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ABSTRACT A cyber-physical system (CPS) represents the coupling network between a communication
network and a power grid. Information flow (IF) as the medium of communication networks has an important
influence on the performance assessment of this type of coupling network. However, traditional IF models
cannot be applied to CPS directly because they do not take CPS distinctive coupling effect and associated
operational mechanism into account. In this paper, we propose an information flow model (IFM) based on
graph theory and traffic dynamics considering the functional architecture and transmission mode in realistic
CPS to bridge the gap mentioned above. In the IFM, congestion rate and loss rate are employed to assess
the performance of communication networks serving power grids under different transmission strengths
and modes. Moreover, an auxiliary model about CPS topology is constructed, which can generate more
realistic CPS topology. Case studies on an IEEE 39-bus system reveal the transmission performance of CPS
in detail. The IFM is exploited to detect critical nodes and compare the effects of node enhancement on
IF transmission of networks. In addition, IFM is also applied to compare the transmission performances
of six network topologies, including three basic complex networks and three community-based networks.
The results demonstrate the effectiveness of the proposed model, and some suggestions are provided on
performance improvement of IF transmission for CPS.

INDEX TERMS Cyber-physical systems, information flow, performance assessment, hybrid system model,
overlapping community, transmission modeling.

I. INTRODUCTION
The enhanced coupling between power grids (PGs) and com-
munication networks (CNs) has transformed traditional PGs
into smart grids [1]. Recently, cyber-physical systems (CPS)
have been increasingly applied to smart grids [2]. According
to the CPS framework, CNs use Supervisory Control And
Data Acquisition and Automatic Gain Control systems to
implement the functions related to calculation, communica-
tion, and control, and assist PGs to perform safety schedul-
ing [3]. Because a large quantity of electrical or non-electrical
messages are transmitted through CNs, the services they
carry exhibit multilevel and multidimensional characteristics,
which require higher transmission performance [4].

A comprehensive system of modeling, quantization, and
optimization is used for the analysis of electric current, which
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provides the theoretical basis for security and economical
operation of PGs. CNs have similar requirements, such as
network design [5], equipment selection [6], operational opti-
mization [7], and abnormal online monitoring [8]. These
requirements emphasize the real-time effectiveness of CNs,
including the exchange of real-time information among dis-
patch centers, substations, and power plants, as well as the
accuracy of dispatch commands at a critical moment [9].
Being the medium of transmission in CNs, information
flow (IF) is the key aspect that should be investigated in the
above research.

The traditional model of IF is mainly employed in the
fields of Internet Technology communication or network
science. In the field of Internet Technology communica-
tion, Yu et al. [10] proposed a three-layer control system
by utilizing wireless information to perform energy manage-
ment of renewable energy power plants. Cetinkaya et al. [11]
exploited complex networks to analyze the transmission
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mode of IF in multi-layer networks, and used a multilevel
graph evaluation framework to measure the robustness of the
model. Enck et al. [12] established the TaintDroid analytical
system tomonitor the IF among smartphone users by tracking
multiple data sources dynamically. In terms of the network
science’s field, Weng et al. [13] explored the relationship
between community structures and communication modes in
social networks and proposed a predictive method for future
popularity of memes. Leclercq et al. [14] applied IF to traffic
networks and used macroscopic fundamental diagrams to
explain the traffic transmission in heterogeneous networks.
Yang et al. combined IF with bio-inspired method to assess
the evenness of network division [15] and the efficiency
enhancement of transportation [16].

CNs serving PGs inherit the two core aspects of traditional
communication, that is, person-to-person message exchange
and open systems interconnection network model [3]. How-
ever, this kind of network also has its unique character-
istics, such as using IEC61850 standardized information
model, serving intelligent terminals, and having explicit oper-
ation [17]. Therefore, the logical nodes, protocol mapping,
and data format for IF in the CPS, which are entirely dif-
ferent from the traditional IF model, are specified. Although
the studies mentioned above provide the basis for modeling
and the application scenarios for IF, they are not completely
applicable to the CNs in CPS because they do not consider
the operation mode of CNs serving PGs and the coupling
effect between them. Therefore, they cannot directly reflect
the phenomenon and mode of information transmission in the
CNs of CPS, leading to poor interpretability.

Moreover, the interruption, delay, and error of information
data are prone to active control failure and system state
deterioration [18], [19]. In recent years, a series of blackouts
were closely related to IF. In 2010, the Stuxnet virus attacked
Iran’s nuclear industry facilities [20]. The virus intercepted
and modified the IF in the nuclear plant, thus disabling the
control of the power plants. In 2015, power grids in Ukraine
were severely damaged by cyberattacks [21]. By information
injection, the attackers blocked the customer service system,
which prevented users from receiving dispatch information
and extended the blackout time. These security incidents
also emphasize the importance of the IF model in CNs
serving PGs.

By the IF model for CNs of CPS, we can detect the vul-
nerable time of information transmission, as well as the sen-
sitive parts of systems. Based on that, the specific defensive
schemes can be established to strengthen weak components
and prepare the exclusive emergency measures more accu-
rately. Therefore, based on graph theory and traffic dynamics,
we establish an IF model (IFM) suitable for the CNs of CPS.
The model considers the hierarchical coupling relationship,
device information processing ability, and information trans-
mission mode in CNs of CPS. We also define the congestion
rate and loss rate to evaluate the performance of information
transmission. Finally, we verify the feasibility and effective-
ness of the IFM via critical nodes detection and different

CNs topologies, and propose reference schemes for nodes
enhancement and communication networking.

The main contributions of this paper are as follows.
(1) An information flowmodel is proposed to fit the CNs of

CPS based on graph theory, traffic dynamics and transmission
mode of CPS, which helps to understand the performance in
actual CPS from the aspect of IF transmission.

(2) The CPS topology is constructed in accordance with
multi-layer and overlapping community, which can provide a
more realistic testbed to implement the proposed IFM.

(3) The congestion rate and loss rate are defined as the
indexes to evaluate the CPS performance.

(4) The proposed IFM is tested from critical node detec-
tion and networking topology. The results show that both
the critical node enhancement and network with reasonable
multi-layer and community overlapping can contribute to the
improvement of CPS transmission, and prove the model’s
effectiveness.

The rest of this paper is organized as follows. Section II
introduces the mechanism of information flow in CPS.
Section III presents the proposed IFM in detail. Section IV dis-
cusses the IF features in the IEEE 39-bus CPS model and the
differences in IF performance among various communication
networks in the IEEE 118-bus CPS model. Finally, Section V
concludes the paper and reveals the direction of future
work.

II. FEATURES IN COMMUNICATION NETWORKS
SERVING POWER GRIDS
A. TOPOLOGY LAYERING OF COMMUNICATION
NETWORKS
CNs are complex networks with the features of distributed
acquisition and hierarchical transmission [22]. In order to
adapt to service development, CNs can be represented as
multi-layer networks, which are a family of graphs coupled
by interconnections between nodes of different graphs [23].
Buldyrev et al. [24] firstly proposed the CPS multilayer net-
works model by Italy blackout caused by multilayer cascad-
ing failure. After that, some researchers applied this kind of
networks to analyse CPS features, such as architecture [25],
hierarchy [26], vulnerability [27] and so on. Generally, CNs
can be treated as three-layer networks in terms of differ-
ent functions. It is known that sensors group and primary
equipment are responsible for collecting the information of
PGs, which are regarded as the access part of CNs. As for
transmission lines, optical cables have complex topology
structure, i.e., the backbone part of CNs. The dispatching
centers become the core part of CNs.

It is noted that the access part is tightly coupled with PGs,
and their topologies are highly similar [22]. In order to make
the process of IF transmission more intuitive, the following
hypotheses are made:

(1) PGs are regarded as a single-layer network, since each
part of PGs, including power generation, transmission, sub-
station and distribution, has the same physical properties.
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(2) CNs are divided into three layers in terms of functional
differences, namely the access layer, backbone layer and core
layer, which represent the access part, backbone part and core
part of CNs, respectively.

So the architecture of CNs and PGs is shown in Fig. 1.

FIGURE 1. Architecture of CNs and PGs.

B. THE PHENOMENON OF OVERLAPPING COMMUNITY
IN COMMUNICATION NETWORKS
In [24], [28], CNs in Italian and USmeet the various services,
and they reconstruct the existing network. It can be seen
that CNs can be divided into multiple ring networks, and the
internal nodes of a ring network are more closely connected
than other outside nodes, which conforms to the concept of
community structure. In addition, with the analysis of real-
istic topology [29], [30], there are crossover areas between
the ring networks, which represent overlapping communities.
The nodes in overlapping areas are often set as dispatch-
ing center. According to this rule, these topologies can be
abstracted into a simple networking mode, as shown in Fig. 2.
The whole complex network is superimposed and deformed
by this mode.

FIGURE 2. Networking mode in realistic CNs.

Therefore, the construction of CPS can be described briefly
as follows. Access layer is the same as power layer due to their
topological similarity, and they are full one-to-one coupling.
Backbone layer can be built based on the overlapping nodes
in access layer, and they are partial one-to-one coupling.

By analogy, core layer can be constructed by the overlapping
nodes in backbone layer, and they are one-to-many coupling.

C. INFORMATION FLOW IN COMMUNICATION
NETWORKS OF CPS
Information in CNs of CPS refers to the corresponding elec-
trical or non-electrical information generated by each sub-
system. The flow of information represents the process of
information acquired, forwarded, processed, and utilized in
communication devices [4]. The IF determines the sender and
receiver according to the functional requirements. Based on
the IEC61850 protocol and routing policy, the information is
standardized, and the most appropriate channel for transmis-
sion is selected [17]. Based on the functionality, the infor-
mation can be generally divided into generic object-oriented
substation event (GOOSE), sampled values(SV), manufac-
turing message specification (MMS), etc. They are utilized
for performing steady state analysis, dynamic analysis, and
optimization control.

Take Fig. 1 as an example of IF transmission in CNs.
When a power network operates, the corresponding sensors in
access layer map the value of the voltage and current samples
into SV packets, and switch the position information and trip
signal into GOOSE packets. These messages are uploaded to
the dispatching centers in core layer via the routing devices
and optical cables in backbone layer. After analysis and calcu-
lation, they transmit the protective signals to primary devices
in access layer to implement scheduling control of PGs.

The number of SV and GOOSE packets will rise sharply
during power failure, which increases the forwarding load.
When this amount exceeds the forwarding threshold, infor-
mation congestion or loss occurs, resulting in delays or
errors in signals. Finally, it may hinder the timely handling
of PGs faults, leading to further deterioration of network
performance.

III. MODELING OF INFORMATION FLOW
IN CNs SERVING PGs
In traffic dynamics, the change in the state of CNs is often
described as cumulative or rate [31]. Cumulative is the net
increment in node cached traffic within a given time. Rate is
the reciprocal of the transmission time from the sender to the
receiver. To simplify the IFM, this study makes the following
assumptions.

(1) Channel influence is not considered when transmitting
information because optical cables show better performance
in transmission.

(2) Open shortest path first protocol is used to select the
shortest path according to the congestion of each node at the
previous moment.

(3) A hierarchical structure is used to reveal the realistic
features of CPS [3]. Based on the functionality, the CNs are
divided into 3 layers, that is, the core layer, backbone layer,
and access layer.
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(4) The forwarding abilities of the core layer, backbone
layer, and access layer rank from high to low. Their buffer
sizes also follow the same order.

The IFM is established in accordance with the above
assumptions. The process is explained in detail below.

A. INFORMATION FLOW MODEL
1) BASIC MODEL
We model the CNs as an undirected graph that includes Nc
nodes, and the generated information is represented by

flowij(t) = (fij(t), Sij(t)) (1)

where fij(t) indicates whether node i sends an information
packet to node j at time t . Sij(t) represents the node of flowij(t)
that arrives at time t . In addition, fij(t) meets the criteria{

fij(t) = 1, r < λ

fij(t) = 0, r ≥ λ
(2)

where r is a random number in the interval [0,1] and λ is the
transmission probability. If r is lower than λ, fij(t) = 1, which
means that node i sends an information packet to node j;
otherwise fij(t) = 0.
For a single node, the information accumulation model at

time t is given by

Wi(t) = Wi(t − 1)+
∑
j6=k

Qjk (t)− Ki(t) (3)

whereWi(t) is the number of information packets that node i
needs to forward at time t , Ki(t) is the number of information
packets forwarded by node i, and Qjk (t) indicates if flowjk (t)
arrives at node i at time t . It is defined as{

Qjk (t) = 1, if Sjk (t) = i
Qjk (t) = 0, if Sjk (t) 6= i

(4)

Sjk (t) = i implies that flowjk (t) arrives at node i at time t .
In addition, we define Bi as the buffer size of node i.

Therefore, the information packet loss is defined as

Wi(t) > Bi. (5)

When inequation (5) is satisfied, node i will forbid the
information input. In this case, loss occurs if information
packets continue to arrive at node i.

2) TRANSMISSION STRENGTH
Generally, CNs transmit the periodic information in the
steady state. When substation accidents or other unexpected
events occur, IF will be in a continuous burst state, which is
prone to congestion and loss [17]. Therefore, we define α(t)
as the system transmission strength, which characterizes the
generation of new information packets by the CPS at time t .
The amount of information packets generated by the system
is positively correlated with α(t) as

λ ∝ α(t) (6)

where λ denotes the transmission probability. The larger the
value of λ, the more new information packets the system
generates at time t .

B. SYSTEM TRANSMISSION MODE
The CNs of CPS usually obtain real-time information of
the PGs from access layer, and then transmits them to the
dispatch center located at core layer through backbone layer.
The control commands are reversed in this process. This
shows that the senders and receivers are selected with the
exception of backbone layer. Hence, this transmission mode
exhibits a distinct ‘‘vertical’’ feature [32], namely, the vertical
transmission mode (VTM).

Additionally, with improved intelligence level, operational
information needs to be exchanged in real-time mode. With
this flexibility, the senders and receivers can be any device,
regardless of the layer. In this process, the IF shows more
randomness [33] than in the VTM. Therefore, this mode is
called random transmission mode (RTM).

Let the sender of flowij be node i, the receiver be node j,
and the node sets of the access layer, backbone layer, and core
layer be Va, Vb and Vc, respectively. In VTM, the sender and
receiver of flowij satisfy the following conditions:{

i ∈ Va
j ∈ Vc

or

{
i ∈ Vc
j ∈ Va

(7)

In RTM, the sender and receiver of flowij in the network
satisfy the following conditions:{

i ∈ {Va ∪ Vb ∪ Vc}
j ∈ {Va ∪ Vb ∪ Vc}

(8)

C. EVALUATION INDEX
1) CONGESTION RATE
Congestion occurs when the number of information packets
exceeds the forwarding capacity of the nodes. The congestion
rate is defined as the ratio of the amount of remaining infor-
mation packets at time t to the total amount of information
packets. It is denoted by µ(t) and is expressed as

µ(t) =

Nc∑
i=1

Wi(t)

T∑
t=0

∑
i,j∈Nc

fij(t)

(9)

where Nc is the number of information nodes, and T is the
simulation time.

Moreover, when the congestion rate exceeds the threshold,
the CNs are in a congestion state, that is

µ(t) ≥ µm (10)

where µm is the threshold and is set to 0.1.

2) LOSS RATE
Information loss occurs when the amount of information
packets stored in nodes exceeds their buffer size. Loss ratio
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is defined as the ratio of the amount of information packets
lost by the entire system to the total amount of information
packets before time t , and is expressed as η(t).

η(t) =

T∑
t=0

Loss(t)

T∑
t=0

∑
i,j∈Nc

fij(t)

(11)

where Loss(t) denotes the number of lost information at
time t .
Similarly, the threshold of loss rate is defined as ηm:

η(t) ≥ ηm (12)

where ηm is set to 0.1. When the inequation (12) is satisfied,
it indicates that the information loss at this time is serious.

IV. CASE STUDY
A. IEEE 39-BUS CPS TOPOLOGICAL
MODEL CONSTRUCTION
In this section, we build an auxiliary topology model using
an IEEE 39-bus system as power layer. In accordance with
Section II.A and B, the modeling method of topology should
consider the multi-coupling networks and overlapping com-
munity, which can generate more realistic CPS topology.

The clique percolation method [34] is a popular approach
for analyzing the overlapping community structure of net-
works. But its strict requirement for cliques is fully coupled
networks, which results in ignoring a large number of over-
lapping nodes in CPS. As for the local community method,
it expands community by randomly selecting seed nodes and
combining by a fitness function, which makes overlapping
nodes locate easily at border [35]. It is contrary to the princi-
ple of CPS overlapping nodes, that is, the dispatch center has
large topological centrality. Both of the two methods cannot
be utilized for CPS modeling.

Markov clustering algorithm (MCL) [36] is a detection
method by the commutative processes of expansion and infla-
tion of adjacency matrix, which can weaken the influence of
non-community fully coupled structures, and produce over-
lapping areas rationally. Therefore, MCL is employed to
construct the CPS topology, which is treated as the medium
to represent performance of the proposed IFM. The process
of MCL in this paper is illustrated in Fig.3.

In our simulation, the relevant parameters are set as fol-
lows. The similarity parameter is 0.3, self-multiplied index
is 2, multiplication index is 1.5, node redundancy threshold
is 2, and community threshold is 0.5.

Via this algorithm, the IEEE 39-bus system is partitioned
and the specific results are shown in Table 1. It can be
observed that there are five communities, and each has more
than one overlapping nodes. Among them, community 3 con-
tains the most overlapping nodes, i.e., nodes 15, 16, 17, 21,
24, and 27.

Based on Section II.B, the topology of access layer is the
same as that of power layer [3]. And using these overlapping

FIGURE 3. Flow chart of MCL.

TABLE 1. Community partitioning of IEEE 39-bus system.

nodes, the backbone layer and core layer are constructed in
turn. Finally, the CPS network can be built, which includes
39 power nodes and 50 information nodes. The information
nodes contain 39 access nodes, 9 backbone nodes, and 2 core
nodes. The final CPS model is shown in Fig. 4.

FIGURE 4. CPS model of IEEE 39-bus system.

B. INFORMATION FLOW FEATURES OF
IEEE 39-BUS CPS MODEL
The IF of IEEE 39-bus CPS topological model is simulated
in this section. The simulation time of the IFM is set to 150 s,
and the transmission intensity α is increased from 0 to 3 in
increments of 0.1. The simulation is performed 50 times for
two kinds of transmission modes. The simulation results are
shown in Fig. 5.

It can be seen from Fig. 5(a) that with the increase
in α, the average congestion rate µ of CPS system slowly
increases. It means that the more the information that is gen-
erated and transmitted simultaneously, the more congestion
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FIGURE 5. Evaluation indexes of IEEE 39-bus CPS system: (a) congestion
rate and (b) loss rate.

the system is prone to. In VTM, the average µ reaches the
threshold µm when α = 2.1, whereas in RTM, the average
µ reaches the threshold when α = 2.4. It can be seen that
the system can withstand greater transmission strength in
RTM than in VTM. This is because in VTM, the sender and
receiver of information are selected from the access layer
and core layer, respectively, so that all information must
pass through the backbone layer. The backbone layer and
the overlapping nodes connected to them perform a large
number of forwarding tasks. However, the sender and receiver
of information in RTM can be selected from among three
communication layers, which can largely prevents a single
node from performing too many forwarding tasks, thereby
reducing congestion.

In Fig. 5(b), the loss rate η of IEEE 39-bus CPS model
also rises with increase in α, and the change is consistent
withµ. The average η reaches the threshold ηm when α = 2.4
in VTM; the corresponding value in RTM is α = 2.5. This
also shows that the system can withstand greater transmission
strength with the RTM.

Compared with η, µ will reach the threshold at smaller
transmission intensity. Because loss occurs only when infor-
mation congestion is further deteriorated, that is, the amount
of information packets received exceeds the node buffer size,
the value of α when η exceeds ηm is more than that when µ
exceeds µm. The loss rapidly worsens when the congestion
is severe. From Fig. 5, for example, the average µ in VTM
reaches µm when α = 2.1; at the same time, however,
the average η is 0.0036, which is much smaller than the
threshold of 0.04. When α > 2.1, the system is in a state
of severe congestion, and the average η rises rapidly.
It can also be seen from Fig. 5 that the box becomes

longer as α increases, which means the simulation results
have a wider distribution range. Although the average µ
when α = 2.1 cannot reach µm in RTM, its maximum value
exceeds the threshold. A similar result occurs with η in RTM.

In addition, when α = 2.3, approximately one-sixth of η
in VTM exceeds the threshold; when α = 2.7, approx-
imately four-fifths of η exceeds the threshold. Therefore,
with increase in α, µ and η generally increase, and their
distribution ranges are wider, which indicates that system
congestion and information losses are more likely to occur,
which may cause serious incidents.

C. INFORMATION DISTRIBUTION AND IFM-BASED
CRITICAL NODES IN IEEE 39-BUS CPS MODEL
We analysed the information distribution of the simulation
from the aspect of µ in Section IV.B. The contribution of each
node toµ is shown in Fig. 6. The betweenness of some critical
nodes is listed in Table 2.

TABLE 2. Betweenness of some critical nodes in IEEE 39-bus CPs system.

FIGURE 6. Contribution of each node to congestion rate in IEEE 39-bus
CPS system: (a) VTM and (b) RTM.

According to Figs. 4 and 6, we find that the backbone nodes
1 and 5 are mainly responsible for the congestion, regardless
of the transmission mode. With the high betweenness and
connection with core layer, these two nodes are necessary
for cross-layer information, especially for transmission in
VTM. However, the backbone node 2 is not prone to con-
gestion owing to its low betweenness and disconnection with
core layer. The access node 4 is congested easily because it
has high betweenness and connection with backbone layer,
responsible for cross-layer transmission. Although the access
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nodes 3 and 16 have higher betweenness, they do not suffer
from congestion easily because they do not perform the task
of cross-layer transmission. Moreover, the contribution of
other non-critical nodes to the congestion rises in RTM when
compared with the VTM because the sender and receiver
spread across 3 layers.

Thus, the high betweenness of nodes as well as the respon-
sibility for cross-layer transmission enhances the possibility
of congestion. In realistic CPS, these nodes typically rep-
resent provincial stations or some key routers that converge
information from surrounding cities to the dispatching center.
If the transmission abilities of these stations are strengthened,
the system congestion would be relieved.

Taking IEEE 39-bus CPS as an example, we select some
nodes with high betweenness or responsible for cross-layer
transmission, and strengthen their abilities of IF transmission
in order to investigate how the transmission performance
changes. The transmission capacity of the selected node is
increased by 1.5 times. To assess the improvement effect,
the average proportion of congestion alleviation (APCA) is
utilized as an index, represented by:

APCA =

∑
t∈T

µoriginal (t)−µstrengthen(t)
µoriginal (t)

T
× 100% (13)

where µ is the congestion rate, µoriginal is the original µ, and
µstrengthen is the µ with the increment of transmission ability.
T is the total simulation time and t is the real time. Because
the case of loss is similar to the congestion, the results of loss
are not included. The simulation results are shown in Fig. 7.

FIGURE 7. Comparison of average proportion of congestion alleviation
based on nodes of strengthened ability.

It can be observed that after the access node 16 enhances
the transmission ability the system congestion is not relieved
in any transmission mode, but is worsened sometimes, such
as its APCA value is −3.0% in VTM. It is because the infor-
mation transmitted to the coupling nodes increases, which
aggravates the congestion when the access node 16 enhances
its ability. The same situation occurs in backbone node 2,
whose APCA are −0.2% and −11.5% in VTM and RTM,
respectively, as well as backbone node 4. Especially in
VTM, the increased transmission ability shifts the forwarding

FIGURE 8. Comparison of cognestion alleviation in VTM in accordance
with different forwarding abilities in nodes: (a) access node 4,
(b) backbone node 1 and (c) backbone node 5.

burden to nodes coupled with core layer, such as back-
bone node 1, which deteriorates congestion. On the contrary,
the upgrades of backbone nodes 1 and 5 are beneficial to
alleviate information congestion. The APCA of backbone
node 1 can reach 60.0% and 74.3% in VTM and RTM,
respectively, while the backbone node 5 can reach 46.5% and
43.2%, respectively. Since they have greater possibility to
forward information due to coupling relationship and large
betweenness, the node enhancement can accelerate the pro-
cess of IF arrival. For the access node 4, its improvement can
alleviate the system congestion, but the effect is relatively
weak. Its APCA are only 10.4% and 6.4% in VTM and
RTM, respectively. For one thing, the original transmission
ability of access node is relatively not strong. For another,
access node is not the terminal of the uploading process, and
the enhancement of its transmission ability will increase the
congestion of other nodes.

Furthermore, the access node 4, backbone nodes 1 and 5
are selected to explore the relationship between the enhanced
ratio and system congestion. Their transmission abilities are
respectively set to 1.5, 2.0, and 2.5 times of the original values
in VTM. The comparison results are shown in Fig. 8.

From Fig. 8, due to the ability enhancement of access
node 4 the system congestion is not relieved much, and
even is worsened when the transmission ability is enhanced
more. When α = 2.1 for instance, µ = 0.160 in orig-
inal state, while µ = 0.166 in the ability enhanced by
2.0 times. The excessive forwarding makes the informa-
tion transfer to other nodes too much, which aggravates the
congestion of other coupling nodes. For backbone nodes
1 and 5, the system congestion is significantly alleviated after
improving transmission ability. When µ reaches µm in case
of backbone node 1, the α are 1.8, 2.3, and 2.5 in original
state, 1.5 times and 2.5 times in enhancement, respectively.
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TABLE 3. Statistical characteristics for six networks.

When α = 3.0, in particular, the µ of the original state,
1.5 times, 2.0 times, and 2.5 times in improvement are 0.456,
0.241, 0.232, and 0.200, respectively, which means that the
congestion decreases significantly.

Thus, according to IFM, the critical nodes can be found
in the network. These nodes are often distributed in coupling
areas, such as provincial stations, or in routers with higher
betweenness. The transmission performance of CPS can be
improved by enhancing the forwarding abilities of these sta-
tions and routers, especially the coupling stations in higher
layer. In addition, if the congestion threshold of CPS is also
increased, it can significantly improve the performance of IF
transmission. Thus, they will give designers more choices in
terms of efficiency and economy.

D. COMPARISON OF TRANSMISSION PERFORMANCE
AMONG DIFFERENT COMMUNICATION NETWORKS
1) TOPOLOGICAL CHARACTERISTICS
To investigate the IF performance of CPS models built by
different topological modeling methods, we compare three
basic complex networks and three community-based net-
works. The basic complex networks include the random
network method (ER) [37], small-world network method
(WS) [38] and scale-free network method (BA) [39]. The
community-based networks contain fast community search
method (FAST) [40], clique percolation method (CP) [34],
and MCL. Based on IEEE 118-bus system, the six meth-
ods are evaluated by constructing a CPS model considering
multi-networks architecture. Themodeling parameters are set
as follows.

(1) ER: the connectivity value, mER, is 0.02; the node
number of CNs, Nc, is 118, where the node numbers of the
access layer, backbone layer, and core layer are 98, 18, and 2,
respectively. The CNs are one-to-one coupled with the PGs.

(2) WS: the reconnection probability, PWS , is 0.7. The
number of information nodes and coupling relation are the
same as that in the ER.

(3) BA: the connectivity value, mBA, is 5; the reconnection
probability PBA is 0.8. The number of information nodes and
coupling relation are the same as that in the ER.

(4) FAST: the maximum community modularity QFast is
0.7. The node number of CNs, Nc, is 135, where the node
number of the access layer, backbone layer, and core layer are
118, 15, and 2, respectively. The CNs and PGs are partially
coupled one-to-one.

(5) CP: the maximum clique kCP is 5 and reconnection
probability PCP is 0.6. The node number of CNs, Nc, is 136,

where the node number of the access layer, backbone layer,
and core layer are 118, 16, and 2, respectively. The CNs and
PGs are partially coupled one-to-one.

(6) MCL: the relevant parameters are the same as that in
Section IV.A. The node number of CNs, Nc, is 133, where the
node number of the access layer, backbone layer, and core
layer are 118, 13, and 2, respectively. The CNs and PGs are
partially coupled one-to-one.

Note that the basic networks, i.e., ER, WS, and BA,
adopt one-to-one coupling in this study, i.e., Nc = Np.
In the community-based networks, i.e. FAST, CP, and MCL,
the access layer and power layer have one-to-one coupling,
while other layers are constructed according to the commu-
nity relationship. The statistical characteristics of the built
networks are shown in Table 3, and their node degree dis-
tributions and sketches are shown in Fig. 9.

From Fig. 9 and Table 3, the degree distributions of
ER and MCL are uniform without an evident power-law
tail. Moreover, their average node degrees are low. In con-
trast, the degree distributions of SW and BA have distinct
power-law tails, indicating that they have a large number of
low-degree nodes and a small number of high-degree nodes.
The CNs models constructed by SW and BA have rela-
tively larger average node degree and clustering coefficients
than the MCL and ER models. Conversely, the average path
lengths of SW and BA are shorter.

It can also be seen that these three community-based net-
works do not have power-law tail distributions, meaning that
their node degree distributions do not vary widely. Their
difference lies in how they obtain the coupling nodes of
each layer. The CNs constructed by the community-based
methods have large average path lengths of 6.038, 6.3805,
and 5.8481 for FAST, CP, and MCL, respectively. In both
basic networks and community-based networks, the val-
ues of MCL’s average node degree, average path length,
and clustering coefficient are midway between the six
methods.

2) COMPARISON OF TRANSMISSION PERFORMANCE
BETWEEN MCL NETWORK AND BASIC
COMPLEX NETWORKS
In this section, MCL network is compared with three basic
complex networks in terms of transmission performance. The
transmission intensity α is increased from 0 to 9.9 at intervals
of 0.3. The average value of each evaluation index is obtained
by repeating the simulation 20 times for the two transmission
modes, and the results are shown in Figs. 10 and 11.
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FIGURE 9. Node degree distributions of the constructed CNs and their sketches: (a) ER, (b) WS, (c) BA, (d) FAST,
(e) CP, and (f) MCL.

FIGURE 10. Comparison of transmission performances in VTM with
respect to (a) congestion rate and (b) loss rate.

Fig. 10 shows the transmission performances of different
networks in VTM. When α < 1.0, the transmission efficien-
cies of the four models have little difference, and their µ and
η are less than 0.05. When α = 2.1, except for WS, µ has
not reached µm in IEEE 118-bus CPS networks, whereas µ
has reached µm in IEEE 39-bus CPS network. With regard
to η, the small-size network also has poorer performance. It is
shown that a larger network scale is likely towithstand greater
transmission strength because the increase in the network
scale provides more choices for information transmission
path.

With increase in α, the average values of µ and η increase
gradually in the four models. It can be seen that the WS
network is the first to reachµm and ηm because its larger aver-
age node degree indicates that some nodes have numerous
neighbors, thus enhancing the transmission tasks. Moreover,
these nodes are mainly located in access layer with weak
forwarding ability, thus reducing the network transmission
efficiency.

In the cases of ER, BA, and MCL, the α corresponding
to µm are approximately 2.3, 2.4, and 7.2, respectively; the

same values are reported for η. Owing to the randomness of
ER and BA, there are fewer backbone nodes in them that are
connected with the core nodes, resulting in an impractical
layout. Therefore, the information may arrive at the receiver
by the access nodes with poor forwarding ability. Conversely,
MCL networks set the backbone nodes that connect with the
core nodes in each community. This hierarchical structure
improves its forwarding efficiency.

FIGURE 11. Comparison of transmission performances in RTM with
respect to (a) congestion rate and (b) loss rate.

The comparison of transmission performances in RTM is
presented in Fig. 11. The α values of the ER, WS, BA, and
MCL models that correspond to the threshold value of µ are
2.5, 1.8, 2.3, and 7.5, respectively. The α values of the ER,
WS, BA, and MCL models corresponding to the threshold
value of η are 5.2, 3.7, 3.6, and 8.3, respectively. This also
proves that MCL can withstand greater transmission strength
than the non-community methods.

It should be noted that in RTM,µwill decrease at a specific
value of α in the WS and BA networks. For example, from
Fig. 11(a), µ is 0.515 for the BA network when α = 7.2,
while it decreases to 0.472 when α = 10.0. This is mainly
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because in RTM, the information sender can exist in various
layers. If an information sender is located at a lower layer,
the probability of persistent congestion at low-level nodes
is higher owing to weak forwarding ability. When α rises
to a certain value, the increase in the loss exceeds that in
congestion, leading to decrease in µ.
In short, MCL model has the best transmission ability.

Owing to low average node degree, ER also has relative
better transmission performance. However, in WS and BA,
the underlying information cannot be quickly uploaded to
the upper layer because the distribution of coupled nodes is
unreasonable in cross-layer transmission.

3) COMPARISON OF TRANSMISSION PERFORMANCE
BETWEEN MCL NETWORK AND COMMUNITY-
BASED NETWORKS
In this section, MCL network is compared with two
community-based networks, and the simulation results are
presented in Figs. 12 and 13.

FIGURE 12. Comparison of transmission performances in VTM for
community-based networks: (a) congestion rate and (b) loss rate.

FIGURE 13. Comparison of transmission performances in RTM for
community-based networks: (a) congestion rate and (b) loss rate.

Fig. 12 shows the transmission performances of differ-
ent community-based networks in VTM. When α = 2.1,
µ is 0.0035, 0.0185, and 0.0014 for FAST, CP, and MCL,
respectively, which are significantly lower than µm of the
non-community networks under the same circumstance.With
increase in α, the average values of µ and η also increase
gradually for three networks in VTM.

The values of α corresponding to the threshold value of µ
of the FAST, CP, and MCL are 6.3, 3.6, and 7.2, respectively.
The results of η are similar to µ, the discussion of which is
omitted owing to space limitation. Overall, the community-
based networks show better transmission performance than

the non-community networks, mainly because of their appro-
priate hierarchical structure.

Moreover, the comparison results show that the CP net-
work has poorer performance than FAST. This is because
the CP network has high requirement for a fully coupled
clique. However, there are fewer sub-networks that satisfy
this requirement, and the overlapping nodes are scattered and
cannot cover all communities well. The MCL network can
weaken the limitation of full coupling and distribute them
over a reasonable area, which allows it to bear the maximum
α among the six models.

Fig. 13 shows the comparison of transmission perfor-
mances in RTM. It can be seen from Fig. 13(a) that the
values of α corresponding to the threshold values of µ of
the FAST, CP, and MCL are 6.0, 3.3, and 7.5, respectively.
From Fig. 13(b), the values of α corresponding to the thresh-
old values of η of the FAST, CP, and MCL are 7.3, 6.0,
and 8.3, respectively. The community-based models are gen-
erally better than those non-community models and they
can demonstrate greater transmission strength, especially the
MCLmodel has the strongest capacity for withstanding trans-
mission tasks.

In summary, the MCL model has the best information
transmission ability. Compared with other community-based
methods, i.e., FAST and CP, the MCL model consid-
ers the nature of the overlapping communities and over-
comes the uneven distribution of the overlapping nodes as
well as the irrationality of the overlap, which makes the
transmission better. In addition, compared with the FAST
and CP models, the relatively high average node degree and
clustering coefficient provide theMCLmodel with more path
selection during transmission, which can effectively avoid
the overloading of a single node. The relatively low average
path length allows it to reach the receiver more quickly, and
facilitates the rapid completion of transmission tasks.

4) COMPARISON OF TRANSMISSION PERFORMANCE BASED
ON EUROPEAN HIGH VOLTAGE TRANSMISSION NETWORK
Due to the larger network size and more complexity, the
European high-voltage transmission network is selected to
test the performance of IFM for large networks. This net-
work has 1354 stations, in which there are 260 power gen-
erators, and 1991 high-voltage lines [41]. Its structure is
shown in Fig. 14. Taking it as the power layer, the CPS
networks are constructed based on six topological algorithms
mentioned above. And their IF transmission efficiencies are
evaluated by IFM. The simulation settings are unchanged,
except that the transmission intensity α is increased from 0 to
22.5 at intervals of 2.25. The simulation results are shown
in Figs. 15 and 16.

It can be seen that the larger the scale, the greater trans-
mission intensity networks can withstand, which is consistent
with the results obtained by the 118-bus case.When α = 12.0
for example, the µ and η of six networks based on this large
network are far from the thresholds, while they exceed the
thresholds under 118-bus power layer when α = 8.0.
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FIGURE 14. Visualising the European high-voltage transmission network.

FIGURE 15. Comparison of transmission performances in VTM for six CPS
1354-bus networks: (a) congestion rate and (b) loss rate.

FIGURE 16. Comparison of transmission performances in RTM for six CPS
1354-bus networks: (a) congestion rate and (b) loss rate.

Furthermore, the community-based networks are generally
superior to the non-community networks at the aspect of
transmission performance. When α = 20.25 in VTM for
instance, theµ of ER,WS, BA, FAST, CP, andMCLnetworks
are 0.176, 0.025, 0.034, 0.022, 0.041, and 0.008, respectively.
And the MCL has the best transmission performance among
six networks under VTM and RTM. When α = 22.5, the µ
of MCL only is 0.015 and its η is 0.001, both of which are
much smaller than the thresholds.

In short, with the help of the proposed IFM, we find that
CNs can obtain higher transmission efficiency if its topology
has the features as follows.

(1) The node degrees of most coupling stations are low;
(2) CNs are constructed in the form of backbone rings, and

there are overlapping areas between them;
(3) The overlapping areas have large centrality, and the

stations or routers in these areas are set as the backbone nodes.

TABLE 4. Rank of some critical nodes in 1354-bus CPs system.

Moreover, the information distribution of this MCL net-
work is analyzed. And some nodes with greater contribution
to congestion and loss of networks are list in Table 4.

We design three schemes to improve the networks perfor-
mance to 1.5 times in terms of the transmission ability. The
three schemes include: A) backbone node 105; B) backbone
nodes 105 and 2; C) backbone nodes 105, 2 and 38. The trans-
mission intensity α is increased from 0 to 40.5 at intervals
of 4.5. APCA is utilized to evaluate the improvement under
each scheme. The results are shown in Fig. 17.

FIGURE 17. Comparison of average proportion of congestion alleviation
based on different schemes.

It can be seen that selecting the appropriate node set for
ability improvement can achieve better transmission effi-
ciency. But too many nodes may lead to the opposite results.
In VTM for example, the APCA of Scheme B is 22.2%, while
in Scheme C it is only 10.0%, even though the number of
nodes in Scheme C is more than that in Scheme B. And the
scheme with fewer nodes does not mean the less improve-
ment. In RTM for instance, the APCA of Scheme A is 3.8%,
while in Scheme B it is −7.7%. Therefore, it is necessary
to formulate the improvement strategy according to specific
requirements and budgets.

For transmission efficiency improvement from ability
enhancement of critical nodes, we can draw some conclusions
as follows.

(1) The critical nodes are often responsible for cross-layer
transmission or with large betweenness;

(2) Improving the transmission ability of a single criti-
cal node appropriately can relieve the overall congestion of
networks;

(3) Proper number of updated nodes can improve the per-
formance of networks, but too many or too few nodes may be
less helpful for improvement.
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V. CONCLUSION
With the deep coupling of CNs and PGs, it is of great
importance to consider the factors affecting communication
in CPS performance assessment. Based on graph theory and
traffic dynamics, we construct a model for IF, called the IFM,
in accordance with the operational mechanism of realistic
CNs serving PGs. The IEEE 39-bus system was utilized to
investigate the IFM performance with its coupled CNsmodel.
Then, the IFM was applied to analyze the effect of critical
nodes on IF performance, as well as information transmission
features in different topological models. The results show
that the proposed IFM can detect these critical nodes more
precisely which have great effect on IF transmission, and the
ability enhancement of these nodes can significantly improve
the network performance. Also, the IFM can be utilized
to evaluate the transmission performance of CNs from the
topological perspective, which indicates that the hierarchical
structure and overlapping communities have a significant
effect on the IF in CPS. The results validate the effectiveness
and practicability of the proposed IFM, which helps planners
to design network architecture and improvement schemes
economically and efficiently. In our future work, we will con-
sider cyber-attacks as well as gaming behavior in information
security, which can affect the accuracy of the built model.
Also, the social structure would influence the topological
architecture of CPS.
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