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ABSTRACT This paper concerns the robust synchronization problems for discrete-time coupled neural
networks with discrete time delay and distributed time delays. Inner parameters in individual neural network
are subject to be uncertain and both coupled matrixes and weight matrixes are supposed to switch from one
mode to another because of the markovian jumping chain. Mixed time delays contain discrete and distributed
time delays and the mixed time delays not only exist in the individual neural cell, but also exist in the coupled
cells. By using the novel Lyapunov-Krasovskii functional method and Kronecker product as tools, mean
square stability conditions are provided in terms of linear matrix inequalities. In numerical simulations, two
examples (with and without unknown parameters) are given and simulation results show the robustness and
effectiveness of our methods.

INDEX TERMS Discrete-time coupled neural networks, Markovian jumping chain, mixed time delays,
linear matrix inequality, Lyapunov-Krasovskii functional method.

I. INTRODUCTION
In the past decades, dynamical neural networks have been
widely applied in a variety of areas, such as signal pro-
cessing, image processing, pattern recognition, combinatorial
optimization problems and so on (see, for instance [1]–[5]).
In the study of such kind of dynamical neural networks,
complicated dynamics (e.g. chaos, which has been deeply
studied in low dimensional system and single system) attract
researchers in recent years. Especially, since Pecora and Car-
roll achieved synchronization between two chaotic oscilators
by PC method and proposed the concept of chaotic syn-
chronization for the first time [6], synchronization, as an
effective way, has attracted people’s attention in the research
of chaotic systems, coupled spatiotemporal chaotic systems,
dynamical neural networks and complex dynamical networks
(see [7]–[12] and references therein).

It is worth pointing out that information latching problems
commonly exist in neural networks and can be handled by
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extracting finite-state patterns [13].Markovian jumping chain
is a finite state set and can govern the switching between
different modes. So for a class of neural networks with
finite states, markovian jumping chain is an effective tool to
deal with the mode switching problems. Recently, dynamical
properties with markovian jumping chain have been applied
into the research of dynamical recurrent neural networks,
complex dynamical networks and other complicated dynam-
ical networks [14]–[18].

On the other hand, because of the finite speed of infor-
mation transmission and traffic jam in networks, time delays
commonly exists in the dynamical networks. Thus, the study
of dynamic properties with time delay is of great significance
and importance. Time delays in the neural dynamical net-
works can be generally divided into discrete time delay and
distributed time delay. Comparedwith the study of distributed
time delay, behaviors with discrete time delay in the neural
networks are widely studied in the past few years and a lot
of sufficient conditions to make systems convergence are
achieved. However, due to the parallel pathways of a num-
ber of lengths and axon sizes in networks [19], distributed
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time delays attract more and more researchers’ attentions.
Recently, dynamic behaviors with mixed time delays (dis-
crete time delay and distributed time delay) attract people’s
initial interests [20]–[22]. Compared with continuous net-
work, discrete-time neural network has more applications in
digital field and attract people’s attentions [23]–[28]. How-
ever, the aforementioned discussions about the discrete neural
network are not universal because mixed time delays exist not
only in the inner neural cells but also in the outer coupled con-
nections. In addition, parameters in real network are always
unknown or uncertain and the neural network topology is not
constant. This means practical discrete neural network should
be established with mixed delays, unknown parameters and
unfixed topology. The neural networks model in our study
comes from the novel continuous coupled neural networks
proposed by Zhang et al. [29] and it is convinced that this
novel coupled neural network is an ideal model.

Although some sufficient conditions for stability prob-
lems of discrete neural networks have been derived by some
researchers, as far as we know, there has been no literatures
investigate the synchronization problem for discrete-time
coupled Markovian jumping neural networks with unknown
parameters and mixed time-delays both in the inner neural
cell and in the outer coupled neural cells. Motivated by above
discussions, this paper considers the stability analysis and
robust synchronization problems for a class of discrete-time
coupled Markovian jumping neural networks with mixed
time-delays. Contributions can be listed as follows: 1. Mixed
time delays not only exist in the individual neural cell, but also
exist in the coupled links between different cells. 2. Param-
eters in the individual neural cell are subject to unknown. 3.
System parameters of the discrete coupled neural networks
are switching according to the Markov jumping chain.

The rest paper is organized as follows. Section 2 introduces
the basic models, preliminaries and lemmas. In section 3,
stability analysis and sufficient conditions with LMI (Lin-
ear matrix inequality) are presented. Section 4 gives some
numerical simulations and examples to show the robustness
and effectiveness of our methods. Finally, some concluding
remarks are given in section 5.
Notations: Throughout the paper, Rn represents the

n-dimensional Euclidean space. Rn×m is the set of n×m real
matrices. T means the transpose of the corresponding matrix
and the symmetric matrix X ≥ 0 (respectively, X > 0) means
thatX is positive semidefinite (respectively, positive definite).
I denotes the identity matrix. A⊗B stands for the Kronecker
product of matrices Aand B; diag{· · · } represents a block-
diagonal matrix and ∗ is used to represent a term induced by
symmetry. E[x] represents the expectation of x and E[y|x]
means the expectation of y on condition x. If not explicitly
stated, matrices dimensions are assumed to be compatible for
algebraic operations.

II. THE SYSTEM MODEL AND PRELIMINARIES
In this paper, based on the structure of coupled neural net-
works with mixed time-delays presented in [29], we consider

the following neural networks consisting of Ncoupled nodes
with mixed time delays:

xi(k + 1) = −J̃r(k)xi(k)+ Ãr(k)f (xi(k))

+ B̃r(k)h(xi(k − τ1,r(k)))

+ C̃r(k)

τ2,r(k)∑
v=1

o(xj(k − v))

+

N∑
j=1

G(1)
ij D

(1)
r(k)xj(k)

+

N∑
j=1

G(2)
ij D

(2)
r(k)xj(k − τ1,r(k))

+

N∑
j=1

G(3)
ij D

(3)
r(k)

τ2,r(k)∑
v=1

xj(k − v), (1)

where nonlinear functions are

f (xi(k)) = (f1(xi1(k)), f2(xi2(k)), · · · , fn(xin(k)))T ,

h(xi(k)) = (h1(xi1(k)), h2(xi2(k)), · · · , hn(xin(k)))T ,

o(xi(k)) = (o1(xi1(k)), o2(xi2(k)), · · · , on(xin(k)))T ,

xi(k) = (xi1(k), xi2(k), · · · , xin(k))T ∈ Rn, i = 1, 2, · · · ,W
is the state vector of ith neural cell at kth iteration. W is the
number of neural cells and J̃r(k) is the unknown state feedback
diagonal matrix. Ãr(k), B̃r(k), C̃r(k) ∈ Rn×n are unknown
connection weight matrices in mode r(k). r(k)(k ≥ 0) is
a discrete Markovian process and take values in the finite
state set S = {1, 2, · · · ,N }with probability transition matrix
5 = (πab)N×N given by

Pr{r(k + 1) = b|r(k) = a} =

{
πab, a 6= b
1+ πab, a = b,

where πab ≥ 0(a, b ∈ S) is the transition probability from
mode ato mode b and

πaa = −

N∑
b=1,b 6=a

πab,
_
π = min{πaa|a ∈ S}.

For convenience, we set r(k) = m. G(ι)
= (G(ι)

ij )W×W , ι =
1, 2, 3 represents outer coupling matrices between neural
cells and satisfies zero row sum and symmetrical, that is to
say

G(ι)
ii = −

N∑
j=1,j 6=i

G(ι)
ij , i, j = 1, 2, · · · ,M

and G(ι)
ij = G(ι)

ji ≥ 0, i 6= j. D(ι)
m ∈ Rn×n is the inner coupling

matrix in mode r(k). τ1,m represents the discrete time delay
and τ2,m is the distributed time delay in mode m. The mixed
time delays satisfy

_
τ 1 ≤ τ1,m ≤

^
τ 1,

_
τ 2 ≤ τ2,m ≤

^
τ 2,

where _
τ 1,

^
τ 1,

_
τ 2 and ^

τ 2 are known positive integers.
In mode m, the individual unknown parameters are repre-
sented as J̃m = Jm+1Jm, Ãm = Am+1Am, B̃m = Bm+1Bm
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and C̃m = Cm +1Cm, where Jm, Am, Bm and Cm are certain
matrices. Parameter uncertainties can be expressed as

[1Jm 1Am 1Bm 1Cm ] = Mmϒm[EJm E
A
m E

B
m E

C
m ],

where Mm,EJm,E
A
m,E

B
m and ECm are known constant matri-

ces in mode m and ϒm is unknown diagonal matrix which
satisfies ϒT

mϒm ≤ I .
For convenience, we set

F(x(k)) = (f T (x1(k)), f T (x2(k)), · · · , f T (xW (k)))T ,

H (x(k)) = (hT (x1(k)), hT (x2(k)), · · · , hT (xW (k)))T ,

O(x(k)) = (oT (x1(k)), oT (x2(k)), · · · , oT (xW (k)))T ,

and use the Kronecker product to rewrite the system (1) in
mode a as

xi(k + 1)

= −(IW ⊗ J̃a)xi(k)+ (IW ⊗ Ãa)f (xi(k))

+ (IW ⊗ B̃a)h(xi(k − τ1,a))+ (IW ⊗ C̃a)
τ2,a∑
v=1

o(xi(k − v))

+ (G(1)
⊗ D(1)

a )xj(k)+ (G(2)
⊗ D(2)

a )xj(k − τ1,a)

+ (G(3)
⊗ D(3)

a )
τ2,a∑
v=1

xj(k − v) (2)

where IW is a W ×W identity matrix.
In this paper, we set the following assumptions, lemmas

and definitions.
Assumption: For above neural networks (2), F(·), H (·) and

O(·) are bounded activation function and satisfies F(0) =
H (0) = O(0) = 0, there exists constants _

ς i,
^
ς i,

_
ϕi,

^
ϕi

_

φi,
^

φi
such that

_
ς i ≤

fi(α)− fi(β)
α − β

≤
^
ς i,

_
ϕi ≤

hi(α)− hi(β)
α − β

≤
^
ϕi,

_

φi ≤

∑
j
oi(αj)−

∑
j
oi(βj)∑

j
(αj − βj)

≤
^

φi.

For convenience, we set

<1 = diag(_ς1
^
ς1,

_
ς2

^
ς2, · · · ,

_
ςn

^
ςn),

<2 = diag((_ς1+
^
ς1)

/
2,(_ς2 +

^
ς2)

/
2, · · · , (_ςn +

^
ςn)

/
2),

ℵ1 = diag(_ϕ1
^
ϕ1,

_
ϕ2

^
ϕ2, · · · ,

_
ϕn

^
ϕn),

ℵ2 = diag((_ϕ1+
^
ϕ1)
/
2(_ϕ2 +

^
ϕ2)
/
2, · · · , (_ϕn+

^
ϕn)
/
2),

=1 = diag(
_

φ1
^

φ1,
_

φ2
^

φ2, · · · ,
_

φn
^

φn),

=2 = diag((
_

φ1 +
^

φ1)
/
2(

_

φ2 +
^

φ2)
/
2, · · · , (

_

φn +
^

φn)
/
2).

Lemma 1: Vectors X and Y are in Rn, and positive semidefi-
nite matrix P ∈ Rn×n(PT = P,P ≥ 0). Then, the following
matrix inequality holds:

2XTPY ≤ XTPX + Y TPY .

Lemma 2 (Schur Complement): Given the following matrix

6 =

[
61 6T

3
63 −62

]
,

where 61is a non-singular matrix and 61 = 6
T
1 , 62 > 0and

63 is a constant matrix, then we say 61 + 6
T
3 6
−1
2 63 is the

schur complement of 6 about 61 and we have the following
conclusion:

61 +6
T
3 6
−1
2 63 < 0,

holds if and only if the following schur complement holds

6 < 0.

Lemma 3: Let⊗ be the Kronecker product, then we have the
following conclusions:
(1) (αA)⊗ B = A⊗ (αB),
(2) A⊗ (B+ C) = A⊗ B+ A⊗ C ,
(3) (A⊗ B)T = AT ⊗ BT ,
(4) (A+ B)⊗ (C + D) = (AC)⊗ (BD).

Lemma 4: For above coupled neural networks (2), ℘ =
diag(η1,η2, · · · ,ηn) is a positive semidefinite diagonal
matrix, the ith neural cell is xi = (xi1,xi2, · · · ,xin)T ∈ Rn, 1 ≤
i ≤ W , and v(xi) = (v1(xi1), v2(xi2), · · · , vn(xin))T ∈ Rn are
continuous functions satisfying aforementioned assumption
(
_

l u ≤
vu(α)−vu(β)

α−β
≤

^

l u),1 ≤ u ≤ n, one has[
xi − xj

v(xi)− v(xj)

]T
×

[
℘L1 − ℘L2
−℘L2 ℘

]
×

[
xi − xj

v(xi)− v(xj)

]
≤ 0,

1 ≤ i ≤ j ≤ W , where L1 = diag(
_

l 1
^

l 1,
_

l 2
^

l 2, · · · ,
_

l n
^

l n),
L2 = diag((

_

l 1 +
^

l 1)
/
2(
_

l 2 +
^

l 2)
/
2, · · · , (

_

l n +
^

l n)
/
2).

Proof: From Assumption, we can get[
vu(xiu)− vu(xju)−

^

l u(xiu − xju)
]

×

[
vu(xiu)− vu(xju)−

_

l u(xiu − xju)
]
≤ 0,

that is to say[
xi − xj

v(xi)− v(xj)

]T
×

 ^

l u
_

l ueueTu −

^
l u+

_
l u

2 eueTu

−

^
l u+

_
l u

2 eueTu eueTu


×

[
xi − xj

v(xi)− v(xj)

]
≤ 0

where eu denotes the unit column vector where the items in
uth row are all 1 and other items are all zeros. Because ℘ is
positive semidefinite, we can get the following inequality by

multiplying both sides by
n∑

u=1
ηu,[

xi − xj
v(xi)− v(xj)

]T
×

[
℘L1 − ℘L2
−℘L2 ℘

]
×

[
xi − xj

v(xi)− v(xj)

]
≤ 0.

This completes the proof of Lemma 4.
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Lemma 5 [29]: Consider a matrix defined as

U =


W − 1 −1 · · · −1
−1 W − 1 · · · −1
· · · · · · · · · · · ·

−1 · · · −1 W − 1


W×W

,

P ∈ Rn×n, x = (xT1 , x
T
2 , · · · , x

T
W ) and y = (yT1 , y

T
2 , · · · , y

T
W ).

Then we have

xT (U ⊗ P)y =
W∑

1≤u≤v≤W

(xi − xj)TP(yi − yj),

1 ≤ i ≤ j ≤ W .

Lemma 6 [24]: Consider a symmetric positive-semidefinite
matrix 9 ∈ Rn×n (that is to say, 9T

= 9 > 0 ), scalar
ai ≥ 0(i = 1, 2, · · · ) and vector xi ∈ Rn. We can get the
following inequality

(
+∞∑
i=1

aixi)T9(
+∞∑
i=1

aixi) ≤ (
+∞∑
i=1

ai)
+∞∑
i=1

aixTi 9xi.

III. STABILITY ANALYSIS AND MAIN RESULTS
In this section, we will deal with the synchronization problem
of the aforementioned coupled neural networks (2). First,
we will give the main result in this paper as follows.
TheoremUnder the aforementionedAssumption, inmode a,

the dynamical neural networks (2) will be robustly synchro-
nized in the mean square if there exist positive matrices
Pa > 0, Q > 0 and R > 0, three diagonal matrices 9 > 0,
4 > 0 and � > 0, and scalar λ > 0 such that the following
LMI holds for all 1 ≤ i ≤ j ≤ W .

8ij =



511 512 513 514 515 516 − JTa P̄a 0
∗ 522 523 0 525 0 0 0
∗ ∗ 533 0 0 536 0 0
∗ ∗ ∗ 544 545 546 ATa P̄a 0
∗ ∗ ∗ ∗ 555 556 BTa P̄a 0
∗ ∗ ∗ ∗ ∗ 566 CT

a P̄a 0
∗ ∗ ∗ ∗ ∗ ∗ 577 P̄aMa
∗ ∗ ∗ ∗ ∗ ∗ 0 − λI


(3)

where

r(k) = a,

511 = W (G(1)
ij − G

(1)
ij G

(1)
ij )D

(1)T
a P̄aD(1)

a − Pa +$Q+ σaR

−9<1 + λ(EJa )
TEJa

522 = W (G(2)
ij − G

(2)
ij G

(2)
ij )D

(2)T
a P̄aD(2)

a − Q−4ℵ1,

533 = W (G(3)
ij − G

(3)
ij G

(3)
ij )D

(3)T
a P̄aD(3)

a − R
/
τ2,a −�=1,

544 = −9 + λ(EAa )
TEAa , 555 = −4+ λ(EBa )

TEBa ,

566 = −�+ λ(ECa )
TECa ,

577 = −(1+WG
(1)
ij +WG

(2)
ij +WG

(3)
ij )
−1P̄a,

512 = −WG
(1)
ij G

(2)
ij D

(1)T
a P̄aD(2)

a ,

513 = −WG
(1)
ij G

(3)
ij D

(1)T
a P̄aD(3)

a ,514 = 9<2 − λ(EJa )
TEAa ,

515 = −λ(EJa )
TEBa , 516 = −λ(EJa )

TECa ,

523 = −WG
(2)
ij G

(3)
ij D

(2)T
a P̄aD(3)

a ,525 = 4ℵ2,536 = �=2,

545 = λ(EAa )
TEBa ,546 = λ(EAa )

TECa ,556 = λ(EBa )
TECa .

$ = (1− _
π )(^τ − _

τ )+ 1, P̄a =
N∑
b=1

πabPb

σa = τ2,a + (1− πii)(
^
τ 2 −

_
τ 2)

+
1
2
(1− _

π )(^τ 2 −
_
τ 2)(

^
τ 2 +

_
τ 2 − 1),

Proof: In order to deal with the synchronization prob-
lem of the neural networks (2), we introduce the following
Lyapunov-Krasovskii functional:

V (k, a) = V1(k, a)+ V2(k, a)+ V3(k, a)

+V4(k, a)+ V5(k, a), (4)

where

V1(k, a) = xT (k)(U ⊗ Pa)x(k), (5)

V2(k, a) =
k−1∑

v=k−τ1,a

xT (v)(U ⊗ Q)x(v), (6)

V3(k, a) = (1− _
π )

^
τ 1,a−1∑
ρ=

_
τ 1,a

k−1∑
v=k−ρ

xT (v)(U ⊗ Q)x(v), (7)

V4(k, a) =
τ2,a∑
ρ=1

k−1∑
v=k−ρ

xT (v)(U ⊗ R)x(v), (8)

V5(k, a) = (1− _
π )

^
τ 2,a∑

γ=
_
τ 2,a+1

γ−1∑
ρ=1

k−1∑
v=k−ρ

xT (v)(U ⊗ R)x(v),

(9)

and the matrix U is defined in the Lemma 5. By taking
the mathematical expectation, we can get the difference of
V (k, a) along the solutions of system (2)

E[V (k + 1, r(k + 1)

= b|r(k) = a)− V (k, a)]

=E[V1(k+1, b|a)−V1(k, a)]+E[V2(k+1, b|a)−V2(k, a)]

+E[V3(k + 1, b|a)− V3(k, a)]

+E[V4(k + 1, b|a)− V4(k, a)]

+E[V5(k + 1, b|a)− V5(k, a)], (10)

where

E[V1(k + 1, b|a)− V1(k, r(k))]

=

N∑
b=1

πabxT (k+1)(U ⊗ Pb)x(k + 1)−xT (k)(U ⊗ Pa)x(k)

=
[
− (IW ⊗ J̃a)xi(k)+ (IW ⊗ Ãa)f (xi(k))+ (IW ⊗ B̃a)

× h(xi(k − τ1,a))+ (IW ⊗ C̃a)
τ2,a∑
v=1

o(xi(k − v))
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+ (G(1)
⊗ D(1)

a )xj(k)+ (G(2)
⊗ D(2)

a )xj(k − τ1,r(k))

+ (G(3)
⊗ D(3)

a )
τ2,a∑
v=1

xj(k − v)
]T

× (U ⊗ P̄a)
[
− (IW ⊗ J̃a)xi(k)+ (IW ⊗ Ãa)f (xi(k))

+ (IW ⊗ B̃a)h(xi(k − τ1,a))

+ (IW ⊗ C̃a)
τ2,a∑
v=1

o(xi(k − v))+ (G(1)
⊗ D(1)

a )xj(k)

+ (G(2)
⊗ D(2)

a )× xj(k − τ1,r(k))

+ (G(3)
⊗ D(3)

a )
τ2,a∑
v=1

xj(k − v)
]

− xT (k)(U ⊗ Pa)x(k)

= ζ T (k, a)2T (a)P̄a2(a)ζ (k, a)− xT (k)(U ⊗ Pa)x(k),

(11)

and vector in the mathematical expectation (11) can be
represented as

ζ (k, a) =

[
xT (k), xT (k − τ1,a),

τ2,a∑
v=1

xT (k − v), f T (x(k)),

hT (x(k − τ1,a)),
τ2,a∑
v=1

oT (xi(k − v))

]
.

2(a) =
[
−J̃a 0 0 Ãa B̃a C̃a

]
.

And other expectations are listed as:

E[V2(k + 1, r(k + 1) = b|r(k) = a)− V2(k, r(k))]

=

N∑
b=1

πab

k∑
v=k+1−τ1,b

xT (v)(U ⊗ Q)x(v)

−

k−1∑
v=k−τ1,a

xT (v)(U ⊗ Q)x(v)

= xT (k)(U ⊗ Q)x(k)+
N∑
b=1

πab

k−1∑
v=k+1−τ1,b

xT (v)(U ⊗ Q)x(v)

− xT (k − τ1,a)(U ⊗ Q)x(k − τ1,a)

−

k−1∑
v=k+1−τ1,a

xT (v)(U ⊗ Q)x(v)

= xT (k)(U ⊗ Q)x(k)− xT (k − τ1,a)(U ⊗ Q)x(k − τ1,a)

+

∑
b 6=a

πab[
k−1∑

v=k+1−τ1,b

xT (v)(U ⊗ Q)x(v)

−

k−1∑
v=k+1−τ1,a

xT (v)(U ⊗ Q)x(v)]

≤ xT (k)(U ⊗ Q)x(k)− xT (k − τ1,a)(U ⊗ Q)x(k − τ1,a)

+

∑
b 6=a

πab

k−_τ 1∑
v=k+1−^τ 1

xT (v)(U ⊗ Q)x(v)

≤ xT (k)(U ⊗ Q)x(k)− xT (k − τ1,a)(U ⊗ Q)x(k − τ1,a)

+ (1− _
π )

k−_τ 1∑
v=k+1−^τ 1

xT (v)(U ⊗ Q)x(v), (12)

E[V3(k + 1, r(k + 1) = b|r(k) = a)− V3(k, r(k))]

= (1− _
π )[

^
τ 1−1∑
ρ=

_
τ 1

k∑
v=k+1−ρ

xT (v)(U ⊗ Q)x(v)

−

^
τ 1−1∑
ρ=

_
τ 1

k−1∑
v=k−ρ

xT (v)(U ⊗ Q)x(v)]

= (1− _
π )

^
τ 1−1∑
ρ=

_
τ 1

[
k∑

v=k+1−ρ

xT (v)(U ⊗ Q)x(v)

−

k−1∑
v=k−ρ

xT (v)(U ⊗ Q)x(v)]

= (1− _
π )

^
τ 1−1∑
ρ=

_
τ 1

[xT (k)(U ⊗ Q)x(k)

− xT (k − ρ)(U ⊗ Q)x(k − ρ)]

= (1− _
π )(^τ 1 −

_
τ 1)xT (k)(U ⊗ Q)x(k)

− (1− _
π )

k−_τ 1∑
v=k+1−^τ 1

xT (v)(U ⊗ Q)x(v), (13)

E[V4(k + 1, r(k + 1) = b|r(k) = a)− V4(k, r(k))]

=

N∑
b=1

πab

τ2,b∑
ρ=1

k∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v)

−

τ2,a∑
ρ=1

k−1∑
v=k−ρ

xT (v)(U ⊗ R)x(v)

= πaa(
τ2,a∑
ρ=1

k∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v)

−

τ2,a∑
ρ=1

k−1∑
v=k−ρ

xT (v)(U ⊗ R)x(v))

+

∑
b 6=a

πab(
τ2,b∑
ρ=1

k∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v)

−

τ2,a∑
ρ=1

k−1∑
v=k−ρ

xT (v)(U ⊗ R)x(v))

= πaa(
τ2,a∑
ρ=1

k∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v)

−

τ2,a∑
ρ=1

k−1∑
v=k−ρ

xT (v)(U ⊗ R)x(v))
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+

∑
b 6=a

πab(
τ2,a∑
ρ=1

k∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v)

−

τ2,a∑
ρ=1

k−1∑
v=k−ρ

xT (v)(U ⊗ R)x(v))

+

∑
b 6=a

πab(
τ2,b∑
ρ=1

k∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v)

−

τ2,a∑
ρ=1

k∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v))

≤

τ2,a∑
ρ=1

(xT (k)(U ⊗ R)x(k)− xT (k − ρ)(U ⊗ R)x(k − ρ))

+

∑
b 6=a

πab(

^
τ 2∑

ρ=
_
τ 2+1

k∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v))

= τ2,axT (k)(U ⊗ R)x(k)−
τ2,a∑
ρ=1

xT (k − ρ)(U ⊗ R)x(k − ρ)

+ (1− πaa)

^
τ 2∑

ρ=
_
τ 2+1

k∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v)

≤ (τ2,a + (1− πaa)(
^
τ 2 −

_
τ 2))xT (k)(U ⊗ R)x(k)

−

τ2,a∑
ρ=1

xT (k − ρ)(U ⊗ R)x(k − ρ)

+ (1− _
π )

^
τ 2∑

ρ=
_
τ 2+1

k−1∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v), (14)

E[V5(k + 1, r(k + 1) = b|r(k) = a)− V5(k, r(k))]

= (1− _
π )[

^
τ 2∑

γ=
_
τ 2+1

γ−1∑
ρ=1

k∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v)

−

^
τ 2∑

γ=
_
τ 2+1

γ−1∑
ρ=1

k−1∑
v=k−ρ

xT (v)(U ⊗ R)x(v)]

= (1− _
π )

^
τ 2∑

γ=
_
τ 2+1

γ−1∑
ρ=1

(xT (k)(U ⊗ R)x(k)

− xT (k − ρ)(U ⊗ R)x(k − ρ))

= (1− _
π )[

1
2
(^τ 2 −

_
τ 2)(

^
τ 2 +

_
τ 2 − 1)xT (k)(U ⊗ R)x(k)

−

^
τ 2∑

ρ=
_
τ 2+1

k−1∑
v=k+1−ρ

xT (v)(U ⊗ R)x(v)]. (15)

For convinence, we set x(k) as index 1, x(k − τ1,a)

as index 2,
τ2,a∑
v=1

x(k − v) as index 3, f (x(k)) as index 4,

h(x(k − τ1,a)) as index 5 and
τ2,a∑
v=1

o(xi(k − v)) as index 6.

Substitute expectations (11)-(15) into system (10), one can
get the quadratic terms and cross terms listed as follows:

E(V1)11 = xT (k)[U ⊗ (J̃Ta P̄aJ̃a)− U ⊗ Pa − (WG(1))
⊗ (D(1)T

a P̄aJ̃a)− (WG(1))⊗ (J̃Ta P̄aD
(1)
a )

+ (WG(1)G(1))⊗ (D(1)T
a P̄aD̃(1)

a )]x(k),

E(V1)22 = xT (k − τ1,a)[(WG(2)G(2))

⊗ (D(2)T
a P̄aD(2)

a )]x(k − τ1,a),

E(V1)33 =
τ2,a∑
v=1

xT (k − v)[(WG(3)G(3)

⊗ (D(3)T
a P̄aD(3)

a )]
τ2,a∑
v=1

x(k − v),

E(V1)44 = FT (x(k))[U ⊗ (ÃTa P̄aÃa)]F(x(k))

E(V1)55 =HT(x(k−τ1,a))[U⊗(B̃Ta P̄aB̃a)]H (x(k−τ1,a)),

E(V1)66 =
τ2,a∑
v=1

OT (x(k − v))[U ⊗ (C̃T
a P̄aC̃a)]

×

τ2,a∑
v=1

O(x(k − v)),

E(V1)12 = 2xT (k)[(WG(1)G(2))⊗ (D(1)T
a P̄aD(2)

a )

− (WG(2))⊗ (J̃Ta P̄aD
(2)
a )]x(k − τ1,a),

E(V1)13 = 2xT (k)[(WG(1)G(3))⊗ (D(1)T
a P̄aD(3)

a )

− (WG(3))⊗ (J̃Ta P̄aD
(3)
a )]

τ2,a∑
v=1

x(k − v),

E(V1)14 = 2xT (k)[(WG(1))⊗ (D(1)T
a P̄aÃa)

−U ⊗ (J̃Ta P̄aÃa)]F(xi(k)),

E(V1)15 = 2xT (k)[(WG(1))⊗ (D(1)T
a P̄aB̃a)

−U ⊗ (J̃Ta P̄aB̃a)]H (xi(k − τ1,a)),

E(V1)16 = 2xT (k)[(WG(1))⊗ (D(1)T
a P̄aC̃a)

−U ⊗ (J̃Ta P̄aC̃a)]
τ2,a∑
v=1

O(x(k − v)),

E(V1)23 = 2x(k − τ1,a)T [(WG(2)G(3))⊗ (D(2)T
a P̄aD(3)

a )]

×

τ2,a∑
v=1

x(k − v),

E(V1)24 = 2x(k−τ1,a)T [(WG(2))⊗ (D(2)T
a P̄aÃ)]F(xi(k))

E(V1)25 = 2x(k − τ1,a)T [(WG(2))

⊗ (D(2)T
a P̄aB̃)]H (xi(k − τ1,a)),

E(V1)26 = 2x(k − τ1,a)T [(WG(2))

⊗ (D(2)T
a P̄aC̃)]

τ2,a∑
v=1

O(x(k − v)),

E(V1)34 = 2
τ2,a∑
v=1

x(k−v)T [(WG(3))⊗(D(3)T
a P̄aÃ)]F(xi(k)),
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E(V1)35 = 2
τ2,a∑
v=1

x(k − v)T [(WG(3))

⊗ (D(3)T
a P̄aB̃)]H (xi(k − τ1,a)),

E(V1)36 = 2
τ2,a∑
v=1

x(k − v)T [(WG(3))

⊗ (D(3)T
a P̄aC̃)]

τ2,a∑
v=1

O(x(k − v)),

E(V1)45 = 2FT (x(k))[U⊗(ÃTa P̄aB̃a)]×H (xi(k−τ1,a)),

E(V1)46 = 2FT (x(k))[U⊗(ÃTa P̄aC̃a)]×
τ2,a∑
v=1

O(x(k−v)),

E(V1)56 = 2HT (xi(k − τ1,a))[U

⊗ (B̃Ta P̄aC̃a)]
τ2,a∑
v=1

O(x(k − v)),

E(V2,V3)11 = $xT (k)(U ⊗ Q)x(k),

E(V2,V3)22 = −xT (k − τ1,a)(U ⊗ Q)x(k − τ1,a),

E(V4,V5)11 = σOT (x(k))(U ⊗ R)O(x(k),

E(V4,V5)33 = −
τ2,a∑
v=1

xT (k − v)(U ⊗ R)Ox(k − v).

where

E(V2,V3) = E(V2)+ E(V3)

E(V4,V5) = E(V4)+ E(V5).

Other terms in E(V1), E(V2,V3) and E(V4,V5) are zeros.
From Lemma 6 and E(V4,V5)33, it is easy to get the

following inequality

E(V4,V5)33 ≤ −
1
τ2,a

τ2,a∑
v=1

xT (k − v)(U ⊗ R)
τ2,a∑
v=1

x(k − v).

(16)

And based on Lemma5 and system (16), the above nonzero
terms are translated into

E(V1)11 =
∑

1≤i≤j≤W

{(xi(k)− xj(k))T [J̃Ta P̄aJ̃a

+WG(1)
ij (D

(1)T
a P̄aJ̃a + J̃Ta P̄aD

(1)
a )− Pa

−WG(1)
ij G

(1)
ij D

(1)T
a P̄aD(1)

a ](xi(k)− xj(k))},

E(V1)22 =
∑

1≤i≤j≤W

{(xi(k − τ1,a)−xj(k − τ1,a))T

× [−WG(2)
ij G

(2)
ij D

(2)T
a P̄aD(2)

a ](xi(k − τ1,a)

− xj(k − τ1,a))},

E(V1)33 =
∑

1≤i≤j≤W

{
(
τ2,a∑
v=1

(xi(k − v)− xj(k − v)))T

× [−WG(3)
ij G

(3)
ij D

(3)T
a P̄aD(3)

a ](
τ2,a∑
v=1

(xi(k − v)

− xj(k − v)))
}
,

E(V1)44 =
∑

1≤i≤j≤W

{(f (xi(k))− f (xj(k)))T

× [ÃTa P̄aÃa](f (xi(k))− f (xj(k)))},

E(V1)55 =
∑

1≤i≤j≤W

{
(h(xi(k − τ1,a))−h(xj(k − τ1,a)))T

× [B̃Ta P̄aB̃a](h(xi(k−τ1,a))−h(xj(k−τ1,a)))
}
,

E(V1)66 =
∑

1≤i≤j≤W

{(
τ2,a∑
v=1

(o(xi(k − v))− o(xj(k − v))))T

× [C̃T
a P̄aC̃a](

τ2,a∑
v=1

(o(xi(k−v))−o(xj(k−v))))},

E(V1)12 = 2
∑

1≤i≤j≤W

{(xi(k)− xj(k))T [−WG
(1)
ij G

(2)
ij

×D(1)T
a P̄aD(2)

a +WG
(2)
ij J̃

T
a P̄aD

(2)
a ]

× (xi(k − τ1,a)− xj(k − τ1,a))},

E(V1)13 = 2
∑

1≤i≤j≤W

{(xi(k)− xj(k))T [−WG
(1)
ij G

(3)
ij D

(1)T
a

× P̄aD(3)
a +WG

(3)
ij J̃

T
a P̄aD

(3)
a ](

τ2,a∑
v=1

(xi(k − v)

− xj(k − v)))},

E(V1)14 = 2
∑

1≤i≤j≤W

{(xi(k)− xj(k))T [−WG
(1)
ij D

(1)T
a ¯

×PaÃa − J̃Ta P̄aÃa](f (xi(k))− f (xj(k)))},

E(V1)15 = 2
∑

1≤i≤j≤W

{(xi(k)− xj(k))T [−WG
(1)
ij D

(1)T
a

× P̄aB̃a − J̃Ta P̄aB̃a](h(xi(k − τ1,a))

− h(xj(k − τ1,a)))},

E(V1)16 = 2
∑

1≤i≤j≤W

{(xi(k)− xj(k))T [−WG
(1)
ij D

(1)T
a

× P̄aC̃a − J̃Ta P̄aC̃a](
τ2,a∑
v=1

(o(xi(k − v))

− o(xj(k − v))))},

E(V1)23 = 2
∑

1≤i≤j≤W

{(xi(k − τ1,a)− xj(k − τ1,a))T

× [−WG(2)
ij G

(3)
ij D

(2)T
a P̄aD(3)

a ](
τ2,a∑
v=1

(xi(k − v)

− xj(k − v)))},

E(V1)24 = 2
∑

1≤i≤j≤W

{(xi(k − τ1,a)− xj(k − τ1,a))T

× [−WG(2)
ij Ã

T
a P̄aD

(2)
a ](f (xi(k))− f (xj(k)))},

E(V1)25 = 2
∑

1≤i≤j≤W

{(xi(k − τ1,a)− xj(k − τ1,a))T

× [−WG(2)
ij B̃

T
a P̄aD

(2)
a ](h(xi(k − τ1,a))
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− h(xj(k − τ1,a)))},

E(V1)26 = 2
∑

1≤i≤j≤W

{(xi(k − τ1,a)− xj(k − τ1,a))T

× [−WG(2)
ij C̃

T
a P̄aD

(2)
a ](

τ2,a∑
v=1

(o(xi(k − v))

− o(xj(k − v))))},

E(V1)34 = 2
∑

1≤i≤j≤W

{(
τ2,a∑
v=1

(xi(k − v)− xj(k − v)))T

× [−WG(3)
ij Ã

T
a P̄aD

(3)
a ](f (xi(k))− f (xj(k)))},

E(V1)35 = 2
∑

1≤i≤j≤W

{(
τ2,a∑
v=1

(xi(k − v)− xj(k − v)))T

× [−WG(3)
ij B̃

T
a P̄aD

(3)
a ](h(xi(k − τ1,a))

− h(xj(k − τ1,a)))},

E(V1)36 = 2
∑

1≤i≤j≤W

{(
τ2,a∑
v=1

(xi(k − v)− xj(k − v)))T

× [−WG(3)
ij C̃

T
a P̄aD

(3)
a ](

τ2,a∑
v=1

(o(xi(k − v))

− o(xj(k − v))))},

E(V1)45 = 2
∑

1≤i≤j≤W

{(f (xi(k))− f (xj(k)))T [ÃTa P̄aB̃a]

× (h(xi(k − τ1,a))− h(xj(k − τ1,a)))},

E(V1)46 = 2
∑

1≤i≤j≤W

{(f (xi(k))− f (xj(k)))T [ÃTa P̄aC̃a]

× (
τ2,a∑
v=1

(o(xi(k − v))− o(xj(k − v))))}, .

E(V2,V3)11 = ((1− π )(τ̄ − τ )+ 1)
∑

1≤i≤j≤W

{(xi(k)

− xj(k))TQ(xi(k)− xj(k))},

E(V2,V3)22 =
∑

1≤i≤j≤W

{(xi(k − τ1,a)− xj(k − τ1,a))T

× [−Q](xi(k − τ1,a)− xj(k − τ1,a))},

E(V4,V5)11 = [
1
2
(1− π )(τ̄ − τ )(τ̄ + τ − 1)+ τ2,a

+ (1− πaa)(τ̄ − τ )]
∑

1≤i≤j≤W

{(xi(k)

− xj(k))TR(xi(k)− xj(k))},

E(V4,V5)33 = −
τ2,a∑
v=1

xT (k − v)(U ⊗ R)x(k − v)

= −

∑
1≤i≤j≤W

τ2,a∑
v=1

{(xi(k − v)− xj(k − v))T

×R(xi(k − v)−xj(k − v))}

≤ −
1
τ2,a

∑
1≤i≤j≤W

{(
τ2,a∑
v=1

(xi(k − v)− xj(k − v)))T

×R(
τ2,a∑
v=1

(xi(k − v)− xj(k − v)))}

=

∑
1≤i≤j≤W

{(
τ2,a∑
v=1

(xi(k − v)− xj(k − v)))T

× [−
1
τ2,a

R](
τ2,a∑
v=1

(xi(k − v)− xj(k − v)))}

So the expection of the whole system is translated into

E[V (k + 1, r(k + 1) = b|r(k) = a)− V (k, a)]

=

6∑
i=1

6∑
j=1

E(V1)ij+
6∑
i=1

6∑
j=1

E(V2,V3)ij

+

6∑
i=1

6∑
j=1

E(V4,V5)ij, (17)

From Assumption, lemma 4, we can get the following
inequalities (18)-(20), shown at the bottom of this page.

For convenience, substitute Eqs. (18)-(20) into system (17)
and the expectation can be represented as

E[V (k + 1, r(k + 1) = b|r(k) = a)− V (k, a)]

=

∑
1≤i≤j≤W

{ζ Tij (k, a)[8
(1)
ij +2

T (a)P̄2(a)

−WG(1)
ij (D

(1)T
a P̄a2(a)+2T (a)P̄D(1)

a )

−WG(2)
ij (D

(2)T
a P̄a2(a)+2T (a)P̄D(2)

a )

−WG(3)
ij (D

(3)T
a P̄a2(a)+2T (a)P̄D(3)

a )]ζij(k, a)} (21)

[
xi(k)− xj(k)

f (xi(k))− f (xj(k))

]T [
9<1 −9<2
−9<2 9

] [
xi(k)− xj(k)

f (xi(k))− f (xj(k))

]
≤ 0, (18)[

xi(k − τ1,a)− xj(k − τ1,a)
h(xi(k − τ1,a))− h(xj(k − τ1,a))

]T [
4ℵ1 −4ℵ2
−4ℵ2 4

] [
xi(k − τ1,a)− xj(k − τ1,a)

h(xi(k − τ1,a))− h(xj(k − τ1,a))

]
≤ 0, (19)

τ2,a∑
v=1

(xi(k − v)− xj(k − v))

τ2,a∑
v=1

(o(xi(k − v))− o(xj(k − v)))


T [

�=1 −�=2
−�=2 �

]
τ2,a∑
v=1

(xi(k − v)− xj(k − v))

τ2,a∑
v=1

(o(xi(k − v))− o(xj(k − v)))

 ≤ 0, (20)
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where

ζij(k, a) =
[
(xi(k)− xj(k))T ,

(xi(k − τ1,a)− xj(k − τ1,a))T ,

(
τ2,a∑
v=1

(xi(k − v)− xj(k − v)))T ,

(f (xi(k))− f (xj(k)))T ,

(h(xi(k − τ1,a))− h(xj(k − τ1,a)))T ,

(
τ2,a∑
v=1

(o(xi(k − v))− o(xj(k − v))))T
]
,

and the matrix inequality is

8
(1)
ij =



5
(1)
11 5

(1)
12 5

(1)
13 5

(1)
14 0 0

∗ 5
(1)
22 5

(1)
23 0 5

(1)
25 0

∗ ∗ 5
(1)
33 0 0 5

(1)
36

∗ ∗ ∗ 5
(1)
44 0 0

∗ ∗ ∗ ∗ 5
(1)
55 0

∗ ∗ ∗ ∗ ∗ 5
(1)
66


, (22)

where

5
(1)
11 =−WG

(1)
ij G

(1)
ij D

(1)T
a P̄aD(1)

a −Pa+$Q+σaR−9<1,

5
(1)
22 = −WG

(2)
ij G

(2)
ij D

(2)T
a P̄aD(2)

a − Q−4ℵ1,

5
(1)
33 = −WG

(3)
ij G

(3)
ij D

(3)T
a P̄aD(3)

a − R
/
τ2,a −�=1,

5
(1)
44 = −9,

5
(1)
55 = −4,

5
(1)
66 = −�,

5
(1)
12 = −WG

(1)
ij G

(2)
ij D

(1)T
a P̄aD(2)

a ,

5
(1)
13 = −WG

(1)
ij G

(3)
ij D

(1)T
a P̄aD(3)

a ,

5
(1)
14 = 9<2,

5
(1)
23 = −WG

(2)
ij G

(3)
ij D

(2)T
a P̄aD(3)

a ,

5
(1)
25 = 4ℵ2,

5
(1)
36 = �=2.

By using the lemma 1 and the definition of G(ι)
ij =

G(ι)
ji ≥ 0, i 6= j, following inequalities can be represented

as ∑
1≤i≤j≤W

{ −WG(ι)
ij ζ

T
ij (k, a)(D

(ι)T
a P̄a2(a)

+2T (a)P̄D(ι)
a )ζij(k, a)}

≤

∑
1≤i≤j≤W

{WG(ι)
ij ζ

T
ij (k, a)(D

(ι)T
a P̄aD(ι)

a

+2T (a)P̄2(a))ζij(k, a)}, ι = 1, 2, 3.

So system (21) is translated into

E[V (k + 1, r(k + 1)

= b|r(k) = a)− V (k, a)]

=

∑
1≤i≤j≤W

{ζ Tij (k, a)[8
(2)
ij + (1+WG(1)

ij +WG
(2)
ij

+WG(3)
ij )2

T (a)P̄2(a)]ζij(k, a)}, (23)

where the matrix inequality is

8
(2)
ij =



5
(2)
11 5

(1)
12 5

(1)
13 5

(1)
14 0 0

∗ 5
(2)
22 5

(1)
23 0 5

(1)
25 0

∗ ∗ 5
(2)
33 0 0 5

(1)
36

∗ ∗ ∗ 5
(1)
44 0 0

∗ ∗ ∗ ∗ 5
(1)
55 0

∗ ∗ ∗ ∗ ∗ 5
(1)
66


(24)

where

5
(2)
11 = 5

(1)
11 +WG

(1)
ij D

(1)T
a P̄aD(1)

a ,

5
(2)
22 = 5

(1)
22 +WG

(2)
ij D

(2)T
a P̄aD(2)

a ,

5
(2)
33 = 5

(1)
33 +WG

(3)
ij D

(3)T
a P̄aD(3)

a .

Because ofLemma 2, the following inequality in system (23)

8
(2)
ij + (1+WG(1)

ij +WG
(2)
ij +WG

(3)
ij )2

T (a)P̄2(a) < 0,

is equals to the matrix inequality

8
(3)
ij =



5
(2)
11 5

(1)
12 5

(1)
13 5

(1)
14 0 0 − J̃T P̄a

∗ 5
(2)
22 5

(1)
23 0 5

(1)
25 0 0

∗ ∗ 5
(2)
33 0 0 5

(1)
36 0

∗ ∗ ∗ 5
(1)
44 0 0 ÃT P̄a

∗ ∗ ∗ ∗ 5
(1)
55 0 B̃T P̄a

∗ ∗ ∗ ∗ ∗ 5
(1)
66 C̃T P̄a

∗ ∗ ∗ ∗ ∗ ∗ 5
(1)
77


< 0,

(25)

where 5(1)
77 = 577. Consider that J̃m = Jm + 1Jm, Ãm =

Am +1Am, B̃m = Bm +1Bm and C̃m = Cm +1Cm, so the
uncertain part 18(3)

ij in 8(3)
ij can be defined as

18
(3)
ij = P̄(a)12(a)+12T (a)P̄T (a)

= P̄(a)12(a)+ (P̄(a)12(a))T

= P̄(a)MaϒaEa + (P̄(a)MaϒaEa)T

≤
1
λ
P̄(a)MaMT

a P̄
T (a)+ λETa E (26)

where

P̄(a) = (0 0 0 0 0 P̄a)T ,

12(a) = (−1Ja 0 0 1Aa 1Ba 1Ca),

Ea = (−EJa 0 0 EAa EBa ECa ).

And the matrix inequality (26) with uncertain parameters
is satisfied when the following matrix inequality without
uncertain parameters is satisfied.

8
(4)
ij +

1
λ
P̄(a)MaMT

a P̄
T (a) < 0, (27)
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where

8
(4)
ij =



5
(3)
11 5

(1)
12 5

(1)
13 5

(2)
14 5

(1)
15 5

(1)
16 −J

T P̄a
∗ 5

(2)
22 5

(1)
23 0 5

(1)
25 0 0

∗ ∗ 5
(2)
33 0 0 5

(1)
36 0

∗ ∗ ∗ 5
(2)
44 5

(1)
45 5

(1)
46 AT P̄a

∗ ∗ ∗ ∗ 5
(2)
55 5

(1)
56 BT P̄a

∗ ∗ ∗ ∗ ∗ 5
(2)
66 CT P̄a

∗ ∗ ∗ ∗ ∗ ∗ 5
(1)
77


, (28)

and

5
(3)
11 = 5

(2)
11 + λ(E

J
a )
TEJa , 5

(2)
44 = 5

(1)
44 + λ(E

A
a )

TEAa ,

5
(2)
55 = 5

(1)
55 + λ(E

B
a )

TEBa , 5
(2)
66 = 5

(1)
66 + λ(E

C
a )

TECa ,

5
(2)
14 = 5

(1)
14 − λ(E

J
a )
TEAa , 5

(1)
15 = −λ(E

J
a )
TEBa ,

5
(1)
16 = −λ(E

J
a )
TECa , 5

(1)
45 = λ(E

A
a )

TEBa ,

5
(1)
46 = λ(E

A
a )

TECa , 5
(1)
56 = λ(E

B
a )

TECa .

It should be noticed that, by using Lemma 2, the inequal-
ity (27) equals to matrix inequality (3). And the expecta-
tion (23) is translated into

E[V (k + 1, r(k + 1) = b|r(k) = a)− V (k, a)]

=

∑
1≤i≤j≤W

{ζ Tij (k, a)8ijζij(k, a)}, (29)

which implies that

E[V (k + 1, r(k + 1) = b|r(k) = a)− V (k, a)]

≤ λmax

∑
1≤i≤j≤W

E[
∥∥xi(k)− xj(k)∥∥2], (30)

where λmax is the maximum of all maximum eigenvalues in
different modes and λmax < 0, For n0 iterations,

E[V (k + 1, r(k + 1) = b|r(k) = a)− V (0, r(0))]

≤ λmax

n0∑
k=0

∑
1≤i≤j≤W

E[
∥∥xi(k)− xj(k)∥∥2], (31)

which means

n0∑
k=0

∑
1≤i≤j≤W

E[
∥∥xi(k)− xj(k)∥∥2] ≤ − 1

λmax
E[V (0, r(0))],

(32)

and then we can get the final conclusion that

lim
k→∞

E[
∥∥xi(k)− xj(k)∥∥2] = 0. (33)

Then the proof is completed.
Similarly, when the neural networks are in other modes,

Theorem 1 is still estabilished.

IV. NUMERICAL SIMULATIONS
In this section, example with (without) unknown parameters
are provided to demonstrate the robustness and effective of
our method. Consider the proposed discrete-time coupled
neural networks (1) without unknown parameters, matrices
will be used in the simulation are shown as follows:

Ja =
[
0.01 0
0 0.01

]
, Aa =

[
0.1 0.01
−0.02 0.2

]
,

Ba =
[

0.2 0.03
−0.01 0.3

]
, Ca =

[
0.1 0.01
0 0.1

]
,

D(1)
a =

[
0 0
0 0.1

]
, D(2)

a =

[
0.3 0
0 0.2

]
,

D(3)
a =

[
0.1 0
0 0.1

]
, Jb =

[
0.03 0
0 0.02

]
,

Ab =
[
0.1 0.05
0.02 0.3

]
, Bb =

[
0.1 0.02
−0.01 0.4

]
,

Cb =
[
0.1 −0.01
0.02 0.2

]
, D(1)

b =

[
0.2 0
0 0

]
,

D(2)
b =

[
0.2 0
0 0.3

]
, D(3)

b =

[
0.2 0
0 0.1

]
,

5 =

[
0.6 0.4
0.5 0.5

]
.

G1 = G2 = G3 =

−0.2 0.1 0.1
0.1 −0.2 0.1
0.1 0.1 −0.2

 .
In order to get better performance, we set the time delays as
τ11 = 2, τ12 = 6, τ21 = 2 and τ22 = 1 and from 5, it is
easy to get that π = 0.4. Functions in the neural networks
are defined as

f1(x) = h1(x) = o1(x) = −0.6tanh(x),

f2(x) = h2(x) = o2(x) = tanh(0.2x),

so the corresponding matrices are

<1 = ℵ1 = =1 = diag(0,0),

<2 = ℵ2 = =2 = diag(− 0.3,0.1).

By using the LMI toolbox, we can solve the LMI (3) with the
proposed matrices and parameters and the feasible results are
shown as

Pa =
[
4.7934 −0.1525
−0.1525 1.5103

]
, Pb =

[
4.6450 −0.1745
−0.1745 1.7335

]
,

Q =
[
0.4609 −0.0116
−0.0116 0.1883

]
, R =

[
0.3735 −0.0149
−0.0149 0.0889

]
,

λ = 31.8040.

91 = diag(2.9537, 0.9240), 41 = diag(1.7681, 2.0811),

�1 = diag(1.0740, 0.5777), 92 = diag(2.0079, 4.3599),

42 = diag(1.9934, 1.7133), �2 = diag(1.7939, 1.1778).

Based on the theorem 1, the discrete-time coupled neural
networks with mixed time delays will get the synchronization
and it is proved by numerical simulations. Fig. 1 and Fig. 2
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FIGURE 1. Synchronization state x in discrete-time coupled neural
networks without unknown parameters.

FIGURE 2. Synchronization state y in discrete-time coupled neural
networks without unknown parameters.

FIGURE 3. Synchronization state x in discrete-time coupled neural
networks with unknown parameters.

shows the states of discrete-time coupled neural networks
without unknown parameters. Similarly, Fig. 3 and Fig. 4
provides the states of discrete-time coupled neural networks
with unknown parameters.

FIGURE 4. Synchronization state y in discrete-time coupled neural
networks with unknown parameters.

V. CONCLUSION
The synchronization problems in a new class of universal
discrete-time coupled neural networks with inner mixed time
delays and outer mixed time delays are studied in this paper.
A novel discrete-time coupled markovian jumping neural
networks with mixed time-delays is proposed. Based on
the Lyapunov-Krasovskii functional method and Kronecker
product, we complete the analysis of stability and get the
sufficient conditionswhich can be easily solved by theMatlab
LMI toolbox. In our study, we find that the synchronization
process is related to the bounds of mixed time delays and
unknown parameters problem can be solved by using the pro-
posed method. In numerical simulations, feasible solutions of
sufficient conditions are derived and synchronization results
with(without) unknown parameters are achieved to demon-
strate the effectiveness and robustness of our method. In the
future, authors will study the continuous neural network with
Markov jumping chain and extend the discrete neural network
model by considering more complexities. In addition, more
synchronization patterns for the proposed neural network
model will be considered to enrich the study of the proposed
neural network system.
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