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ABSTRACT Wafer acceptance test (WAT) is a key process of semiconductor manufacturing. The collected
testing parameters can be used in identification of wafer defects, improvement of product yield, and control
of production costs. However, WAT parameters regularly have characteristics such as high dimensions and
strong redundancy, which prevent the wafer yield from accurate prediction and effective improvement.
To overcome these shortcomings, a hybrid feature selection method is proposed to identify key WAT
parameters influencing wafer yields. This method is composed of two stages, i.e. filter selection and
wrapper selection. In filter selection, the minimum Redundancy Maximum Relevance (mRMR) filtering
parameter pre-screening criterion based on mutual information (MI) is proposed. The relevance between
each parameter and the wafer yield value is calculated by MI. At the same time, the criterion of MI is used
to measure the redundancy between each parameter to select the minimum redundancy parameters, and
reduce feature size for further searches. In wrapper selection, a wrapped key parameter identification model
based on genetic algorithm (GA) and deep belief network (DBN) is designed. The coding and optimization
of candidate input parameters are realized by GA. The wafer yield prediction error value of the DBN and
the weight of the selected features are solved as the fitness function to realize the selection process of the
combined parameters. In experiment, both testing data sets and industrial data are used to demonstrate the
efficiency of this proposed method.

INDEX TERMS Hybrid feature selection, wafer acceptance test parameters, semiconductor manufacturing,
minimal redundancy maximal relevance, genetic algorithm, deep belief network.

I. INTRODUCTION
Semiconductor manufacturing is one of the most important
industries in the world [1]. Among the processes of semi-
conductor manufacturing, quality control is significant for its
cost saving and in-time delivery. [2]. FIGURE 1 illustrates the
procedure of quality control in semiconductormanufacturing,
which includes the defect detections during manufacturing,
the WAT after all manufacturing processes and the circuit
probing (CP) process for each grain on the wafer. Among
these quality control steps, the CP process determines the
wafer yield, but this process needs tremendous time spent on
expensive and specialized equipment. The prediction of wafer
yield based onWATparameters is therefore used by engineers
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to reduce manufacturing time and production costs spent on
CP process [3], [4].

As the size of integrated circuits continues decreasing
and the processing technology becomes more complicated,
the number of parameters that needs to be tested is gradually
increased during the WAT process, the corresponding time
consumption and test cost are increased at the same times [5].
In view of the large amount of WAT parameters, the rela-
tionship between parameters is complex and the redundancy
problem is prominent. In addition, the key parameters are
difficult to be obtained [6]. In which case, traditional meth-
ods based on statistical process control (SPC) are limited in
large-scale parameter identification and automatic identifica-
tion [7]. Therefore, it is significant for quickly discovering
failure wafers and improving wafer yield to ensure the accu-
racy of wafer yield prediction during wafer manufacturing.
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FIGURE 1. Production and quality control flowchart of the wafer.

In the existing literatures, expert experience methods,
relevance analysis, principal component analysis (PCA),
cluster analysis, information entropy, and heuristic-based
analysis methods are used to identify key quality parame-
ters of wafers. Chien et al. [8] screened 12 high-relevance
WAT factors through expert experience, and then designed
an improved analysis method based on modified Partial Least
Squares (mPLS), finally, they used these high relevance fac-
tors as the model input parameters. However, this method
requires expert experience to screen key parameters, and
it is difficult for quality analysts with shallow experience
to quickly master the skill. Zhang et al. [9] used the rele-
vance between WAT parameters and CP yield value to screen
out key WAT parameters. Meanwhile, the Backpropagation
Neural Network (BPNN) and the General Regression Neu-
ral Network (GRNN) models were utilized to realize the
establishment of the yield prediction model. However, this
method mainly considered the relevance between the single
variable and the yield value in the WAT parameter, without
considering the relevance between the combined variable
and the yield value. Tseng [10] used PCA to reduce the
features and dimensions of high-dimensional data in the qual-
ity management database, and then used logistic regression
analysis to perform data mining. But, the method converts
high-dimensional quality parameters into low-dimensional
uncorrelated linear comprehensive indicators through PCA,
and lost the physical information of the original quality data,
and it is difficult to analyze and regulate the quality rea-
sons from the source; Chen et al. [11] clustered the high-
quality process quality parameters by clustering method, and
then inferred the clustering results by the Decision Tree
Inference Rules (DTIR). Then, the DTIR was employed to
infer the parameter clustering result, thereby constructing
a complete wafer manufacturing yield analysis data min-
ing architecture. Since the method uses the decision tree to
make decision and analysis, it also needs to learn from the
expert experience to set the decision nodes, which restricts
the automatic mining ability of key parameters to a certain
extent. Wang et al. [12] designed a key parameter selec-
tion method based on information entropy method, which
comprehensively measures the relevance, redundancy and

complementarity between parameters. Based on the rele-
vance, redundancy and complementarity between the param-
eters, a filtering key parameter identification algorithm is
proposed to filter out the key parameters that affect the fluctu-
ation of the production cycle. This method usually measures
the predictive ability of each feature separately with the high
feature selection efficiency, but it cannot effectively measure
the predictive ability of noise-sensitive combined variable.
Hong [13] designed the Molecular-Inspired Particle Swarm
Optimization (MI-PSO) algorithm to analyze the measured
WATparameters to find the best combination of parameters in
accordance with the design specifications and circuit layout,
which provides critical WAT parameters for wafer failure
analysis. The key variable selection method based on MI-
PSO algorithm performs better than other heuristic methods
in most small datasets, but this method is failed for the dataset
with high dimensional characteristics which requires much
time cost in running the calculation process [14]. In general,
the wafer key parameter identification methods are mainly
divided into traditional statistical analysis method, filtering
method represented by information entropy, wrapped method
represented by heuristic algorithm [15]–[17], and machine
learning method represented by PCA. Due to the defects of
each method, these methods have great difficulties to auto-
matically and efficiently identify the key WAT parameters
of the wafer under the condition that the wafer parameter
scale is continuously expanded and the constraint factors are
gradually increased.

There are some problems with the existing key parameter
identification method, for example, sacrificing the stability of
selection model for the relationship between a single param-
eter and the target, and sacrificing time efficiency for the
associated effects of combined parameters on the target [18].
Furthermore, considering the high-dimensional characteris-
tics and the redundancy characteristics [19], this paper pro-
poses a novel feature selection method for identifying key
parameters of wafer acceptance test based on Hybrid Feature
Selection (HFS).

This paper is organized as follows. Key WAT param-
eter identification framework based on HFS is presented
in Section 2. Single WAT parameter filtering pre-screening
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FIGURE 2. Key WAT parameter identification framework based on HFS.

method based on MI is described in Section 3. Combined
WAT parameter wrapped selection method based on Genetic
Algorithm and Deep Belief Network (GA-DBN) is outlined
in Section 4. Experiments on HFS method and real data
are discussed in Section 5. Finally, conclusions are given in
Section 6.

II. HYBRID FEATURE SELECTION FRAMEWORK
The framework of key parameter identification ofWAT based
on HFS method can be seen in FIGURE 2. Firstly, data
preprocessing is performed on the missing values, outliers,
and dimensional differences to obtain the input parameters
needed for further data analysis and modeling. Secondly,
a filtering parameter pre-screening method based on MI is
designed to obtain parameters with high relevance to the yield
value.Meanwhile, the relevance between parameters is calcu-
lated by MI to reflect the redundancy characteristics between
WAT parameters. In addition, theWAT parameters are filtered
and pre-screened one by one in combination with mRMR
characteristics. Then awrapped feature selectionmodel based
on GA-DBN is established. Taking the prediction accuracy
of the DBN model and the number of feature subset as the
fitness function, multi-objective optimization is carried out
to realize the complex relationship modeling between the
combined WAT parameters and the yield, then output the key
WAT parameters affecting the wafer yield.

III. FILTERING SELECTION BASED ON RELEVANCE AND
REDUNDANCY
A. DATA PREPROCESSING
The WAT process is used to monitor the manufacturing
conditions and the quality of products by applying current
or voltage on the wafer [20]. Due to equipment shutdown,
current surge, etc., the case of missing values, and outliers,
etc. exist in the WAT parameters recorded by the enterprise
quality management center. For such problems, considering
the characteristics of the large amount of data set, the miss-
ing and abnormal values in the WAT parameters are not
obvious, the process of statistics, screening, and culling are
performed to them. For the difference in dimension of each
WAT parameter, the data processingmethod of maximum and
minimum normalization [21] is used to map the inconsistent
data to the interval of 0-1. With the standardization of data
processing and the processing of dimensional differences
between parameters, input parameters that are more easily to
be obtained for further data analysis and the establishment of
prediction model.

B. RELEVANCE ANALYSIS
In the complex manufacturing process of semiconductors,
the grain on the wafer may cause functional abnormalities
due to certain manufacturing problems, which will directly
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affect the final wafer yield. Therefore, engineers believe that
wafer yields are inextricably linked to some specific WAT
parameters. Due to the complexity of the semiconductor
manufacturing steps and the complex interaction between the
parameters, the WAT parameters and the yield values show
complex relevance characteristics. It is difficult for engineers
to effectively identify the cause of the abnormality in a short
period of time, resulting in the loss of yield. Therefore,
a relevance analysis method based on MI is designed in this
section, which analyzes all WAT parameters one by one with
wafer yield, and then pre-screens WAT parameters having
maximum relevance to yield.

MI is a metric method for describing the interdependence
between two random variables [22]. For continuous random
variables such as WAT parameters and yield values, the MI
method as shown in equation (1) is implement to analysis the
univariate relevance of each WAT parameter and wafer yield
value.

Ic(Xi;Y ) =
∫
Y

∫
Xi
p(xi, y) log

(
p(xi, y)
p(xi)p(y)

)
dxdy (1)

where p(xi, y) represents the joint probability density function
of the current WAT parameter Xi and the yield value Y , p(xi)
and p(y) represents the edge probability density function of
current WAT parameter Xi and yield value Y . The result Ic
between each WAT parameter and the wafer yield is cal-
culated by the MI criterion, and then the results of MI are
reversely arranged to obtain the WAT parameter which are
strongly correlated with the wafer yield.

C. REDUNDANCY ANALYSIS
In actual wafer manufacturing process, the integrated WAT
parameters are stored in the form of the Mean, Maximum,
Minimum, and Standard deviation values. For example,
the leakage current values on a wafer will be finally stored
in the form of the Mean, Maximum, Minimum, and Standard
deviation into the wafer data management system. Therefore,
there are duplicate attributes and strong relevance between
WAT parameters, showing strong redundancy. However, data
redundancy will not only occupy the amount of information
storage, but also affect the stability of the establishment with
the wafer yield prediction model. Therefore, the MI criterion
is carried out to measure the redundancy of WAT parameters,
and selects representative key data frommany redundant data,
in which case, the MI criterion can reduce the dimensionality
of data and the data redundancy obviously.

The relevance between each WAT parameter is calculated
by MI criterion as shown in equation (2). The higher of the
MI value, the higher of the relevance and the more prominent
of the redundancy between variables will be [23].

Ir (Xi;Xj) =
∫
Xj

∫
Xi
p(xi, xj) log

(
p(xi, xj)
p(xi)p(xj)

)
dxidxj (2)

where p(xi, xj) represents the joint probability density
function of the current WAT parameter Xi and the WAT

parameter Xj, p(xi) and p(xj) represent the edge proba-
bility density function of current WAT parameter Xi and
WAT parameter Xj.

D. MINIMUM REDUNDANCY AND MAXIMUM RELEVANCE
In the WAT test process, due to the large number of parame-
ters required to be tested, the high-dimensional WAT parame-
ter set is finally caused, moreover, it is difficult to effectively
estimate the high-dimensional probability density. What’s
more, the high-dimensional feature selection will take a long
time and is inefficient [24]. In order to effectively carry out
feature pre-screening, this section starts from the perspective
of mRMR [25], and the pre-screening evaluation index of
the minimum redundant and maximum relevance filtering
parameter pre-screening method based on mutual informa-
tion (mRMR-MI) is further designed [28], [29], as shown in
equation (3).

J (f ) = Ic(X;Y )−
1
|S|

∑
Xi,Xj∈S

Ir (Xi;Xj) (3)

where J (f ) is a pre-screening evaluation function based on
MI. f is the selected WAT feature parameters, and f ∈ X ,
Ic(X ; Y ) represents the MI value of each WAT parameter and
wafer yield value, S is the selected subset of feature parame-
ters, |S| indicates the number of feature parameters currently
selected, Ir (Xi; Xj) represents the MI value between each
WAT parameter. The termination condition of the designed
mRMR algorithm is that the feature subset fi corresponding
to the evaluation function J (f ) reaching the maximum value
on the basis of a certain number of iterations. The mRMR
algorithm is used to combine the selection criteria of the
minimum redundancy and the maximum relevance between
the WAT feature parameters and the yield values. Therefore,
the method of mRMR-MI can implement the pre-screening
process of the WAT parameters. The pseudocode for filtering
selection based on relevance and redundancy is shown in
algorithm 1.

However, the WAT parameters screened at this time only
consider the relevance and redundancy between the sin-
gle WAT parameter variable and the wafer yield, with-
out effectively reflecting the effect of the combined WAT
parameters on the wafer yield. Therefore, it is significant
for the next step to analyze the influence of the com-
bined WAT parameter variables on the wafer yield, and
obtain the less key WAT parameters affecting the wafer
yield.

IV. WRAPPED SELECTION BASED ON GA AND DBN
The GA-DBN selection model is based on the wrapped fea-
ture selection model that the subsequent learning algorithm
is embedded in the feature selection process. By testing
the prediction performance of the combined feature sub-
sets on the algorithm, the selected combination features are
evaluated for their merits and demerits. Therefore, a com-
bined WAT parameter selection model based on GA-DBN is
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FIGURE 3. Combined WAT parameter selection flow chart based on GA-DBN.

Algorithm 1 Filtering Selection Based on Relevance and
Redundancy

Input: X = [X1, X2,. . . ,Xn] : Original WAT dataset
Y : Wafer yield value

Output: Pre-screened WAT dataset
Begin
1: i←0 // i: Iterations number
4: While (not termination condition) do
5: relevance measure Ic(Xi;Y );
6: redundancy measure Ir (Xi;Xj);
7: fitness eval(X ) by J (i); // J (i): mRMR fitness func-

tion designed in this paragraph
8: if J (i) < J (i+1) then
9: select the characteristic parameter corresponding

to J (i+1) case;
10: end
11: i← i+1;
12: end
13: output Pre-screened WAT dataset;
End

designed as shown in FIGURE 3, This GA-DBN criterion
mainly consists of two parts. Step1, using GA algorithm
to realize the process of encoding and updating process
for the WAT parameters [30]. Step2, using the DBN deep
learning model to establish a complex nonlinear mapping
relationship between WAT parameters and wafer yield to
predict the wafer yield [31], and accurate prediction of wafer
yield can be obtained after a limited number of iterative
processes.

A. SUBSET GENERATION
The subset generation process refers to generating candidate
feature subsets according to a certain search strategy. In this
section, the GA based feature subset initialization process is
designed, and the initial selection of candidate WAT param-
eter features is performed by random selection. Moreover,
the candidate WAT parameters are encoded in binary encod-
ing to convert the feature variables into chromosomes in GA
algorithm. Then, the feature subsets are scored by using the
evaluation function, and then the process of global optimal
solution is gradually approached according to the heuristic

FIGURE 4. DBN structure.

rules. Therefore, the optimal WAT parameter feature subset
will be searched.

B. SUBSET EVALUATION
Since the characteristics of random algorithm relies on ran-
dom factors for parameter selection, it is difficult to reproduce
when the experimental results of optimal solutionwere found.
Therefore, it is necessary to design the fitness function for
the randomness problem in GA algorithm. Combining the
accuracy of DBN prediction model and the minimum number
of feature subsets as the evaluation index, the multi-objective
optimization is carried out. Furthermore, the evaluation of
the selected features and the convergence of feature selection
results are realized.

As shown in FIGURE 4, the DBN model is a deep
learning model consisting of multiple Restricted Boltzmann
Machine (RBM) models and BPNN models [32]. The unsu-
pervised feature extraction of the input samples is realized by
the structure of multi-layer RBM. Therefore, the information
of features and weight values of the samples are obtained.
Then, the BPNN is used to supervise the obtained features
and the weight information, and the process of predicting
the wafer yield by using various input WAT parameters is
realized.

Calculating the accuracy of wafer yield prediction and the
number of selected features as the calculation criterion for
the key WAT parameter selection fitness function. Therefore,
it is necessary to design an objective fitness function that can
optimize two targets at the same time to solve the problem of
multi-objective optimization, and realize the fitness function
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design with high accuracy and few numbers of features.

fitness

=WA×DBN−accuracy+WF×

(
n∑
i=1

Ic(Xi;Y )×Fi

)−1
(4)

Fi

=

{
0; Feature i is not selected in pre− screening
1; Feature i has been selected in pre− screening

(5)

Designing a fitness function as shown in equation (4),
the fitness function having two predetermined weights, WA
represents the weight of prediction accuracy in DBN model;
WF indicates the weight of the selected number of features.
In the model optimization process, if the prediction accuracy
of the DBN model is considered to be the most important,
theWA precision value can be adjusted to 100%, and usually
the WA precision value can be set between 75% and 100%
according to the demand, theWF precision value is usually set
between 0% and 25%. The value of Fi is 0 or 1 respectively.
When Fi = 0, the current feature i is a feature discarded in the
mRMR-MI pre-screening; when Fi = 1, the current feature i
is a feature retained in themRMR-MI pre-screening. Ic(Xi; Y )
represents the MI value between the WAT feature parameter
Xi and the wafer yield value Y to measure the degree of
importance of the current feature. Through the design of the
fitness function, chromosomes with high fitness values can
be saved to the next generation as much as possible, so the
parameters can also be set according to requirements.

The termination condition of GA-DBN model is that the
fitness function fitness reaches the maximum value based
on a certain number of iterations. Through the GA-DBN
algorithm, the related WAT parameters are associated with
the wafer yield in the form of combined parameter features.
Therefore, the selection process of the combinedWATparam-
eters is realized. The pseudocode for wrapped selection based
on GA and DBN is shown in algorithm 2.

V. EXPERIMENTS AND DISCUSSION
This paper designs a key WAT parameter identification
method based on HFS. Firstly, the UCI data set is used to
verify the validity and reliability of the new model. Secondly,
the prediction and selection test of WAT instance data is
carried out. Finally, the key WAT parameters of the final
selection are analyzed and compared, and the effectiveness
of the HFS method is verified.

A. UCI DATASETS
Datasets with the same properties as wafer yield predic-
tion were specifically selected for standard dataset valida-
tion. That is, the training and test data are suitable for the
input and output of the regression analysis model. The input
features have certain high-dimensional characteristics, and
the output values are continuous features rather than dis-
crete features. Therefore, after screening analysis, the fol-
lowing four sets of UCI standard data sets were finally

Algorithm 2 Wrapped Selection Based on GA and DBN
Input: X ′ = [x1, x2,. . . ,xn] : Pre-screened WAT dataset

Y ′ : Yield value corresponding to the pre-screened
WAT dataset

GA parameters
WA: The weight of prediction accuracy in DBN
model
WF : The weight of the selected number of features

in the model optimization process
Output: best WAT dataset solution
Begin
1: t ←0 // t: generation number
2 initialize P(t) by encoding routine; // P(t) : popula-

tion of chromosomes
3 fitness eval(P) by decoding routine; //eval(P): fitness

function designed in this paragraph
4: While (not termination condition) do
5: crossover P(t) to yield C(t); // C(t): offspring
6: mutation P(t) to yield C(t);
7: fitness eval(C) by decoding routine;
8: select P(t+1) from P(t) and C(t);
9: t ← t+1;
10: end
11: output best WAT dataset solution;
End

chosen to verify the validity of the proposed HFS model.
Including low-dimensional Abalone Dataset and Wine Qual-
ity Dataset, as well as high-dimensional Residential Build-
ing Dataset and UJI Indoor Loc Dataset. Then parameter
selection tests were carried out for abalone age, wine quality
grade, house price forecast, and residential floor location
prediction. The mRMR filtering method and the GA-BPNN
wrapped method are used to compare the HFS method. The
parameters screened by the mRMR method are used as the
input parameters of BPNNmodel for prediction experiments,
therefore, the mRMR-BPNN filtering prediction model is
composed.

In order to increase the redundancy characteristics and
relevance characteristics in the standard dataset samples,
this paragraph expands and enhances the data of these four
standard datasets, and adds random noise characteristics to
test the stability of the model under different data condi-
tions. The number of original features and the number of
random noise features added are as shown in Table 1 below.
In the experiment process, the number of features selected
in the case of Minimum Average Relative Error (MARE)
is used as the index of model evaluation, and the selected
features are analyzed to check whether the noise characteris-
tics can be effectively eliminated. The test results are shown
in Table 1 below.

It can be seen from Table 1 that all three parameter selec-
tion methods have the ability of filtering most noise param-
eters, and can reduce the input dimension of the prediction
model to reduce the operation time. For low-dimensional

VOLUME 8, 2020 17325



H. Xu et al.: HFS for WAT Parameters in Semiconductor Manufacturing

TABLE 1. Standard data set feature selection test.

TABLE 2. WAT parameter information.

data, it is larger for mRMR-BPNN method in MARE to
compare with GA-BPNN method and the HFS method, and
the number of selected parameters is higher than the other
two methods. The number of parameters selected by HFS
method is consistent with the GA-BPNN method, and even
slightly better than the GA-BPNN method. However, for
high-dimensional data, the HFSmethod can ensure that fewer
feature parameters are selected with high accuracy. There-
fore, the proposed HFS method has more significant advan-
tages in dealing with the key parameter extraction process of
high-dimensional data.

B. CASE STUDY
This paper selects the actual data of a 300mm wafer produc-
tion line of an enterprise in Shanghai for model analysis and
verification. Usually in the wafer production process, one unit
is equal to one Lot, and each Lot contains 25 wafers. During
the WAT process, 432 parameters on each wafer are tested

separately. The total number of wafers is more than 8,000,
and the wafers produced in the same batch are divided into
8 groups, numbered from Lot_ID_A to Lot_ID_H. In the
following process, 80% of the WAT test data and its cor-
responding yield value were selected as the training set for
supervised regression training, and the remaining 20% of the
data was used as the test set for test verification.

1) WAT PARAMETERS
TheWAT parameters are electrical test parameters for detect-
ing wafer’s circuit device, and the WAT parameters mainly
includes an open voltage leakage current, a saturation current,
and a breakdown voltage, etc. related to the MOS transistor.
Chip resistance, contact resistance, etc. related to resistors
and capacitors. Gate oxygen breakdown voltage, gate oxide
thickness, etc. related to gate oxide characteristics. The main
WAT test objects and the number of related parameters of the
test items are shown in Table 2 below.
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FIGURE 5. Wafer yield statistics in each set of lots.

2) WAFER YIELD VALUES
For semiconductor manufacturers, the later the discovery
time of the failed semiconductor device, the greater the cost
of the corresponding cost will be. After the CP test process,
quality control engineers can determine whether the wafer
needs to continue to the next step or discarded. Therefore,
the grain that passed the CP test indicates good product,
so as to obtain the yield information of the whole wafer, and
the yield information of each wafer is stored in the quality
management system.

In this paper, we use the box plot to analyze the eight sets
of wafer yield values, as shown in Figure 5 below. There
are nearly 1000 yield information in each set of data. The
median of the yield values is above 0.95, and the 50% yield
information value is between the upper and lower quartiles.
Moreover, 90% of the data is concentrated between the upper
and lower edges of the box plot, only a small amount of
information belongs to the exception information. Therefore,
for this part of the abnormal data, we have eliminated it before
the yield prediction process.

3) RESULTS AND DISCUSSION
a: MODEL PARAMETER SETTING
The hyperparameters mainly involved in the HFS method
includes the number of iterations k1 in the filtering
pre-screening process, initial population p, cross operation
probability value r , mutation operation probability value m
of GA, the number of layers l, the number of nodes in each
layer n, and the number of iterations k2 of the DBN model
in wrapper selection process. However, the iteration number
k1 value is calculated by the mRMR fitness function, and the
number of iterations when the algorithm convergence tends to
be stable is 500 times, so the k1 value is set to 500 in each test
process. The initial population number p value of GA is adap-
tively set according to the feature pre-screening result, usually
the number of pre-screening features is between 130 and
150. The crossover operation probability value r and the
mutation operation probability valuem are set to 0.8 and 0.01

respectively by referring to the setting methods in the existing
literature [25]. For the DBN model, it can be seen from the
orthogonal experiment that when the model layer number l is
set to 3, the number of input layer nodes is adaptively installed
as the number of features after the pre-screening process,
the number of nodes in the hidden layer is decremented in the
form of an arithmetic progression, and the prediction layer
is set to 1, the DBN model can achieve the best prediction
accuracy.Moreover, when the number of iterations k2 reaches
3000 times, the convergence of DBNmodel tends to be stable,
so the number of iterations k2 set by the prediction process is
set to 3000 times.

b: COMPARISON BETWEEN DIFFERENT SELECTION
METHODS
The WAT training data and test data are substituted into the
mRMR-BPNN model, the GA-BPNN model, and the HFS
model. The absolute error comparison between the predicted
values and the true values of the eight wafer sets is shown
in FIGURE 6 below. Comparing the yield predictions of dif-
ferent Lot wafers, the error of three models in the Lot_ID_A
data set are significantly higher than those of other groups,
and the main reason is that the wafer of Lot_ID_A batch
belongs to the trial production stage of wafer production,
and the process of wafer production have not been stabilized.
After the process technology are stable, the wafer yield error
value is generally reduced. So, the wafer yield prediction
error value produced in the middle and late stages is gradually
reduced and tends to be stable. However, for each set of Lot
wafers, the predicted absolute error values of the three yield
prediction models are different obviously, the HFS method
has the lowest prediction error value and is better than the
other two comparison methods.

c: SCREENING RESULT COMPARATIVE TEST
The HFS method proposed in this paper needs to use the
DBN model to predict the yield value. In order to effectively
evaluate the prediction effect, we added the Mean Square
Error (MSE) and the R2 value evaluation index based on
the MARE indicator. Furthermore, the number of features
selected in the case of the minimum MARE is selected as
the validity of the feature selection model. Therefore, from
the Table 3 we can see that the MARE and MES values of the
HFS model are smaller than the other two models, and higher
R2 values can be obtained under the same conditions, so the
HFS model has a more stable prediction effect.

At the same time, we separately predict the wafer yields of
the eight sets of wafers and record the time consuming on
each training and test [33]. As can be seen from the table
below, the time consumption of the HFS model is between
the other two models. Compared to the filter model, the HFS
model takes a relatively long time, but is much smaller than
the wrapper model. Therefore, the HFS model has higher
credibility from the perspective of time and prediction error.

Since the HFS method is combined by filtering
pre-screening and wrapped selection process, when the HFS
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FIGURE 6. Comparison of absolute error prediction for each model of 8 sets of wafers.

TABLE 3. Predictive model accuracy and time complexity.

TABLE 4. Number of features of parameter screening in two stages.

is implemented, the number of features selected by the inter-
mediate pre-screening process can be obtained. Therefore,

the number of features pre-screened by the filter model
and the number of features remaining through the wrapper
selection process are as shown in Table 4 below. we can
see that the maximum number of features remaining after
pre-screening is 158 parameters, and the minimum is only
131 parameters. Comparedwith the original 432WAT param-
eters, the unrelated noise features can be greatly filtered.
However, the number of features remaining after the further
wrapped process is 62 at most, and 51 at least. Therefore,
from the perspective of the minimum parameter number, the
HFS method can effectively ensure this point, and realize
the effect of reflecting the actual wafer yield with fewer key
parameters. What’s more, it can be seen from the analysis
of the experimental results that by the HFS method, of the
432 related WAT parameters, only less than one-third of the
WAT parameters have an impact on wafer yield. Moreover,
the HFS method can achieve smaller prediction error and
higher prediction accuracy with the least number of input
features, and thus has more significant advantages.
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VI. CONCLUSION
In this paper, for the problems of the high dimension of
WAT parameters, strong redundancy between data, and the
key parameters are difficult to obtained, a WAT parameter
identification method based on HFS method is proposed.
Based on the design of the mRMR-MI filtering parame-
ter pre-screening process, the GA-DBN model is designed.
Relevance analysis of single WAT parameter variable and
wafer yield is achieved by the mRMR-MI method, and the
relevance effect of combined WAT parameters on wafer yield
is realized by GA-DBNmodel. The experimental comparison
and analysis showing the certain superiority.

The contributions of this paper are as follows:
• Afiltering parameter pre-screening method based onMI
is designed. TheWAT parameters are filtered one by one
according to mRMR characteristics, and some unrelated
features are eliminated, in which case, the dimension of
dataset and subsequent calculating time can be greatly
reduced.

• A wrapped key parameter identification model based
on GA-DBN is designed. The coding and optimization
of combined candidate input parameters are realized
by GA. Then, the DBN model is used to predict the
wafer yield. In which case, the wrapped feature selection
of key WAT parameters is implemented in closed loop
form.

• The Filtering feature selection method and the wrapped
feature selection method are combined to form the HFS
method, and theHFSmodel considers the effect of single
WAT parameters and the combined WAT parameters on
wafer yield, which can not only improve the time effi-
ciency of the algorithm, but also significantly improve
the effect of key parameter recognition.

• The proposed HFS method can effectively filter the
noise parameters, and achieve accurate prediction of
wafer yield with less key WAT parameters input. There-
fore, wafer manufacturers can use this method to predict
wafer yields with less keyWAT parameters to reduce test
damage for wafers and equipment investment.
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