a wide scale and,
as a result, empirical studies related to their experiences and
challenges have not been reported; and (2) IT organizations
that have adopted IaC are not open as regards sharing their
experiences.

In order to improve the body of knowledge regarding
empirical studies in IaC, this paper presents a family of three

controlled experiments carried out to assess the effectiveness
of tools with which to support the IaC as regards model-
driven and code-centric approaches.

III. TOOLS BEING COMPARED
This section provides an overview of the infrastructure pro-
visioning tools selected as treatments. We selected Argon [7]
because this tool has been proposed in order to abstract the
complexity of working with different tools for infrastructure
provisioning. It implements a domain-specific language so
as to model the characteristics of the cloud infrastructure
and provides transformation engines with which to automate
the infrastructure provisioning for different cloud providers.
We selected Ansible [11] as the control treatment because it is
currently widely used by industry and academia to define the
infrastructure in scripts and then deploy it in different cloud
providers [40], [41]. Both Ansible and Argon define the cloud
infrastructure, although their notations and abstraction levels
are significantly different.

A. ANSIBLE: A CODE-CENTRIC TOOL
The purpose of Ansible [11] is to both define the final state of
infrastructure resources and orchestrate cloud infrastructure
provisioning. Ansible exposes a domain-specific language
that is used to describe the state of infrastructure resources,
which signifies writing code with which to specify each
infrastructure element for a particular cloud provider.

Ansible uses a script called playbook that describes the
provisioning configuration, along with an ordered list of tasks
to be performed by a specific cloud provider. The playbook
syntax is built on top of YAML, which is a data format
language that was designed to be easy to read and write. Each
playbook is composed of one or more plays in a list. A play
maps some well-defined tasks onto a group of remote hosts,
that is, virtual machines in a specific cloud provider. Finally,
a task is a call to an Ansible module to create and manage
infrastructure resources in remote hosts.

Fig. 1 shows an excerpt of the playbook (script) in Ansible
for the MODAFIN company (MODAFIN for short) [42].
MODAFIN specializes in IT applications for financial ser-
vices, and its main product line is a proprietary solution
for stock market operations, cash administration and lending
management. MODAFIN is concerned with the exponential
traffic of requests received by software applications installed
in Amazon Web Services. MODAFIN has solved this issue
by using a load balancer to distribute the workload among
several virtual machines.

The playbook (see Fig. 1) begins with --- (line 1), which
indicates the start of an infrastructure script for Ansible. A
play has three sections: the host section, the variables section,
and the task section. The host section defines in which remote
host (line 2) of a cloud provider the playwill be executed, and
how the play will be implemented (line 3).

The variable section defines the variables that will be used
for the entire play on remote hosts. In this case, we define the
region variable (line 6) to specify the region code in which the
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FIGURE 1. The Ansible playbook for the MODAFIN Company.

infrastructure will be provisioned in Amazon Web Services,
along with the key pair (line 7) used by Ansible to obtain
access to the region selected.

In the task section, all infrastructure elements detailed
will be executed, in order, one at a time, against a remote
host matched in the host section. The first task specifies a
security group for virtual machines (from line 9 to 30), which
works like a firewall to enable both inbound connections
through port 8080, port 22 and port 25, in addition to all out-
bound connections. The second task details a security group
for the load balancer (from line 31 to 44), which enables
both inbound connections through port 80 and all outbound
connections. The third task defines a virtual machine (from
line 45 to 59) in which all the hardware characteristics are
specified, such as the type of instance (processor, RAM,
storage, etc.), the image code (operating system) or the region
and availability zone in which the virtual machines will be
deployed. The fourth task describes a load balancer (from
line 60 to 80), which distributes the workload among sev-
eral virtual machines. The load balancer has a health check
element (from line 69 to 75), which validates that virtual
machines connected to the load balancer are available. The
load balancer also has a listener element (from line 76 to 79),
which checks connection requests made to the load balancer.

Finally, the fifth task registers (from line 81 to 89) all virtual
machines created for the load balancer in order to distribute
the workload among them.

B. ARGON: A MODEL-DRIVEN TOOL
Argon [7] is an infrastructure modeling tool for cloud pro-
visioning that leverages model-driven engineering and sup-
ports the IaC approach. Argon abstracts the complexity of
working with different cloud providers through the use of
a domain-specific modeling language (DSML). Moreover,
Argon uses the DSML to model the infrastructure resources
and then generate the corresponding scripts with which to
manage different tools (e.g., Ansible, Terraform, etc.) for
cloud infrastructure provisioning. Furthermore, Argon was
built by following a plugin-based architecture, and it therefore
works in the Eclipse Modeling Framework [43].

Fig. 2 shows an infrastructure model modeled with
ArgonML for the CEC University (CEC for short) [6]. CEC
offers massive open online courses by means of a virtual
platform. The problemwith CEC’s virtual platform is the high
demand for specific courses, which is causing an overload in
the servers in which the courses are running.

CEC could purchase new servers to create a cluster and
thereby solve its problem. However, these new servers will
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FIGURE 2. The infrastructure model for the CEC University in Argon.

not work if there is no demand for courses. The solution is,
therefore, to migrate the infrastructure toward Amazon Web
Services and hence pay for using the infrastructure deployed.
In this scenario, CEC should use a load balancer to distribute
workloads among several virtual machines.

Fig. 2A shows the infrastructure model in which a virtual
machine (VM01alucloud00) element is connected to a secu-
rity group (SG02alucloud00) that works as a firewall. Note
that the virtual machine (VM01alucloud00) element defines
the number of virtual machines to be created. The security
group (SG02alucloud00) has three inbound rules (Port_9090,
Port_443 and Port 22) and one outbound rule (Port_ALL).
The inbound rules enable incoming connections to virtual
machines, and the outbound rule allows outgoing connec-
tions from the virtual machine to external servers. In addi-
tion, a zone (ue-west-2b) element specifies the availability
zone in which virtual machines (VM01alucloud00) will be
deployed. The load balancer (LB01alucloud00) distributes
the workload among virtual machines (VM01alucloud00)
and has a listener (L01alucloud00) element and a health
check (HC01alucloud00) element. The former checks con-
nection requests to the load balancer, while the latter validates
that virtual machines connected to the load balancer are avail-
able. In addition, the load balancer (LB01alucloud00) has a
zone (ue-west-2b) element, which specifies the availability
zone in which it will be deployed. Finally, the load balancer
(LB01alucloud00) has a security group (SG01alucloud00)

with one inbound rule (Port_80) and one outbound rule
(Port_ALL).

Furthermore, Fig. 2B shows the palette of the infrastructure
elements that are used to model an infrastructure model.
Note that each infrastructure element has its own properties.
Fig. 2C shows the infrastructure model properties in which
the File name property specifies the script name that will
be generated, the Key name property allows the key pair
to be written in order to enable secure access to Amazon
Web Services, and the Region property allows the definition
of the region code in which infrastructure resources will be
provisioned.

C. COMPARISON OF TOOLS
BothAnsible andArgon provide support in order to define the
final state of cloud infrastructure resources. On the one hand,
Ansible allows the specification of infrastructure elements in
a script using a scripting language (i.e., YAML). On the other,
Argon allows the modeling of the infrastructure resources in
an infrastructure model and, from this model, generates the
corresponding scripts required to manage different provision-
ing tools such as Ansible, Terraform, etc.

Table 1 presents a mapping between the infrastructure
elements of Ansible and Argon. In this comparison, it is
worth mentioning that both Ansible and Argon can define
the infrastructure for different cloud providers. In this work
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TABLE 1. Comparing Ansible modules and ARGON infrastructure
elements.

we, therefore, focus on specifying the cloud infrastructure for
Amazon Web Services.

Argon provides more infrastructure elements than Ansi-
ble because it proposes a generic infrastructure model in
which all elements are specified in detail. However, Ansible
includes one or more infrastructure elements in a module. For
instance, the ec2_group module allows the configuration of a
security group, along with its inbound and outbound rules.
Moreover, the ec2_elb_lb module allows the configuration
of a load balancer, along with its listener and health check
elements. The remaining elements are matched, one by one,
between Ansible modules and Argon infrastructure elements.

IV. THE FAMILY OF EXPERIMENTS
According to Basili et al. [14], a family of experiments is a
group of experiments that pursue the same goal and whose
results can be combined into joint results that are potentially
more mature than those that can be achieved in isolated
experiments. In addition, Santos et al. [12] contribute to
this definition by adding that at least two treatments should
be compared within all experiments on a common response
variable and at least three experiments should be included
within the family. We therefore conducted a family of three
controlled experiments in order to provide empirical findings
on the comparison of two treatments, that is, Ansible versus
Argon. The family of experiments was defined according
to the framework proposed by Ciolkowski et al. [44], and
each experiment was designed and executed by following the
experimental process proposed by Wohlin et al. [45].

A. GOAL
A family of experiments has to set a goal in order to
allow the effective analysis of the individual results [44] and
to define the scope of the experiments. According to the
Goal-Question-Metric (GQM) paradigm [46], the goal of our
family of experiments is to analyze the definition of cloud
infrastructure resources specified by Ansible and Argon for

the purpose of assessing them with respect to their effective-
ness, efficiency, perceived ease of use, perceived usefulness,
and intention of use from the viewpoint of novice software
engineers in the context of Computer Science Master’s and
Bachelor’s degree students.

Although cloud computing practitioners would have been
preferable, we focused on the profile of novice software engi-
neers since we aim to provide an infrastructure modeling tool
for cloud provisioning that will help less experienced users
to specify high-quality infrastructure models. The research
questions addressed are:

• RQ1: Which IaC tool is more effective when defining
the cloud infrastructure? This is concerned with the
correctness of the definition of the cloud infrastructure
resources.

• RQ2: Which IaC tool is more efficient when defining
the cloud infrastructure? This is concerned with the
correctness of the definition of the cloud infrastructure
resources in relation to the time spent.

• RQ3:Which IaC tool is perceived to be easier to use?
• RQ4:Which IaC tool is perceived to be more useful?
• RQ5:Which IaC tool is more intended to be used?

B. CONTEXT SELECTION
The context of this study is the definition of two cloud infras-
tructures created by novice software engineers. The context is
defined by (i) the experimental objects (i.e., the infrastructure
resources to be specified); (ii) the IaC tools selected, and (iii)
the selection of participants.

1) EXPERIMENTAL OBJECTS
The infrastructure resources to be specified were selected and
adapted from literature:

• O1 – MODAFIN Company [42]: the purpose is to solve
the exponential traffic of requests received by software
applications installed in Amazon Web Services through
the use of a load balancer, which distributes the work-
load among several virtual machines. An excerpt of
the MODAFIN playbook (script) in Ansible is shown
in Fig. 1.

• O2 – CEC University [7]: the purpose is to pay for
the use of an infrastructure deployed in Amazon Web
Services in order to solve the high demand for spe-
cific courses that is causing an overload on the vir-
tual platform (servers) located in the CEC Univer-
sity. In this case, a load balancer should distribute the
workload among virtual machines, which will be cre-
ated or destroyed on demand. An excerpt of the infras-
tructure model of the CEC system modeled with Argon
is shown in Fig. 2.

2) IaC TOOLS
Ansible is widely used by practitioners to define, update
and execute the infrastructure resources in cloud comput-
ing. It uses the YAML scripting language to define the
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instructions necessary to specify infrastructure elements in a
playbook (i.e., script). In this case, the participants were asked
to write the instruction needed to specify a load balancer
that distributes the workload among virtual machines (e.g.,
Fig. 1 shows the specification for the MODAFIN system).
Moreover, both the load balancer and the virtual machines
had to be connected to a security group. First, the playbook
had to begin with three dashes that would indicate the start of
the script, after which the participants had to specify remote
hosts on which the script would be run, and how it would
be executed. They also had to define the variables to be
used throughout the entire playbook. Finally, they had to
define Ansible modules with which to create and manage the
infrastructure elements.

Argon, meanwhile, provides a domain-specific modeling
language with which to model the infrastructure resources.
Argon was developed by our research group and is, therefore,
an experimental prototype. In this case, the participants were
asked to model a load balancer that would distribute the
workload among several virtual machines (e.g., Fig. 2 shows
the infrastructure model for the CEC University). In addition,
the participants had to model infrastructure resources, such
as security groups, zone, health check and listener. First,
an infrastructure model had to be created in the Eclipse Mod-
eling Framework, after which each element had to be dragged
from the palette of infrastructure elements and dropped onto
the canvas. It was also necessary to make the connection
among elements. Finally, it was necessary to fill in both
the infrastructure diagram properties and the infrastructure
elements properties.

3) SELECTION OF PARTICIPANTS
According to Kitchenham et al. [47], students are the next
generation of software professionals and are, therefore, rel-
atively close to the population of interest. Furthermore,
Höst et al. [48] investigated the appropriateness of final-
year students as subjects and concluded that, if well trained,
they can be considered as appropriate experimental sub-
jects. The following group of participants was consequently
selected:

• Master’s students enrolled on the Software Engineering
Master’s degree program at the Universitat Politècnica
de València (UPV). These students attended the Empir-
ical Software Engineering course throughout the aca-
demic year 2017-18. The purpose of this course is to
provide students with the knowledge required to plan,
conduct and present the results of empirical studies.

• Undergraduate students enrolled on the Computer Engi-
neering Bachelor’s degree at the UPV. These stu-
dents attended theModel-Driven Software Development
course throughout the academic year 2017-18. The pur-
pose of this course is to provide students with the knowl-
edge of the construction of software models at different
levels of abstraction as the main artifacts in software
development.

FIGURE 3. Overview of our family of experiments.

• Undergraduate students enrolled on the Computer Engi-
neering Bachelor’s degree at the UPV. These students
attended the Requirements Engineering course through-
out the academic year 2017-2018. The purpose of this
course is for students to understand both the needs of
users and the domain and context in which the software
system will be used to elicit, analyze, negotiate and
document software requirements.

We did not establish a classification of the participants on the
basis of their cloud infrastructure provisioning experience,
since neither the Bachelor’s nor the Master’s degree students
had a previous background in defining cloud infrastructure
provisioning.

C. DESIGN OF INDIVIDUAL EXPERIMENTS
Fig. 3 summarizes the family of experiments. The fig-
ure includes the context of each experiment, the number of
participants involved and the place in which the experiments
took place. The figure also shows the order in which the
experiments were carried out.

Since experimental conditions are difficult to control, one
way in which to satisfy the statistical requirements of repli-
cations is by running internal replications (in the same place
and by the same experimenters) [49]. Having more internal
replications of the same experiment considerably reduces the
Type I error, and identical replications are also required in
order to be able to estimate the effect size under study [49].
A Type I error (α-error, false positives) occurs when the null
hypothesis (H0) is rejected in favor of the alternative hypothe-
sis (H1), when the ’null’ hypothesis is actually true. The effect
size indicates themagnitude of the observed effect or relation-
ship between variables.

Our family was, therefore, composed of the baseline exper-
iment conducted with the Master’s degree students (UPV1).
Before conducting this experiment, a pilot experiment was
conducted with 12 Ph.D. students to evaluate the experimen-
tal materials regarding the experimental procedures, instruc-
tions and the task completion time. It should be noted that
Ph.D. students played no part in the controlled experiments.

In order to verify the results obtained in the baseline
experiment, we conducted two strict replications accord-
ing to the guidelines proposed in [50]. The first replication
was conducted with undergraduate students enrolled on the
Model-Driven Software Development course (UPV2), while
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the second replicationwas also conductedwith undergraduate
students, but those enrolled on the Requirements Engineering
course (UPV3). These replications were operational, as we
varied some dimensions of the experimental configuration
[13], particularly the population. This allowed us to verify
whether the results were independent of the participants’
profile.

1) BASELINE EXPERIMENT (UPV1)
The objective of this experiment was to evaluate whether the
participants using our proposed tool (i.e., Argon) to model
an infrastructure model would perform better (in terms of
effectiveness and efficiency) and report better perceptions
than when using Ansible.

a: CONTEXT SELECTION
Weused the experimental objects explained in Section IV-B.1,
along with the IaC tools described in Section IV-B.2.
Table 2 presents the infrastructure requirements used to spec-
ify the cloud infrastructure. The requirements were taken and
adapted from literature [7], [42]. Note that the requirements
are independent of both the experimental objects and the IaC
tools. Moreover, the experimental objects are from different
application domains, which do not require specialized knowl-
edge to understand them, but have a similar complexity.

b: PARTICIPANTS
The experiment involved 22 Master’s students enrolled on
the Software Engineering Master’s degree program at the
Universitat Politècnica de València. The participants’ prior
knowledge and expertise were evaluated through the use of
a pre-questionnaire. 14 participants reported that they had
professional experience in software development, varying
between 1 to 4 years, with an average of 2 years, but that
they had no previous knowledge of cloud computing or the
infrastructure provisioning process. The participants were
chosen by means of convenience sampling. They attended the
Fall 2017 course on Empirical Software Engineering with a
focus on evaluating infrastructure provisioning approaches.
The participants were asked to carry out the experimental task
as part of the laboratory exercises of the course.

c: SELECTION OF VARIABLES
The independent variable (or factor) was the IaC tool, which
has two levels: Ansible and Argon. The former is a code-
centric tool used to specify the infrastructure resources in
scripts, whereas the latter employs a model-driven approach
to model the infrastructure resources.

The Method Evaluation Model (MEM) [51] was used as a
theoretical basis on which to design the experiment. Accord-
ing to this model, there are two types of dependent vari-
ables: performance-based variables that measure how well
the participants perform the experimental task (i.e., define the
infrastructure resources), and perception-based variables that
measure the participants’ beliefs and attitudes toward the use
of the IaC tools.

TABLE 2. Requirements to specify the cloud infrastructure.

There are two performance-based variables:
• Effectiveness, which measures the degree to which an
IaC tool achieves its objectives.

• Efficiency, which measures the effort required to use an
IaC tool.

There are three perception-based variables:
• Perceived Ease of Use (PEOU), which refers to the
degree to which a participant believes that learning and
using a particular IaC tool will be effortless.

• Perceived Usefulness (PU), which refers to the degree
to which a participant believes that a particular IaC tool
will be effective in achieving its indented objectives.

• Intention to Use (ITU), which is the extent to which a
participant intends to use a particular IaC tool.

In order to operationalize the performance-based variables,
we used the ISO/IEC 9126-4 [52] to obtain the metrics
required to measure effectiveness and efficiency. Moreover,
in order to operationalize the perceptions-based variables,
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TABLE 3. Summary of the dependent variables.

we adapted the measurement instrument proposed by Davis
et al. [53] to measure the perceived ease of use, perceived
usefulness and intention of use. Table 3 summarizes the
metrics used to measure each dependent variable.

Since the experimental task is a set of requirements to
be coded in Ansible or modeled in Argon we, therefore,
calculated effectiveness as the number of correctly defined
requirements divided by the total number of requirements
proposed. This reflects the correctness of the definition of
cloud infrastructure resources specified by the participants.
Moreover, efficiency was calculated as the Effectiveness of
that participant divided by the Time that she/he took to
perform the task. This reflects the proportion of require-
ments achieved for each unit of time. Efficiency increases
with increasing effectiveness and a reduction in task time.
In fact, we defined the following aggregation metric to decide
whether or not a task (i.e., set of requirements) was valid:

• All-or-nothing metric: we considered that a require-
ment was correct only if it was defined correctly.
A requirement, therefore, had only two possible values:
success or failure (1 or 0).

We proposed the all-or-nothing metric because the infras-
tructure resources defined in the experiment had to work in
a particular cloud provider, and the infrastructure would not,
therefore, be provisioned in the cloud provider if any of the
requirements had been incorrectly defined.

In contrast, in order to operationalize the perception-based
variables, we used a survey questionnaire adapted from [51]
tomeasure PEOU, PU and ITU. The questionnaire itemswere
formulated by using a 5-point Likert scale and adopting the
opposing-statement question format. Various itemswithin the
same construct group were randomized to prevent systemic
response bias. Table 4 presents the items employed to mea-
sure these variables (See Appendix).

d: FORMULATION OF HYPOTHESES
We formulated the null hypotheses on the basis of the depen-
dent variables. It is worth mentioning that the experiment
aims to assess the definition of infrastructure resources rather
than assessing the tools holistically.

TABLE 4. Items used to measure the perception-based variables.

The null hypotheses of the experiment can be summarized
as follows:
• H10: Effectiveness (Ansible) = Effectiveness (Argon)
• H20: Efficiency (Ansible) = Efficiency (Argon)
• H30: PEOU (Ansible) = PEOU (Argon)
• H40: PU (Ansible) = PU (Argon)
• H50: ITU (Ansible) = ITU (Argon)
The goal of the statistical analysis was to reject the null

hypotheses and possibly accept the alternative ones (e.g.,
H11 = ¬H10). All the hypotheses are two-sided because we
did not postulate that any effect would occur as a result of IaC
tool usage.

e: DESIGN
The experiment was designed as an AB/BA crossover design,
which has one factor and two treatments. In this context,
the IaC tool employed to specify the cloud infrastructure is
the factor, and the two treatments are Ansible and Argon.
We chose the AB/BA crossover design because it addresses
the issue of small sample sizes and increases the sensitivity
of experiments. We followed the guidelines proposed by
Vegas et al. [54] to define the crossover design and, therefore,
used fixed factors as period, sequence and carryover.

Table 5 shows a special type of design called a factorial
crossover design, which has the same number of periods as
treatments, in which all the participants apply each treatment
under study once and once only [54]. In this scenario, it is
necessary to differentiate between the concepts of period and
session. A period is defined by the application of one treat-
ment by one participant to one experimental object, whereas
a session is a portion of time taken by a subject to complete

VOLUME 8, 2020 17743



J. Sandobalín et al.: On the Effectiveness of Tools to Support Infrastructure as Code

FIGURE 4. Summary of the operation process of the experiment.

TABLE 5. AB/BA crossover design used to configure the experiment.

(one or more) experimental tasks [54]. We consequently had
two periods, since each participant had to perform two treat-
ments and for reasons of the students’ class timetable. We,
therefore, carried out one period in a session.

Because we had two periods and two treatments, there
were two resulting sequences, that is, Ansible-Argon and
Argon-Ansible. In the first period, Group 1 solved the exper-
imental object O1 with Ansible, while Group 2 solved the
same experimental object with Argon. In the second period,
Group 1 solved the experimental object O2with Argon, while
Group 2 solved the same experimental object with Ansible.
In this scenario, we do not believe that there is the possibility
that any of the sequences would have improved the experi-
mental results, since both Ansible and Argon define the cloud
infrastructure on the basis of different principles and inputs.

Two different experimental objects were employed in the
experiment (MODAFIN and CEC University), and each
experimental object (system specification) described eight
requirements that should be implemented by the partici-
pants. According to the experiment design, each experimental
object had to be used in a different period. As in the case of
sequences, we do not believe that there is a possibility that the
order of use of experimental objects would have improved the
results of the experiment.

Throughout an experiment, if the effect of one treatment
carries on after the treatment is withdrawn, then the response
to a second treatment may well be partly owing to the
previous treatment, and carryover occurs [54]. In this case,
in a crossover design it is complicated to identify the sequence
effect in addition to the interaction between period and
treatment and the possibility that carryover exists should,
therefore, be considered. As a result, we acknowledge the
carryover effect in the design stage, and its results will be
examined in the analysis stage. Finally, the crossover design
is balanced for carryover effects because each treatment
followed each of the other treatments an equal number of
times [55].

f: OPERATION
The procedure employed to run the experiment matches that
of the factorial crossover design chosen. The experiment was
conducted in five 2-hour sessions. Fig. 4 shows a summary
of how the experiment was conducted. The numbers on the
diagram represent the steps in the experimental process and,
in this case, represent the sessions. The first 2-hour ses-
sion (Step 1) was used to teach the foundations of cloud
computing and those of Ansible and Argon. Note that we
focused on teaching the principal concepts that the partici-
pants had to use for the experiment rather than explaining
cloud computing or IaC tools (i.e., Ansible and Argon) in
detail. The second 2-hour session (Step 2) was employed to
allow the participants to get acquaintedwith Ansible, whereas
the third 2-hour session (Step 3) was to enable them to get
acquainted with Argon. The participants carried out an exer-
cise similar to the experiment. The first three steps focused on
teaching and training how to define the cloud infrastructure,
because it was new knowledge that the participants had to
acquire.
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The first period of the controlled experiment was con-
ducted in the fourth 2-hour session (Step 4), whereas the sec-
ond period was conducted in the fifth 2-hour session (Step 5).
The activities carried out in each period are described
below:

• First, the participants filled out a survey related to their
knowledge and experience with cloud computing and
IaC tools.

• Next, the participants were randomly assigned to Group
1 and Group 2, considering that both groups would have
the same number of participants. In the first period,
Group 1 solved the experimental object O1 (MODAFIN)
with Ansible, while Group 2 solved the same experi-
mental object with Argon. In the second period, Group
1 solved the experimental object O2 (CEC University)
with Argon, while Group 2 solved the same experimen-
tal object with Ansible.

• Finally, the participants filled out a survey to show their
perceptions as regards ease of use, usefulness and inten-
tion to use the treatments (i.e., Ansible or Argon). After
each period, we checked that the data was complete and
whether it had been collected correctly.

2) SECOND EXPERIMENT (UPV2)
The second experiment in our family was a strict internal
replication of the baseline experiment (UPV1). The same
experimental protocol was applied but to a different popu-
lation, signifying that we varied only the participants, while
the site, experimenters, design, variables and instrumentation
remained the same.We changed only the participants with the
purpose of testing the extent to which the experimental results
could be generalized. The sample of participants was com-
posed of 24 undergraduate students enrolled on the Model-
Driven Software Development course in the third year of their
B.Sc., who had consequently obtained knowledge of model-
driven techniques. The participants were asked to carry out
the experimental task as part of the laboratory exercises on
the course.

As in the baseline experiment, it took place in a single
room, and no interaction was allowed among the participants.
We carried out the AB/BA crossover design of setting two
treatments and two periods, and the participants were ran-
domly assigned to two groups.

3) THIRD EXPERIMENT (UPV3)
The third experiment in our family was a strict replication
of the baseline experiment (UPV1). The experimental proto-
col, site, design, variables, instrumentation and experimenters
remained the same. The sample of participants was composed
of 21 undergraduate students enrolled on the Requirements
Engineering course in the fourth-year of their B.Sc. The
participants were asked to carry out the experimental task as
part of the laboratory exercises of the course.

The replication took place in a single room, and no inter-
action was allowed among the participants. We again used

the AB/BA crossover design and two treatments with two
periods were, therefore, configured and the participants were
randomly assigned to two groups.

D. EXPERIMENTAL TASK AND MATERIALS
The experimental tasks consisted of specifying the cloud
infrastructure using one of the IaC tools selected on two
experimental objects. These tasks were structured so as to
allow the comparison of both tools in terms of specified
infrastructure resources. We provided the participants with
the goal and description of the cloud infrastructure and
then asked them to specify the corresponding infrastructure
resources by following the steps and guidelines of each tool.
In this scenario, a set of requirements was provided to the
participants in an attempt to exemplify a real problem in
which they should use a load balancer to distribute workloads
among virtual machines.

In the case of Ansible, the experimental task consisted
of: (1) defining the host and variable sections; (2) defin-
ing the task section and then specifying the infrastructure
resources, and (3) registering or deregistering the compo-
nents, which signified connecting the infrastructure elements
with each other in such a way that they would work with each
other on a particular cloud platform. In the case of Argon,
the experimental task similarly consisted of: (1) modeling
the infrastructure resources; (2) connecting the infrastructure
elements to each other, and (3) filling in the property values
of each infrastructure element.

The experimental materials consisted of a set of documents
to support the experimental task, training sessions and pre-
and post-questionnaires.

The training material included: (1) slides to teach the
foundations of CloudComputing, AmazonWeb Services, and
Infrastructure as Code, (2) slides to explain the Ansible tool,
along with an example of how to specify the infrastructure
elements in a script, and (3) slides to explain the Argon
tool, along with an illustrative example of how to model the
elements in an infrastructure model.

The experimental material that supported the experimental
task of each experiment included:

• Four booklets that covered four possible combinations
of experimental objects (O1 and O2) and treatments
(Ansible and Argon). The purpose of these booklets
was to describe each experimental object, along with its
requirements, in addition to describing the infrastructure
elements, their property values and their relationships.

• One pre-questionnaire with which to collect the partici-
pants’ knowledge and skills, and one post-questionnaire
with which to gather the participants’ perceptions as
regards ease of use, usefulness and intention to use.

• A guide explaining the steps required to create a play-
book, that is, a script for Ansible. This guide included
definitions of the sections of the script and snippets
of code in order for the participants to use them as
a reference to create their code. The objective of the
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experiment was that the participants would learn how to
create a script rather than memorizing snippets of code.

• A guide explaining the steps required to model the cloud
infrastructure resources with Argon. This guide included
instructions on how to create an infrastructure project
and the guidance required to use infrastructure elements
and fill in their properties.

• A guide explaining the regions and availability zones for
Amazon Web Services. The load balancer and virtual
machines have to specify the location in which they will
be deployed.

• A guide containing a list of key pairs required to access
the regions of Amazon Web Services. In order to deploy
the infrastructure resources in a particular region, it is
necessary to specify its code.

• A guide containing a list of the instance type codes,
which have the hardware characteristics of virtual
machines.

• A guide containing a list of the image codes, that is,
the operating system for a virtual machine in Amazon
Web Services.

• A virtual machine configured and tested with Ansible
and Argon. The aim was to provide to each participant
an identical environment in which to work. Each virtual
machine was configured with Windows Server 2012R2,
Java JDK v1.8, the Eclipse Modeling Framework v4.8,
Argon v1.0, and Ansible v2.6.

The post-experimental questionnaire contained a set of
closed questions that would allow the participants to express
their opinions about Ansible and Argon in terms of their
perceived ease of use, perceived usefulness, and intention to
use. We ensured the balance of the items in the questionnaire
by putting half of the questions in their negative form and
arranging all the items in random order so as to reduce
the potential ceiling effect that could induce monotonous
responses to question items measuring the same construct
[51]. The list of items used in the questionnaire is shown
in Table 4.

E. FAMILY DATA ANALYSIS AND META-ANALYSIS
The results of each experiment were collected using the book-
lets and the online questionnaire and were then analyzed.

We used descriptive statistics, box plots, and statistical
tests to analyze the data collected from each experiment. As is
usual, we accepted a probability of 5% of committing a Type-
I Error in all the statistical tests. The data analysis was carried
out by following the steps shown below:

1. We first carried out a descriptive study of the measures for
the dependent variables.

2. The use of a crossover design meant that it was neces-
sary to analyze the experiment factors such as periods,
sequences and carryover. In this case, we used the linear
mixed model to assess whether these factors had influ-
enced the results.

3. In order to apply the linear mixed model, the residuals had
to meet the condition of normality [54]. To ensure that the
model was valid, we therefore used the Shapiro-Wilk test
to confirm the normality of the residuals.

4. We then applied the linear mixed model to each dependent
variable in order to assess whether the period (confounded
with the experimental object), sequences (confounded
with period∗technique and carryover) or technique (treat-
ment) had statistical significance.

5. Since the statistical significance is not sufficient to explain
the difference caused by the treatments, we measured the
effect size to assess the magnitude of those differences.
The effect size of the treatments should be measured only
if the period, the sequence or any blocking variables have
no bearing, and there is no carryover [50]. Because our
family is comparing two groups rather than evaluating the
strength of association between two variables, we used
Cohen’s d to measure the effect size.

6. In order to strengthen the results of each individual
experiment, we decided to aggregate them using a meta-
analysis. We specifically performed an Aggregated Data
(AD)meta-analysis based on Cohen’s d, as the experimen-
tal conditions were similar for all the experiments. This
analysis enabled us to obtain more robust results and to
extract more general conclusions when considering the set
of experiments in the family.

V. RESULTS
In this section, we present the empirical evidence collected
from our family, in addition to discussing the results of each
experiment by quantitatively analyzing the data according the
hypotheses stated. We used the Statistical Package for Social
Science (SPSS v24) and R v3.5.2 to obtain the experiment
results. A qualitative analysis based on the feedback obtained
from the post-task questionnaire is also provided.

A. DESCRIPTIVE STATISTICS AND EXPLORATORY DATA
ANALYSIS
Table 6 presents a summary of the descriptive statistics
(mean and standard deviation) for the performance-based
and perception-based variables. Despite the fact that we did
not further analyze Duration, we have included the variable
in this summary in order to provide a preliminary idea of
the complexity of the experimental tasks. The Duration is
the time —in minutes— taken to perform an experimental
task. The cells in bold type indicate the participants’ values
for each variable with the lowest Duration (time) and the
smallest standard deviation. At a glance, the results show
that the participants performed best and also had the best
perceptions as regards ease of use, usefulness and intention to
use when using Argon. With regard to effectiveness, it can be
observed that the measures of central tendency are higher for
Argon than for Ansible (the mean values range from 0.818 to
0.869 for Argon and from 0.646 to 0.649 for Ansible). The
practical meaning of this is that the number of definitions of
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TABLE 6. Descriptive statistics.

valid cloud infrastructure resources was higher when using
Argon.

The results also indicate that the standard deviation is
higher for Ansible, which indicates that the participants
behaved in a more uniform manner when using Argon. With
regard to the duration of the experimental task, the measures
of central tendency are lower for Argon than for Ansible (the
mean values range from 23.42 to 27.53 for Argon and from
30 to 34.51 for Ansible).

Fig. 5 shows the boxplots for the treatment effectiveness
of each experiment. The results generally indicate that the
participants were more effective as regards defining the cloud
infrastructure when using Argon. For example, the boxplot
for the treatment effectiveness of theUPV1 sample shows that
Argon obtained a better result because 75% of Argon effec-
tiveness scored over 0.75, whereas only 50%ofAnsible effec-
tiveness scored over 0.75. The boxplots for the UPV2 and
UPV3 samples similarly indicate that Argon obtained bet-
ter results when defining the infrastructure resources. These
results could be explained by the fact that Argon employs
a model-driven approach which allows participants to focus
on specifying the cloud infrastructure at a higher level of
abstraction rather than concentrating on the code styles of
scripting languages, as is the case of Ansible. Moreover,
because the participants had no previous knowledge or expe-
rience of cloud computing, another possibility is that Argon
could allow participants to improve their understanding of
cloud computing concepts and how infrastructure resources
can be defined.

The boxplot for the treatment efficiency of the UPV1 sam-
ple (see Fig. 5) shows that Argon obtained a better result,
because 75% of Argon efficiency scored over 0.024, whereas
only 50% of Ansible efficiency scored over 0.024. Likewise,

FIGURE 5. Boxplots for treatment effectiveness and treatment efficiency.

the boxplots for the UPV2 and UPV3 samples indicate that
Argon obtained better efficiency results when specifying the
infrastructure resources. Since the efficiency variable was
calculated as the ratio between the effectiveness and the
task duration, one reason why better efficiency was obtained
is that the participants improved their effectiveness when
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using Argon, while another option could be that the partici-
pants specified the infrastructure resources faster when using
Argon. For instance, Table 6 shows that the mean duration
values range from 23.42 to 27.53 minutes for Argon and
from 30 to 34.51 minutes for Ansible. This result could be
explained by the fact that Argon abstracts the complexity
of using scripting languages through the use of a domain-
specific language (ArgonML) to model the cloud infrastruc-
ture resources.

Fig. 6 shows the boxplots for the sequence effectiveness
of each experiment. In this case, the experimental groups
are the sequences, that is, the order in which the subjects
applied the treatments [54]. The boxplots generally show that
neither the S1 sequence (Ansible-Argon) nor the S2 sequence
(Argon-Ansible) made a significant difference in terms of
effectiveness. For instance, the boxplots for the sequence
effectiveness of the UPV1 and UPV3 samples show that
75% of both S1 and S2 scored over 0.75 for effectiveness.
However, in the case of the UPV2 sample, S2 obtained a
better result than S1 because 75% of S2 effectiveness scored
over 0.62, whereas 75% of S1 effectiveness scored over
0.50. Note that the participants in the UPV2 sample attended
the course on Model-Driven Software Development and the
higher results of this sample could, therefore, be owing to
the fact that the S2 sequence had the Argon-Ansible order,
and the result obtained when using Argon (a model-driven
approach) could consequently havemotivated the participants
to improve the outcome when using Ansible (a code-centric
approach).

Nevertheless, the difference in the efficiency of the
UPV2 sample sequences is small, and it would be necessary
to conduct more experiments with participants who have
previous knowledge ofmodel-driven development techniques
to affirm that an optimal sequence exists.

Fig. 6 also shows the boxplots for the sequence efficiency
of each experiment. In this case, the boxplots show a slight
difference in the efficiency of each sequence. For example,
the boxplot for the sequence efficiency of the UPV1 sample
shows that the S1 sequence (Ansible-Argon) obtained a better
result than the S2 sequence (Argon-Ansible), because 50%
of S1 efficiency scored over 0.034, whereas 50% of S2 effi-
ciency scored over 0.025. The UPV2 and UPV3 samples
similarly show different results in their boxplots for sequence
efficiency. Since the efficiency is the ratio between the effec-
tiveness and the duration, the time it took to perform the
experimental tasks might have affected the efficiency of each
sequence.Moreover, the effectiveness of the treatments might
have affected the efficiency of each sequence. As shown in the
boxplots for sequence efficiency, the efficiency is not clearly
comparable with regard to the sequences, and it is for this the
reason that the crossover design does not focus its attention
on efficiency in order to carry out a statistical analysis of the
sequences [54].

Fig. 7 shows the boxplots for the period effectiveness of
each experiment. In this case, a period is defined by the appli-
cation of one treatment by one participant to one experimental

FIGURE 6. Boxplots for sequence effectiveness and sequence efficiency.

object [54]. Note that a period uses only one experimental
object at a time. The boxplots generally show that neither
the MODAFIN period (O1) nor the CEC period (O2) has
better effectiveness. For example, the boxplots for the period
effectiveness of the UPV1 and UPV3 samples show that 75%
of the effectiveness of both MODAFIN and CEC scored over
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FIGURE 7. Boxplots for period effectiveness and period efficiency.

0.75. However, in the UPV2 sample, it would appear that
MODAFIN attains a better result than CEC, but 50% of the
effectiveness of both MODAFIN and CEC scored over 0.75.
This signifies that no period has better effectiveness than
another. These results also indicate that the two experimental

objects have a similar complexity, and that there might be no
learning effect.

Fig. 7 also presents the boxplots for the period efficiency
of each experiment. In this case, the boxplots show a small
difference in the efficiency of the periods. For example,
the boxplot for the period efficiency of the UPV1 sample
shows that the CEC period (O2) obtained a better result than
the MODAFIN period (O1), because 50% of CEC efficiency
scored over 0.034, whereas 50% of MODAFIN efficacy
scored over 0.025. Likewise, the UPV2 and UPV3 samples
show different results in their boxplots for period efficiency.
Again, because efficiency is the ratio between effectiveness
and task duration, the time taken to perform the experimental
tasks might have influenced the efficiency of each period.
Moreover, the effectiveness of the treatments might have
affected the efficiency of each period. As a result, the effi-
ciency is not clearly comparable with regard to periods and
this is, therefore, the reason why the crossover design does
not focus its attention on efficiency in order to carry out a
statistical analysis of the periods [54].

Fig. 8 shows the boxplots for the perception-based vari-
ables of all the experiments in the family. Themedian for each
tool is shown as the horizontal line in the boxplot.

The boxplots (see Fig. 8) show the participants’ judgment
after using each treatment (i.e., Ansible and Argon). Each
tool was evaluated in terms of its perceived ease to use
(PEOU) and perceived usefulness (PU) as regards supporting
the participants in the definition of the cloud infrastructure.
Moreover, the participants expressed their intention to use
(ITU) these tools in the future. Because we used a 5-point
Likert scale to measure these variables, the Likert neutral
value was established at 3 points.

Fig. 8 indicates that both Argon and Ansible have a median
value above the neutral value of the measurement scale, and
these tools, therefore, achieved good results in terms of the
participants’ perceptions. With regard to the UPV1 sample,
the results indicate that the participants had better perceptions
of Argon (PEOU = 4.4, PU = 4.5, ITU = 4.6) than Ansible
(PEOU = 4.0, PU = 4.0, ITU = 4.1) in terms of defining
the cloud infrastructure. The participants similarly obtained
better central tendency results as regards the perception-
based variables when using Argon in the UPV2 and UPV3
samples, as shown in Fig. 8. Overall, these results suggest
that the participants perceived Argon to be easier to use and
more useful than Ansible when specifying the infrastructure
resources, and they also expressed a greater intention to use
this tool in the future.

B. HYPOTHESES TESTING
We used the Linear Mixed Model (LMM) to test the formu-
lated hypotheses. According to Vegas et al. [54], the LMM
includes the following terms: technique (treatment), period
(confounded with the experimental object) and sequence
(confounded with carryover and period∗technique interac-
tion) as fixed factors, and subject as a random factor nested
within the sequence. Note that it is necessary to verify
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FIGURE 8. Boxplots for perception-based variables of all experiments.

TABLE 7. Summary of Shapiro-Wilk normality tests for residuals.

whether the LMM residuals follow a normal distribution.
In the case of absence of normality, we used the logarithm
strategy or the two-step approach to transform continuous
variables into normal variables [56]. Since the sample size
was smaller than 50, we applied the Shapiro-Wilk test to
verify whether the residuals follow a normal distribution.
Table 7 shows the normality results for the performance-
based and perception-based variables. The residuals express
that the LMM is valid, as they meet the condition of nor-
mality, that is, the sig. is greater than 0.05. Additionally,
the general shape of the normal distribution is analyzed in
terms of skewness and kurtosis. On the one hand, skewness
is a measure of the lack of symmetry in the distribution
curve. A normal distribution has a skewness equal to 0, a
positive value indicates that the distribution contains a larger
proportion of data towards its right, whereas a negative value
indicates that the distribution contains a larger proportion of
data towards its left end. On the other hand, kurtosis is a
measure of the degree of peakedness of the distribution curve.
A normal distribution has a kurtosis equal to 0, a positive
value indicates that the data is clustered around the center,
whereas a negative value indicates that the data is spread out.

FIGURE 9. Normal probability plot of residuals (Effectiveness).

In addition, we generated the normal probability plot of
residuals for each dependent variable. Figure 9 shows the
normal probability plot of residuals for Effectiveness. The
other dependent variables have a similar normal probability
plot for their residuals.

According to the test results of fixed effects shown
in Table 8, the effectiveness of the Argon tool is significantly
different from that of the Ansible tool for all the experiments
(UPV1 = 0.002, UPV2 = 0.001, and UPV3 = 0.018, which
are less than 0.05). Table 6 shows that Ansible is less effective
than Argon when considering the mean effectiveness values
of the experiments. In the case of the UPV1 sample, Ansible
has a mean effectiveness of 0.648, while Argon has a mean
effectiveness of 0.858. Similar outcomes can be found in
the UPV2 and UPV3 replications. Additionally, estimated
marginal means (EMM) for effectiveness were calculated,
and their results are similar to Table 6, for instance: Ansible
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TABLE 8. Summary of the type III test of fixed effects for effectiveness.

TABLE 9. Summary of the type III test of fixed effects for efficiency.

has EMM values of UPV1 = 0.648, UPV2 = 0.618, and
UPV3 = 0.648, whereas Argon has EMM values of UPV1
= 0.858, UPV2 = 0.844, and UPV3 = 0.866. As a result,
the null hypotheses H10 can be rejected for all the experi-
ments, meaning that a significant statistical difference exists
between the two tools in terms of the correctness of the
infrastructure resources defined, which is in favor of Argon.

With regard to efficiency, the test results obtained for fixed
effects and shown in Table 9 corroborate that the efficiency
of the Argon tool is significantly different from that of the
Ansible tool in all the experiments (UPV1 = 0.000, UPV2
= 0.007, and UPV3 = 0.000). Table 6 shows the mean effi-
ciency values of the experiments in which Ansible was found
to be less efficient than Argon. For example, Ansible has a
mean efficiency of 0.025, while Argon has a mean efficiency
of 0.042 in UPV1, and similar results were attained in the
UPV2 and UPV3 experiments. Likewise, estimated marginal
means (EMM) for efficiencywere calculated, and their results
are similar to Table 6, for example: Ansible has EMM val-
ues of UPV1 = 0.025, UPV2 = 0.023, and UPV3=0.019,
whereas Argon has EMM values of UPV1 = 0.042, UPV2
= 0.039, and UPV3= 0.040. It is consequently possible to
reject the null hypotheses H20 in all the experiments, meaning
that a significant statistical difference exists between the two
provisioning tools, in favor of Argon, in terms of the number
of requirements achieved for unity of time.

Note that the other two fixed factors (i.e., period and
sequence) are not significant for effectiveness and efficiency.
With regard to the fact that the period was not found to
be significant, this means that the experimental objects
(MODAFIN and CEC) did not affect the response vari-
ables (i.e., effectiveness and efficiency). Similarly, and as
expected, the sequences were not found to be significant,
which indicates that there is no carryover effect between
either the treatments or the period∗treatment interactions.
Overall, the results indicate that the difference in the observed
effectiveness and efficiency is owing to the provisioning tool
employed.

Before applying the LMM to the perception-based vari-
ables, we used Cronbach’s alpha test to examine the reliability

TABLE 10. Summary of Cronbach’s alpha tests.

TABLE 11. Summary of the type III test of fixed effects for PEOU.

of each questionnaire. The test results for all the question-
naires were UPV1 = 0.962, UPV2 = 0.950, and UPV3 =
0.938, which are higher than the threshold level (0.70) [57].
Table 10 shows that the items used to measure PEOU, PU
and ITU obtained a Cronbach’s alpha coefficient of 0.928,
0.912 and 0.880 for the baseline experiment (UPV1), which
are also higher than the threshold level. The replications show
similar results, suggesting that the survey instrument can be
considered reliable.

With regard to the participants’ perceptions of ease of use,
the test results of fixed effects shown in Table 11 confirm
that the difference in perceptions of ease of use between the
two tools is significantly different for all the experiments
(UPV1= 0.002, UPV2= 0.037 and UPV3= 0.0034). In this
scenario, Table 6 shows the mean PEOU values of those
experiments in which the participants perceived that Argon
was easier to use than Ansible. For example, in the first
experiment (UPV1), Ansible has a mean PEOU value of 3.80,
whereas Argon has a mean PEOU value of 4.49, and the
results obtained for the replications (UPV2 and UPV3) were
also similar. In the same way, estimated marginal means
(EMM) for PEOU were calculated, and their results are sim-
ilar to Table 6, for instance: Ansible has EMM values of
UPV1= 3.380, UPV2= 3.3667, and UPV3=3.772, whereas
Argon has EMM values of UPV1 = 4.491, UPV2 = 4.039,
and UPV3= 4.158. The null hypotheses H30 can, therefore,
be rejected for all the experiments, signifying that the par-
ticipants perceived Argon to be easier to use than Ansible.
The analysis of the answers to the open questions in the post-
experiment questionnaire revealed that the participants found
Argon was easy to use. For example, participant ID 14 said
‘‘Modeling the infrastructure characteristics is easier than
programming’’ while participant ID 9 said ‘‘Although I was
not familiar with cloud computing, I was able to define an
infrastructure in a short time’’.

With regard to Perceived Usefulness (PU), the test results
for fixed effects presented in Table 12 indicate that a statis-
tically significant difference exists between the two tools in
terms of the usefulness perceived by the participants when
applying the tool (UPV1 = 0.007, UPV2= 0.019 and UPV3
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TABLE 12. Summary of the type III test of fixed effects for PU.

TABLE 13. Summary of the type III test of fixed effects for ITU.

= 0.045). Table 6 confirms that this difference is in favor of
Argon, as this tool has a mean PU value of 4.53, whereas
Ansible has a mean PU value of 4.08 in the baseline experi-
ment (UPV1), and similar results were obtained in the repli-
cations (UPV2 and UPV3). Additionally, estimated marginal
means (EMM) for PU were calculated, and their results are
similar to Table 6, for example: Ansible has EMM values of
UPV1= 4.084, UPV2= 3.623, and UPV3= 3.827, whereas
Argon has EMM values of UPV1 = 4.526, UPV2 = 3.992,
and UPV3 = 4.155. As a result, the null hypotheses H40 can
be rejected for all the experiments.

With regard to Intention to Use (ITU), the test results
for fixed effects depicted in Table 13 reveal that there is
a difference in intention to use between the two tools for
all the experiments (UPV1 = 0.032, UPV2 = 0.001 and
UPV3 = 0.045). Table 6 show that this difference is in favor
of Argon (e.g., in the first experiment (UPV1), Argon has
a mean ITU value of 4.53, whereas Ansible has a mean
ITU value of 4.06). Moreover, similar results were obtained
in the replications (UPV2 and UPV3). Similarly, estimated
marginal means (EMM) for ITU were calculated, and their
results are similar to Table 6, for instance: Ansible has EMM
values of UPV1= 4.061, UPV2= 3.246, and UPV3= 3.764,
whereas Argon has EMM values of UPV1= 4.530, UPV2=
3.513, and UPV3 = 4.144. As a result, the null hypotheses
H50 can be rejected for all the experiments, meaning that the
participants perceived Argon to bemore likely to be used than
Ansible in the context of this family of experiments. This may
be because, since they are novice software engineers, they
perceive that the tool provides them with mechanisms with
which to carry out the definition of infrastructure resources.
This was confirmed by the participants in their response
to the open questions in the post-experiment questionnaire:
‘‘I would use this tool to define cloud infrastructure resources
since it is intuitive, and the models allowed me to identify the
architecture and components of the infrastructure quickly’’,
‘‘I would like to use Argon because it is easy to understand in
order to model the cloud infrastructure’.

Again, the fixed factors such as period and sequence
are not significant for PEOU, PU, and ITU. The fact that

the periods are not significant means that the experimental
objects (MODAFIN and CEC) did not affect the participants’
perceptions in terms of ease of use, usefulness and intention
to use one of the treatments. Furthermore, the sequences are
not significant, which means that there is no carryover effect
between the treatments and there are no period∗treatment
interactions. Overall, the results indicate that the participants’
observed perceptions are owing to the provisioning tool
employed.

VI. FAMILY DATA ANALYSIS
In this section, we present a meta-analysis that aggregates
the empirical findings obtained in the individual experiments.
We then answer the research questions stated for the family
of experiments as a whole by considering the results obtained
in each experiment and the meta-analysis.

A. META-ANALYSIS
Since the statistical significance (p-value) is not sufficient
to be able to claim that the difference was caused by treat-
ments, the effect size is used to measure the magnitude
of that difference. Because we used a crossover design,
the effect of the treatments had to measure whether the
period, the sequence or any blocking variable had any bear-
ing, and whether there was any carryover [54]. In this context,
the empirical evidence shows that the experiments have no
statistical significance as regards the period, sequence and
carryover.

Moreover, the effect size should be calculated only when
the main factor of the experiments is the only statistically
significant variable [54]. The experiments in our family con-
sequently fulfill the requirements stated above because only
the treatments have statistical significance (p<0.05) and it is,
therefore, necessary to calculate the effect size to discover
their statistical power.

In this study, we are comparing two groups rather than
evaluating the strength of association between two variables.
The index used to compare two groups is, therefore, Cohen’s
d. Table 14 presents a summary of the Cohen’s d measures for
the dependent variables of the experiments. The first column
shows the dataset label corresponding to each experiment.
The second column details the dependent variables employed
to measure the effectiveness and efficiency of each treatment,
along with the ease of use, usefulness and intention to use
perceived by the participants. The third column presents the
p-values in order to demonstrate compliance with the require-
ment to calculate the effect size. The fourth column shows
the value of Cohen’s d, while the fifth column provides an
interpretation of the effect size. Cohen provides guidelines
that make it possible to compare different effect sizes, sug-
gesting the use of small, medium, and large effects translated
into d values of 0.2, 0.5, and 0.8, respectively [58]. The sixth
column shows the standard error of sampling distributions.
According to Ellis [59], all the mean values of a sample are
called the sample distribution, while the standard error is the
standard deviation of a sampling distribution. In this scenario,
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TABLE 14. Summary of Cohen’s d for dependent variables of experiments.

the standard error is necessary to determine the confidence
intervals. Finally, the last column presents the confidence
intervals, which are used to combine the location and pre-
cision of the effect size level. For instance, the effectiveness
of the UPV1 sample has a Cohen’s d value of 0.89, and after
using the corresponding confidence interval (0.14), we obtain
that 0.89 ± 0.14. As a result, we obtain a range of 0.75 and
1.03, which corresponds to amedium effect and a large effect,
respectively.

A meta-analysis is the most suitable option when eval-
uating and generalizing the results of a family of experi-
ments. According to Ellis [59], a meta-analysis is a statistical
analysis of the statistical analyses, which describes a set of
procedures with which to systematically review the research
examining a particular effect and combining the results of
independent studies to estimate the size of the effect on
the population. In this context, we used a meta-analysis to
combine the Cohen’s d values and analyze them to estimate
the size of the effect on the target population, that is, novice
software engineers. The result of the meta-analysis was a
weighted mean effect size, which reflects the target popu-
lation effect size more accurately than any of the individual
experiments [59].

The meta-analysis was performed using the RStudio tool,
version 1.1.463, and the Metaviz package, version 0.3.0.
Fig. 10 summarizes the results of the meta-analysis using a
forest plot. The first column shows the dataset label of each
experiment, along with the effect size label of each dependent
variable. The second column displays the mean and standard
deviation values of the treatment with Argon. Likewise, the
third column shows the mean and standard deviation of the
treatments with Ansible. The fourth column presents the
forest plot that summarizes the results of the meta-analysis.

The horizontal axis represents the scale for effect sizes
being shown, while the vertical line (0.0) depicts the line
of null effect. Each horizontal line in the forest plot repre-
sents the 95% confidence intervals for each dependent vari-
able being analyzed. Each black box is proportional to the
size of the study, and its position about the horizontal axis

indicates the Cohen’s d value. Each diamond in the forest
plot represents the point estimate and confidence intervals
when the results of each dependent variable are combined
and averaged. In this meta-analysis, no study crosses the null
effect line, signifying that all the effect sizes have statistically
significant results. Finally, the fifth column indicates the
Cohen’s d value of each dependent variable, along with the
95% confidence interval in brackets.

B. ANSWERING THE RESEARCH QUESTIONS
Having conducted the experiments, we performed a global
analysis of the results in order both to determine whether the
main goal had been achieved and answer the research ques-
tions. In this study, we have gained empirical evidence on how
a model-driven approach may support novice software engi-
neers in specifying the infrastructure resources as opposed
to a code-centric technique that is widely used in industrial
environments. This empirical evidence is a contribution to
the empirical findings on defining the cloud infrastructure
resources, and it provides factual data about which tool is
more suitable for the definition of infrastructure resources
under certain conditions.

Table 15 presents a summary of the results of each hypoth-
esis evaluated in the family of experiments. The results of all
the experiments were, in terms of effectiveness, statistically
significant (p < 0.05), and it is thus possible to claim that
Argon is more effective than Ansible as regards defining the
cloud infrastructure resources.

In this context, and considering the descriptive statis-
tics shown in Section V-A, the boxplots for treatment
effectiveness suggest that Argon obtained better results
because it obtained 75% for effectiveness, while Ansible
obtained only 50%. With regard to the boxplots for the
sequence effectiveness of the UPV1 and UPV3 samples,
the S1 sequence (Ansible-Argon) and the S2 sequence
(Argon-Ansible) scored 75% for effectiveness above the 25th
percentile. Finally, the boxplots for the period effectiveness
of the UPV1 and UPV3 samples show that MODAFIN (O1)
and CEC (O2) have 75% of effectiveness above the 25th
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FIGURE 10. Forest plot for the meta-analysis of the family of experiments.

TABLE 15. Summary of hypothesis results in the family of experiments.

percentile and, in the case of the UPV2 sample, MODAFIN
(O1) and CEC (O2) have 50% of effectiveness above the 50th
percentile.

To conclude, Argon proved to be a more effective means
to specify the cloud infrastructure resources. Moreover, there
is no evidence that one period is more effective than another,
and there is no evidence that one sequence is more effective
than another. In the case of the UPV2 sample, the possible
reason why S2 was more effective than S1 was the knowledge
that the participants had obtained onmodel-driven techniques
from the Model-Driven Software Development course.

With regard to efficiency, the results show that Argon is
more efficient than Ansible as regards defining the cloud
infrastructure. In order to perform the statistical analysis,
it was necessary to consider the time needed to carry out
the experimental tasks. In this scenario, Argon proved to be
more efficient than Ansible, but it was not possible to clearly

compare the sequences and periods of the experiments. This
is why the crossover design does not focuses its attention on
efficiency in order to carry out statistical analyses and draw
conclusions [54].

With regard to the Perceived Ease of Use (PEOU), Per-
ceived Usefulness (PU), and Intention to Use (ITU) variables,
the results are statistically significant (p < 0.05) and it is
possible to claim that Argon is easier to use and more use-
ful as regards specifying the cloud infrastructure. Moreover,
the participants indicated their intention to use Argon in the
future. In general terms, the median values of the PEOU, PU,
and ITU variables of both Argon and Ansible are above the
Likert neutral value established at 3 points. The participants
consequently perceived that both tools are easy to use and
useful, and they also expressed their likely intention to use
these tools. However, because the average time expended
by the participants when using Ansible was 32 minutes,
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whereas the average time spent using Argon was 21 minutes,
this might be the factor that decides which treatment was
perceived as better by the participants.

In the case of the research questions motivating our family
of experiments, we shall answer them by using the empirical
findings to support the claims.

RQ1. Which IaC tool is more effective when defining the
cloud infrastructure?

We found empirical evidence to claim that Argon is more
effective than Ansible as regards specifying the infrastructure
resources (i.e., the correctness of the definition of the cloud
infrastructure resources was superior with Argon), and there
is no proof to allow us to state that periods or sequences
affected the effectiveness of the treatments. All the experi-
ments are, therefore, statistically significant in terms of effec-
tiveness, and we can, therefore reject the null hypotheses
H10. The meta-analysis also confirmed that the Cohen’s d
coefficient for the effectiveness variable has a practical signif-
icance, with a medium effect size for the UPV2 dataset and a
large effect size for the UPV1 and UPV3 datasets. In general,
our results show that although Ansible was designed to make
IaC environments accessible to anyone with a basic knowl-
edge of modern coding techniques and structures, the model-
driven approach followed by Argon helped the participants to
specify more correct cloud infrastructure definitions.

RQ2. Which IaC tool is more efficient when defining the
cloud infrastructure?

We found empirical evidence to support the fact that Argon
is more efficient thanAnsible as regards specifying the infras-
tructure resources. All the experiments are statistically signif-
icant in terms of efficiency, and this allows us to reject the null
hypotheses H20. The meta-analysis also confirmed that the
Cohen’s d coefficient for the efficiency variable has a practi-
cal significance, with a medium, large, and very large effect
size for the UPV2, UPV1 and UPV3 datasets, respectively.
Since the efficiency is the ratio between effectiveness and
time, and Argon was found to be more effective than Argon
as regards specifying the infrastructure resources, this might
have affected the efficiency of Argon.

The results of this study are encouraging and suggest that
applying a model-driven approach during the definition of
small/ medium cloud infrastructures is useful. Nevertheless,
more evidence on the effect of using large specifications is
required to determine long-term cost implications. In addi-
tion, more experimentation is needed to study the effect of
model-driven vs. code-based tools on the long-term main-
tainability of cloud infrastructure definitions in a DevOps
process.

RQ3.Which IaC tool is perceived to be easier to use?
We found empirical evidence to affirm that the partici-

pants perceived Argon to be easier to use than Ansible when
defining the cloud infrastructure. This result may be owing
to the fact that the participants perceived that learning and
using a model-driven approach like Argon was effortless.
All the experiments are, therefore, statistically significant in
terms of PEOU, and we can reject the null hypotheses H30.

The meta-analysis also confirmed that the Cohen’s d coef-
ficient for the PEOU variable has a practical significance,
with a medium effect size for the UPV2 dataset and a large
effect size for the UPV1 and UPV3 datasets. Our results
generally suggest that the use of models to define the cloud
infrastructure improved the participants’ perceived ease of
use of the tool. In fact, the participants were able to correctly
define the infrastructure resources with Argon without any
extensive training on modeling.

RQ4.Which IaC tool is perceived to be more useful?
We found empirical evidence to claim that the participants

perceived Argon to be more useful than Ansible when spec-
ifying the cloud infrastructure. This result might be owing
to the fact that the participants perceived that Argon was
effective as regards achieving its objective, which was to
define the infrastructure resources. All the experiments are,
therefore, statistically significant in terms of PU, and we
can reject the null hypotheses H40. The meta-analysis also
confirmed that the Cohen’s d coefficient for the PU variable
has a practical significance, with a medium effect size for
the UPV1 and UPV3 datasets and a large effect size for
the UPV2 dataset. Our results generally suggest that Argon
mitigates the complexity of using and managing the scripting
language, and the participants consequently perceived that
Argon is useful to define the cloud infrastructure resources.

RQ5.Which IaC tool is most intended to be used?
We found empirical evidence to claim that the participants

intend to use Argon in the future. This result may be owing to
the fact that the participants accomplished the experimental
tasks in a short time, and they felt comfortable when using
Argon to specify the cloud infrastructure. As a result, all the
experiments are statistically significant in terms of ITU, sig-
nifying that we can reject the null hypotheses H50. Moreover,
the meta-analysis confirmed that the Cohen’s d coefficient for
the ITU variable has a practical significance, with a medium
effect size for the UPV1 and UPV3 datasets and a large effect
size for the UPV2 dataset.

In summary, the results support our hypothesis that Argon
would better define the cloud infrastructure in a specific
context, in which the participants specify the infrastructure
resources to be deployed in a particular cloud provider.
According to the previously discussed results, we can con-
clude that Argon can be considered as a promising approach
with which to specify cloud infrastructures and generate
scripts for different provisioning tools using model-driven
techniques.

Feedback on the difficulties experienced by the partici-
pants when using the provisioning tools or suggestions on
how to improve the tools were also obtained. This feedback
was provided in their responses to the open questions in the
questionnaire. In the case of Ansible, the participants reported
problems as regards understanding error messages because
what was stated in an error message did not always reflect
what was wrong. It would appear that, despite its widespread
use, Ansible has unknown and unidentified errors. Note that
we delivered an already configured Ansible tool in order
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to avoid installation or configuration problems, but the par-
ticipants found that some messages were ambiguous and
misleading. This may be owing to the participants’ low level
of knowledge as regards using the debug logging feature of
Ansible.

With regard to Argon, some participants reported dif-
ficulties when modeling the infrastructure resources. The
main issues are related to difficulties in distinguishing the
meanings of some modeling elements (i.e., health check),
establishing relationships among the elements and defining
the element properties. One possible reason for this may
be the fact that it was the first time that the participants
had used cloud provisioning tools to define resources for a
cloud infrastructure. As further work, we plan to replicate
the experiment with participants with experience in cloud
provisioning. We also plan to perform an empirical study
in order to evaluate the graphical notation of the language
according to the Physics of Notation [60].

The results are, on the whole, promising, as we obtained
empirical evidence regarding the effectiveness of two tools
with which to support Infrastructure as Code concerning the
definition of cloud infrastructure resources. Conducting a
family of experiments rather than a single experiment allowed
us to strengthen the results obtained, as the same hypotheses
were tested in different settings.

C. LIMITATION OF THE STUDY
With respect to the proposed evaluation method, two limita-
tions should be acknowledged and addressed in relation to the
family of experiments. The first limitation concerns the inves-
tigation of other factors that may affect the comparison of IaC
tools (i.e., Argon and Ansible) in the context of the definition
of cloud infrastructure resources. For instance, a new factor
would be the industrial experience to define cloud infrastruc-
ture resources. In order to use the industrial experience as
a factor, it is necessary to define one group of students and
another of professionals with industrial experience to evaluate
if the experience affects the finding of this study.

The second limitation concerns the measurement scales
for measuring the perception-based variables. We used the
TAM method propose by Moody [51]. However, TAM
focuses specifically on Information Systems design methods.
We transferred the TAM items to the context of IaC tools and,
in particular, in the context of defining the cloud infrastruc-
ture resources. The weakness involved in this is that TAM
has been developed specifically for the context of technology
acceptance, and the items may not be totally transferable to
a different domain. Even though our family of experiments
presented good results, an in-depth analysis of this issue
should be carried out in further experimentation.

VII. THREATS TO VALIDITY
In this section, we follow the recommendations of Wohlin
et al. [45] to discuss the issues that might have threatened
the validity of our family of experiments.

A. INTERNAL VALIDITY
Threats to internal validity are influences that can affect
the independent variable with respect to causality [45]. This
includes learning effect, fatigue effects, participant experi-
ence, information exchange among participants, understand-
ability of the documents, and instrumentation validity. The
threats to the internal validity have been mitigated by the
design of the experiment. In particular, we take into account
the factors that intervene in the crossover design, such as
period, sequence, carryover and subjects.

The period is confounded with the experimental object,
and it consists of requirements that the participants have to
use to specify the cloud infrastructure resources. Since we
used two experimental objects, the results show that there is
no empirical evidence that one of the periods improves the
experimental results more than another.

The sequence specifies the order in which the treatments
will be applied. In this case, there are two sequences: S1
(Argon-Ansible) and S2 (Ansible-Argon). In general, there is
not sufficient empirical evidence to be able to claim that one
of the sequences is better than another, although, in the UPV2
sample, S2 would appear to be better than S1. The result
obtained when using Argon could have motivated the partici-
pants to improve the outcome when using Ansible. However,
further replications are required to confirm or contradict these
results.

The carryover occurs when a treatment is administered
before the effect of another previously administered treatment
has completely receded [54]. Additionally, the interaction
between treatment and period is intrinsically confounded
with carryover, and with the sequence effect, and it is con-
sequently impossible to distinguish which of the three is
occurring [54]. However, period and sequence have no sta-
tistical significance in any of the experiments, and there is
consequently no carryover. This signifies that the participants
were not affected by the carryover, and that the learning effect
was mitigated by ensuring that each participant worked with
the two tools on two different experimental objects, using a
within-subjects experimental design.

With regard to the participants’ experience, the random
heterogeneity of subjects is always present when experiment-
ing with students, and we are also conscious that they had
no previous knowledge of either cloud computing or the
cloud provisioning tools being compared. Furthermore, if the
knowledge of the students involved in the experiment could
be assumed to be comparable to that of junior industry pro-
fessionals, the working pressure and the overall environment
in industry is different. The experiment should, therefore, be
replicated with participants with experience in cloud provi-
sioning tools. Nevertheless, the experience attained in this
first study will allow us to refine the material and tasks
with the objective of performing a replication in an industrial
setting.

With respect to the survey questionnaire, we had spe-
cial careful in the procedural cautionary procedures such as
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the anonymity of respondents and the confidentiality of the
questionnaire in order to reduce evaluation apprehension.
On the one hand, participants were not evaluated to carry out
the experimental task and hence they used an identification
code rather than their names. On the other hand, due to
questionnaires do not have the participants name, as well as
participants, were not graded, they did not feel stressed and
hence we mitigate the evaluation apprehension.

We mitigated the fatigue effects by carrying out the experi-
ment in a time slot of 2 hours per session. Moreover, we were
able to prevent information exchange by using different
experimental objects in the two runs and monitoring the
participants during the experiments. Finally, we assessed the
understandability of the materials by conducting a pilot study
in order to discover mistakes and correct them.

B. CONCLUSION VALIDITY
Threats to conclusion validity concern data collection,
the reliability of the measurement and the validity of the
statistical tests. In order to achieve reliability as regards data
collection, we provided to the participants a virtual machine
configured with all the tools required to execute the experi-
mental task. Note that the virtual machines for all the partic-
ipants were set precisely with the same tools and workspace.
We additionally used the AB/BA crossover design to mitigate
the issues regarding a small sample size and to increase
the sensitivity of each experiment. With regard to statistical
power, we followed the guideline proposed by Vegas et al.
[54], which states that the effect size of the treatments should
be measured only if the period, the sequence or any blocking
variables have no bearing and there is no carryover. All the
experiments in this study fulfill these requirements and we,
therefore, obtained a meta-analysis with both statistically
significant and practically significant results, as evidenced by
the effect size scores. Moreover, in order to decrease the data
collection threat, we applied the same data-extraction proce-
dures to each experiment and ensured that each dependent
variable was calculated consistently.

C. CONSTRUCT VALIDITY
Construct validity concerns generalizing the result of the
experiment, taking into account the experiment design and
its ability to reflect the constructs to be studied, along with
issues related to the behavior of the participants and the
experimenters [45].

The measures used to obtain the qualitative and quantita-
tive variables might influence the construct validity. We mit-
igated this threat by using measures that are commonly
applied in other empirical software engineering studies.
On the one hand, since we used performance-based vari-
ables such as effectiveness and efficiency to evaluate the
definition of the cloud infrastructure resources, we used a
set of eight requirements to evaluate the two treatments.
In this scenario, a requirement is correctly defined if the
infrastructure described satisfies everything requested in that
requirement, independently of the technique (IaC tool) used.

On the other hand, we used a questionnaire to measure the
perception-based variables in terms of perceived ease of use,
perceived usefulness and intention to use of each treatment.
These constructs are widely used to measure participants’
perceptions and are based on the Technology Acceptance
Model [61]. The questionnaire was, therefore, defined using
standard forms and scales. The reliability of the questionnaire
was assessed using Cronbach’s alpha test. Table 10 shows that
the Cronbach’s α coefficients for all the experiments and vari-
ables in the family were higher than the threshold level (0.70).
Although TAM was suitable in the context of our family
of experiments because we evaluated the user’s perceptions
about the use of IaC tools (i.e., Argon andAnsible), there exist
other models that would be used in different contexts. On the
one hand, theMatching Person and Technology (MPT)model
is useful to assess and recommend the successful use of
assistive technologies for people with disabilities and hence
MPT would be used to evaluate how IaC tools support people
with disabilities in tasks of definition and provisions of cloud
resources. On the other hand, the Hedonic-Motivation System
Adoption Model (HMSAM) is suitable to explain the adop-
tion of purely intrinsic or hedonic systems, such as games,
music, learning for pleasure. Thus, HMSAMwould be useful
to evaluate IaC tools in the contexts of serious games.

Finally, in order to avoid evaluation apprehension, the
participants were not graded on the results they obtained.
Nevertheless, they gained an extra point for participating in
the experiment. Furthermore, the participants were not aware
of the experimental hypotheses so as to prevent bias in the
treatments performed.

D. EXTERNAL VALIDITY
Threats to external validity are conditions that limit our abil-
ity to generalize the results of our experiment to industrial
practice [45]. The first concern was to select groups of par-
ticipants who are representative of the target population, that
is, software developers and operation staff. The participants
chosen were students who had no previous knowledge of
cloud computing or IaC tools. However, students are the next
generation of software professionals and are, therefore, rela-
tively close to the target population [47]. Additionally, in the
baseline experiment, 14 Master’s students reported that they
had professional experience in software development, and
hence the term ‘‘student’’ does not preclude the possibility
of having industrial experience. In the case of the family of
experiments, the goal is to analyze the definition of cloud
infrastructure resources from the viewpoint of novice soft-
ware engineers in the context of Computer Science Master’s
and Bachelor’s degree students. Consequently, we believe
that it is possible to generalize the experimental findings
between Computer Science Master’s and Bachelor’s degree
students or related fields.

In addition, the tasks to be performed did not require high
levels of industrial experience and we are, therefore, of the
opinion that this experiment could be considered appropriate,
as suggested in previous studies [48]. Working with students
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also has some advantages, such as the fact that the stu-
dents’ prior knowledge is fairly homogeneous. Nevertheless,
we dealt with ethical issues properly. There was no infor-
mation about the students in the raw data that could allow
a particular student to be identified, and it was not possible
to link their names to their responses when the experimenters
were analyzing the data.

The size and complexity of experimental objects is a threat
that might affect external validity. We mitigated the selection
of the systems to be provisioned by considering two systems
with a similar size and complexity. The participants’ lack
of familiarity with the problem domain of a system might
affect the understandability of the experimental objects, thus
biasing the results by adding an extra cognitive effort. It was
for this reason that we decided to use well-known domains
(MODAFIN and CEC) as part of the experiment.

The size and complexity of the tasks may also affect the
external validity. In this study, we used an experimental task
with a moderate complexity because the experiment required
the participants to complete the assigned task in a limited
time slot (2-hours sessions). Nevertheless, we consider that
the task performed by the participants (specify infrastructure
resources using a load balancer that distributes workloads
among virtual machines) has a moderate complexity and
can consequently be considered as a representative task in a
practical setting. Furthermore, we selected the Ansible tool
as a control treatment because it is a widely used IaC tool in
industry [41].

VIII. CONCLUSION
The theoretical contribution of this work is a TAM-based
model for evaluating IaC tools. The theoretical model
explains the relevant dimensions of quality for IaC tools,
along with a practical instrument with which to measure
these quality dimensions. Basically, it allows us to predict
the possible acceptance of a IaC tool based on the effort
of applying the tool, the quality of the cloud infrastructure
definition produced, and the user perceptions with regard to
the quality of the tool. This theoretical model can be reused
by researchers or practitioners to evaluate other IaC tools.

The practical contributions are the application of this
model for evaluating two specific IaC tools (Ansible and
Argon) and the empirical evidence regarding which tool
is more effective in supporting human users when defin-
ing the cloud infrastructure. Specifically, we conducted a
family of experiments to gain empirical evidence regarding
how a recently proposed model-driven infrastructure provi-
sioning approach, supported by the Argon tool, may help
novice software engineers when specifying cloud infrastruc-
ture resources in comparison to a widely used scripting tool
(Ansible).

This empirical evidence is a contribution to the body
of knowledge on model-driven engineering and the IaC
approach, since it provides factual data concerning which
approach (model-driven or code-centric) is more suitable
under certain conditions as regards supporting the IaC in

terms of defining the cloud infrastructure resources. In par-
ticular, we found evidence supporting the claim that a model-
driven approach (Argon) is more effective than a code-
centric technique (Ansible) when specifying cloud infras-
tructure resources. Moreover, the time required to model the
infrastructure resources and generate the scripts with Argon
was less than that required to write the script with Ansible.
Note that fixed factors such as the period, sequence and
carryover were not statistically significant and, as expected,
these factors consequently had no influence on the experi-
mental results. As a result, our proposal with which to model
the cloud infrastructure was more effective and efficient as
regards defining cloud infrastructures.

We also found evidence to support the claim that the par-
ticipants perceived Argon to be easier to use and more useful
than Ansible when specifying the infrastructure resources.
The participants also expressed their intention to use Argon
in the future. Argon can consequently be considered as a
promising infrastructure modeling tool for cloud provision-
ing, which may improve the time and effort required to
define infrastructure resources. However, note that the effort
required to create infrastructure models may decrease after
the intensive adoption of Argon by an organization. Indeed,
we plan to carry out an empirical study to assess the effort
involved when modeling the infrastructure resources with
Argon.

Our findings have several practical implications.We believe
that Argon is industry-relevant. Practitioners consider IaC
to be a fundamental pillar on which to implement DevOps
practices, which helps them to rapidly deliver software and
services to end-users. Argon proved to be a useful tool
when modeling cloud infrastructure resources and generat-
ing scripts for different DevOps tools (e.g., Ansible). This
may reduce the time and effort required to write scripts for
different tools, along with reducing the appearance of defects
in IaC scripts. The results obtained are, therefore, of interest
to all those companies that plan to adopt IaC tools to define
infrastructure resources. The expertise that a company should
have in order to adopt Argon includes a basic knowledge of
modeling and expertise in cloud provisioning.

From a research perspective, we are aware that this fam-
ily of experiments has provided preliminary results on the
effectiveness of Argon as an infrastructure modeling tool.
Although the findings are promising, these results need
to be interpreted with caution, since they are valid only
within the context established in this family of experiments.
In particular, the empirical evidence obtained from this study
should be considered valid in the context of undergradu-
ate/Master’s degree students (considered as novice software
engineers) who are defining cloud provisioning resources of
relatively simple systems from well-known domains. It is,
therefore, necessary to verify whether the same results hold
if more complex experimental objects are used or practi-
tioners experienced in cloud infrastructure provisioning are
involved in the experimentation. Nonetheless, this study is
valuable as a first family of experiments with which to
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evaluate the effectiveness of the tools used to support the IaC
approach. The experimental design and materials from this
family of experiments will also be useful for other researchers
interested in comparing the effectiveness of IaC tools.

Other implications are related to education in the fields
of model-driven engineering and cloud computing. Educa-
tors confront the need to choose which of several tools is
the most suitable when teaching the foundations of model-
driven techniques or cloud provisioning. On the one hand,
Argon leverages the model-driven techniques and conse-
quently abstracts the cloud capabilities into an infrastructure
model and provides infrastructure automation throughmodel-
to-model and model-to-text transformations. On the other
hand, Argon proposes a domain-specific languagewithwhich
to model the cloud infrastructure resources, which is an alter-
native for a better understanding of infrastructure resources.
In particular, the results could guide educators to focus on
the specific aspects of a given IaC tool so as to better support
students in overcoming difficulties related to specifying cloud
infrastructure resources.

As future work, we plan to replicate this experiment using
practitioners experienced in cloud infrastructure provisioning
and more complex systems. This will allow us to gather
further empirical evidence about the effectiveness of Argon
in industrial settings. We also plan to carry out other experi-
ments focusing on the maintenance of existing infrastructure
resources using Argon. This will allow us to provide empiri-
cal evidence on the usefulness of Argon as regards supporting
the evolution of cloud infrastructures. Finally, we plan to
compare Argon with other code-centric IaC tools such as
Terraform and AWS CloudFormation.

APPENDIX
QUESTIONNAIRES OF THE IAC TOOLS
The questionnaire items to assess the IaC tools were taken and
adapted from the TAM method propose by Moody [51], and
hence are organized based on its perception-based variables
such as Perceived Ease of Use (PEOU), Perceived Usefulness
(PU), and Intention to Use (ITU). The questionnaire items
were formulated by using a 5-point Likert scale and adopting
the opposing-statement question format. Various itemswithin
the same construct group were randomized to prevent sys-
temic response bias.

A. QUESTIONNAIRE ITEMS FOR THE ARGON TOOL
PEOU1: I found the procedure for using the Argon tool
complex and difficult to follow.

PEOU2: Overall, I found the Argon tool difficult to use.
PEOU3: I found the Argon tool easy to learn.
PEOU4: I found it difficult to define the cloud infrastruc-

ture with the Argon tool.
PEOU5: I found the use of the Argon tool clear and easy

to understand.
PU1: I believe that the Argon tool would reduce the effort

required to define the cloud infrastructure.
PU2: Overall, I found the Argon tool useful.

PU3:The cloud infrastructure defined using the Argon tool
would be more difficult to understand.

PU4: Overall, I think the Argon tool does not provide an
effective solution to define the cloud infrastructure.

PU5: Overall, I think the Argon tool makes an improve-
ment to the cloud infrastructure definition process.

PU6: The Argon tool would make it easier for practitioners
to define the cloud infrastructure.

PU7: Using the Argon tool would make it easier to com-
municate the cloud infrastructure definition to other practi-
tioners.

ITU1: I would recommend the Argon tool to define the
cloud infrastructure.

ITU2: If I am working at a company in the future, I would
like to use the Argon tool to define the cloud infrastructure.

ITU3: It would be easy for me to become skillful in using
the Argon tool to define the cloud infrastructure.

B. QUESTIONNAIRE ITEMS FOR THE ANSIBLE TOOL
PEOU1: I found the procedure for using the Ansible tool
complex and difficult to follow.

PEOU2: Overall, I found the Ansible tool difficult to use.
PEOU3: I found the Ansible tool easy to learn.
PEOU4: I found it difficult to define the cloud infrastruc-

ture with the Ansible tool.
PEOU5: I found the use of the Ansible tool clear and easy

to understand.
PU1: I believe that the Ansible tool would reduce the effort

required to define the cloud infrastructure.
PU2: Overall, I found the Ansible tool useful.
PU3: The cloud infrastructure defined using the Ansible

tool would be more difficult to understand.
PU4: Overall, I think the Ansible tool does not provide an

effective solution to define the cloud infrastructure.
PU5: Overall, I think the Ansible tool makes an improve-

ment to the cloud infrastructure definition process.
PU6: The Ansible tool would make it easier for practition-

ers to define the cloud infrastructure.
PU7: Using the Ansible tool would make it easier to com-

municate the cloud infrastructure definition to other practi-
tioners.

ITU1: I would recommend the Ansible tool to define the
cloud infrastructure.

ITU2: If I am working at a company in the future, I would
like to use the Ansible tool to define the cloud infrastructure.

ITU3: It would be easy for me to become skillful in using
the Ansible tool to define the cloud infrastructure.
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