
SPECIAL SECTION ON INTELLIGENT INFORMATION SERVICES

Received December 20, 2019, accepted January 3, 2020, date of publication January 14, 2020, date of current version January 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2966540

Fault Localization With Weighted Test Model
in Model Transformations
PENGFEI LI , MINGYUE JIANG , (Member, IEEE), AND ZUOHUA DING , (Member, IEEE)
School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China

Corresponding author: Zuohua Ding (zouhuading@hotmail.com)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61210004, Grant 61170015,
and Grant 61802349, and in part by the Fundamental Research Funds of Zhejiang Sci-Tech University under Grant 17032184-Y and
Grant 2019Q041.

ABSTRACT Model transformations and model-driven engineering (MDE) have been applied widely
in service-oriented architecture based information systems. To support the development of such a
service-oriented information system, it is necessary to guarantee the quality of model transformations. With
the increasing complexity and scale of model transformations, debugging of model transformations becomes
more and more time-consuming and difficult, there is an increasing need to rely on efficient and accurate
fault localization approaches to help with debugging. Among the existing fault localization approaches,
the spectrum-based fault localization (SBFL), as a dynamic analysis method, mainly used the coverage
information and execution results of the rules of model transformation to estimate the probability of each
rule may be faulty. However, there are many false-positive and false-negative results in the rule coverage
information, the accuracy of the SBFL is not ideal, so we consider mining the impact of covered range in
different test models to further improve the effectiveness of fault localization. In this paper, we propose an
optimized strategy of fault localization based on the impact of the test model, according to the covered
range of test models, weight values are assigned to different test models, and the statistical coverage
information of rules are weighted and adjusted accordingly. We compare the proposed approach with the
SBFL, the experimental results show that under the same techniques for computing the suspiciousness, our
approach can help locate around 26% more faulty rules in the ranking Top-1 of the suspicious list than the
SBFL, the effectiveness of fault localization techniques can be improved by 50.42% in the best case and
8.9% in the average case.

INDEX TERMS Model transformation, weighted model, spectrum information, fault localization.

I. INTRODUCTION
The emerging of service-oriented architecture (SOA) has
revolutionized the development paradigm of information sys-
tems, enabling the implementation of enterprise processes
and workflows with service compositions. This service ori-
entation trend has brought various benefits, such as service
reusability, reliability, scalability, etc. With the increasing
complexity of the information service system and the diver-
sification of software evolution, how to develop informa-
tion systems efficiently has become a common concern of
academia and industry. The concept of model-driven engi-
neering (MDE) [1] is widely used in the development of
information service systems and is used to solve the above
problems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guanjun Liu .

MDE advocates taking models as the core elements, sep-
arating the business model of the system from specific
implementation details, so as to improve system reusability
and portability. MDE abstracts the model describing soft-
ware systems into the platform-independent model (PIM)
and platform-specific model (PSM): PIM a formal descrip-
tion of the business functions of the system, not involving
the specific application platform, and PSM describes the
technical implementation of PIM on specific platforms. The
MDE-based software development process essentially imple-
ments a mapping from PIM to PSM and then from PSM
to code, where the mapping between different models is
automatically implemented through model transformation.

At present, the main applications of model transformation
andMDE include the mapping between business processes to
services [2], [3], the transformation from models of service
network to abstract business processes [3], and even the

14054 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3132-158X
https://orcid.org/0000-0002-0758-1616
https://orcid.org/0000-0002-9671-7836
https://orcid.org/0000-0002-7523-4827


P. Li et al.: Fault Localization With Weighted Test Model in Model Transformations

MDE based development of information service system [4].
Therefore, model transformations as the key technology in
the MDE, the success of building a system with MDE depend
on the correctness of model transformations. It needs to pro-
vide reliable model transformations to support the design and
development of the SOA-based information system.

However, as the scale of the system increases, models
involved in MDE become more and more complex, it is diffi-
cult to guarantee the correctness of model transformations. At
present, most of the quality assurance approaches for model
transformations focus on how to find faults, mainly includ-
ing testing [5], graph theory-based analysis [6], and model
checking [7]. In recent years, more researchers begin to study
the way of locating faults in model transformations. Current
approaches to fault localization include Petri-net analysis [8],
trace model [9], static analysis [10], and spectrum-based [11].
Among them, the spectrum-based fault localization
(SBFL) [11], is of better accuracy than the static analysis.
It analyzes the execution coverage information of the rules
under the passing and failing test models, applies the statisti-
cal analysis approaches [12], [13], and finally calculates the
suspicious score for each rule, providing a list of suspicious
rules rankings that reflect the most relevant part of the fault.
However, the SBFL only considers the coverage of differen-
tiated rules and ignores the impact of the scope of test models
covered rule, eventually, the faulty rule is not always at the
top of the suspicious ranking list.

To improve the effectiveness of fault localization, this
paper proposes to use the impact of different test models by
covering the number of rules in test models, and then adjust
the list of suspicious rules of the spectrum accordingly. The
general principles are: (1) If there is a failing test model that
covers fewer rules, assign more weight to it; (2) The rules
associated with a failing test model with more weight may
be more suspicious; (3) The rules associated with more sus-
picious rules may be faulty because inheritance relationships
between rules may result in error propagation.

The contributions of this paper are as follows: First, it pro-
poses to consider the impact of test models covered rule
range. Secondly, according to the weights of different test
models, the spectrum information of test models covered
rules is adjusted to improve the fault localization effective-
ness of the spectrum approach. Thirdly, we evaluated the
feasibility and effectiveness of our approach using three
open-source model transformation projects, and the experi-
mental results showed that our approach couldmaintain better
accuracy than the SBFL.

The organization of this paper is as follows. Section 2 uses
an open-source model transformation as an example to
illustrate the necessity of our approach. Section 3 intro-
duces the overall framework. Section 4 introduces the
preliminary of our approach. Section 5 introduces how
to apply the test model weights to adjust the suspicious
rule list. Section 6 shows the experimental results of the
approach. Section 7 introduces and describes some of the

work related to us. Section 8 summarizes the paper and
proposes some possible work directions.

II. MOTIVATING EXAMPLE
To illustrate the shortcoming of the spectrum approach,
we take the Class2Relational model transformation as an
example, which is in the open-source repository (ATL Trans-
formation Zoo1). It consists of six transformation rules that
describe the transformation from a class model to a relational
data model. We use an OCL assertion specified in [14] as a
test oracle to check whether the transformation results satisfy
the expected properties.

TABLE 1. An OCL assertion for the Class2Relational transformation.

The OCL description is shown in Table 1, it is used to
check whether there is a Column in the target model for every
Attribute of type DataType in the source model while their
name is the same. We introduce an error in the third rule so
that some transformation results may cause theOCL assertion
to be violated. Then, we randomly generate 6 different input
models, and take the cartesian product composed of input
models and OCL as a test case: ti =< Ii, ocl > (1 ≤ i ≤ 6).
When a test case is used, its input model will be provided
to the model transformation to produce the output model,
and then the input and output model is checked against the
OCL. If the OCL is violated, the result of the test case is ‘‘F’’
(failing), otherwise, the result is ‘‘P’’ (passing). The coverage
information of a given test case can be collected by checking
the trace model of TraceAdder [15].

TABLE 2. Suspiciousness for Class2Relational when OCL fails.

The coverage matrix and execution results of 6 test cases
are shown in Table 2, where Ncf and Ncs are the number of
rules executed by failing and passing test cases, respectively;
Nuf and Nus are the number of rules that are not executed
by failing and passing test cases, respectively. When a trans-
formation rule is executed by the test case, the corresponding
cell is marked with ‘‘�’’. The technique namely Tarantula [13]
(Ncf /Nf )/(Ncf /Nf + Ncs/Ns) is used to calculate the suspi-
cious scores for the 6 rules. If a rule has a higher suspicious
score, it is more likely to be a faulty rule. The ‘‘Susp’’
and the ‘‘Rank’’ column are the suspicious score of rules

1http://www.eclipse.org/atl/atlTransformations

VOLUME 8, 2020 14055



P. Li et al.: Fault Localization With Weighted Test Model in Model Transformations

and the ranking of rules, respectively. The sequence to be
checked according to the ranking is {r4, r5, r3, r1, r2, r6}. The
debugger has to check three rules before locating the faulty
rule. However, when observing the rule coverage information
in the spectrum, we find that t1 and t2, as failing test cases,
its test model has different rules covered ranges: t1 executes
3 rules, and t2 executes 6 rules. Usually, when we manually
check faulty rules, t1 has a smaller range to be checked than
t2, so that t1 can identify faulty rules more easily than t2.
Therefore, we believe that different test models have different
abilities to locate faulty rules. If different test models are
weighted based on the covered range of the rules, the failing
test model with fewer rules has more weights, and the cor-
responding rules covered by the higher weighted test model
are more likely to be the faulty rule. According to the cover
range of test models, the spectrum information is weighted,
and the suspicious value will be calculated again to obtain an
updated list of suspicious rules.

III. FRAMEWORK
The framework of our approach is shown in Fig. 1. In the
1st step, we statically analyze the inheritance relationship
between the transformation rules, which is used to distinguish
the rules with the same suspicious value, and dynamically
collect the execution information of rules in the test models
during the model transformation. The 2nd step, according to
the collected coverage and inheritance information, establish
the connection relationship between the test models and the
rules, further construct the connection matrix for iterative
calculation, and get the weight value of the rules and the test
models from the iterative calculation results. In the 3rd step,
we use the calculated weight value to update the spectrum
information to generate a list of weighted suspicious rules.
The updated rule list shows the new ranking of suspicious
rules. Among them, the basic concept of transformation rules
in the 1st step and the basic idea of adjusting the weight of
rules in the 2nd step, we will make a detailed introduction in
the IV section.

IV. PRELIMINARY
In this section, we explain some basic concepts in this paper.
It includes the framework language that defines the model
transformation: ATL model transformation, and the guiding
idea of calculating rule weights based on the impact degree
of the test model: PageRank algorithm.

A. ATL MODEL TRANSFORMATION
Model transformations provide an essential mechanism for
operating models. The process of model transformations can
be described as one or more source(input) models execute
the model transformation program to obtain one or more
target(output) models, in which the source and target model
must conform to the corresponding metamodel. The meta-
model defines what types of elements in a specific field and
the specifications between them. The basic goal of model
transformation is to implement the automatic model mapping

by executing the transformation program through the model
transformation platform.

Based on this, it needs an appropriate transformation
language to implement the model transformation program.
At present, there are various model transformation languages.
ATL [16] is one of them, has gained wide support in the
research of MDE due to its flexibility and ease of inte-
gration into the development platform [17], [18]. It is a
rule-based model transformation language, each transforma-
tion rule matches the elements in the source model and
transforms them into the elements of the target model.
Amodel transformation involves mappings between different
elements of models. To identify the suspicious transformation
rules, the transformation rules should be traceable. ATL has
an internal trace mechanism that allows the information of
the execution rules in each model transformation process,
the source model elements, and the target model elements
information generated by the transformations to be stored in
the internal trace model. This feature is a prerequisite for us to
obtain the coverage information of the rules from the dynamic
execution process.

B. PAGERANK ALGORITHM
The idea of calculating theweighted value for rules is inspired
by the application of the PageRank [19] algorithm. PageRank
is a web page ranking algorithm that was originally applied
to improve the quality of web pages in search engines: it
abstracts each web page on the internet as a node, and the
weight of a web page is evenly distributed to the web page
it points to. If a web page is linked by many other web
pages, indicating that theweb page ismore important, its page
ranking value is higher; the high-ranking web page is more
reliable, the contributing link weight is significant, and the
page ranking value it points to is higher. In the end, if a page
has the higher the page ranking value, it will be at the top of
the website.

PageRank transforms the web page ranking problem into
a two-dimensional matrix multiplication problem, it con-
verges to the real value of page ranking by iterative cal-
culation. It assumes that the internet is a directed graph
with n nodes to denote n web pages, and the vector b =
[b1, b2, . . . , bn]T is the ranking value of each web page,
assuming that the initial value of all web pages is 1/n, that
is, b0 = [1/n, 1/n, . . . , 1/n]T . Construct a matrix A of n× n
to indicate the links between web pages: suppose there is an
element aij in matrix A, which means there is a link from node
j to node i, its value is 1/Nj, and Nj is the number of outbound
links from node j. Each row of the matrix denotes the proba-
bility that all web pages link to this node. Considering that the
number of outbound links of a node maybe 0, that is, it has
no links to any pages, the case leads to the value of each node
is 0 after iterative calculation. To make sure the calculation
converges, usually set a constant α and a transition vector v
to adjust, it sets v = [1/n, 1/n, . . . , 1/n]T to indicate that this
page may link to all pages, and its weight is evenly distributed
to each page. Assuming that values of the matrix converge

14056 VOLUME 8, 2020



P. Li et al.: Fault Localization With Weighted Test Model in Model Transformations

FIGURE 1. The basic framework of our approach.

after k iterations, the iterative formula is shown in eq (1).

bk = αA · bk−1 + (1− α)v (1)

PageRank is not only used for rankingweb pages, but many
studies have also applied it to other fields as well. For exam-
ple, Mirshokraie et al. [20] applied it to the mutation test to
guide generated mutants on the parts of the code that are more
likely to affect the output of the program. Zhang et al. [21]
applied it to the fault localization of traditional software
programs, and different test inputs were considered to have
different importance for fault localization. We apply it to the
fault localization of the model transformations for the first
time.

V. FAULT LOCALIZATION USING WEIGHTED TEST
MODELS
In this section, we describe the details of our approach,
including the static and dynamic analysis, rules weight value
assigning and weighted-based spectrum of fault localization.

A. STATIC INHERITANCE ANALYSIS
Due to the inheritance relationship among ATL transforma-
tion rules, a rule with an abstract identifier can be inherited
by multiple other rules. If a rule has an error, it will propagate
the effects of the error to its descendant rules. Besides, when
a rule is executed, rules with inheritance relationships are all
recorded in the execution information of the trace model. For
example, given three rules r1, r2, r3, which have the following
relationship ‘‘r1 < r2 < r3’’, where the symbol ‘‘ra < rb’’
denotes a rule ra inherits from rule rb. Suppose that a test
model executes r1, the trace model will not only store the
execution of r1 but will also trigger the execution of the
associated rules r2 and r3. In the end, the trace model records
the execution information of three rules, and the above three
rules have the same coverage information in a test case.When
calculating the suspicious value of rules, the value of three
rulesmay be the same,making it difficult to distinguishwhich
one is the really faulty rule. Therefore, we statically extract
the inheritance relationship between rules by analyzing the
textual information of ATL rules, the inheritance diagram of
the rules is constructed. Further, generating the connection
matrix of rules to distinguish the difference between rules

with the same suspicious value. This step obtains the con-
nection between rules.

B. DYNAMIC COVERAGE ANALYSIS
The SBFL considers each OCL assertion as a test case group.
If the execution results of a set of test models all satisfy
this OCL, it is considered that the transformation satisfies
the corresponding properties. Otherwise, when at least one
test model in the test suite violates the OCL, the OCL is
considered to be not satisfied. During the running of model
transformations, we dynamically analyze the passing and
failing execution information of test models in each OCL
assertion. When the check results of an OCL are all passing,
this OCL is ignored.When at least one result is failing, collect
the name of the test model and the corresponding coverage
rules, to construct a mapping relationship between the test
models and the rules. We analyze which rules are covered by
each test model and which test models are covered by each
rule. This step obtains the connection between test models
and rules.

C. RULE WEIGHT ASSIGNING
We first consider each test model and rule as a single node.
As we observed during the transformation run, if a rule is
not covered by all failing test models, the rule may also
be a fault. Similarly, if a rule is not covered by all passing
test models, the rule may be correct. Usually, the spectrum
approach will calculate the suspicious value of such rule as
0 or 1, but this calculation method may not be accurate.
Therefore, when such an isolated rule exists, we assume that
all test models may have a certain probability to cover this
rule, that is, this rule has a link to all test models. And the
parameter α to adjust its proportion. According to the above
analysis, we can construct a connection matrix to denotes the
connection between different test models and rules. Besides,
we set the transition vector v according to the number of
rules covered by different test models, calculating the weight-
ing score of rules depends on eq (1). In our experiments,
we first set the value of α to 0.1 to evaluate the feasibility
and accuracy of the approach. Besides, we also consider the
impact of different values of α on the efficiency of fault
localization.

VOLUME 8, 2020 14057



P. Li et al.: Fault Localization With Weighted Test Model in Model Transformations

1) CONSTRUCTION OF CONNECTION MATRIX
Different connectionmatrices are constructed based on cover-
age information of the failing and passing test models.We use
‘‘Nr ’’ denotes the number of the rules, ‘‘Nt ’’ denotes the
number of the test models.

First, construct a matrix R2R of size Nr × Nr based on
inheritance analysis. If the rule has the following inheritance
relationship ‘‘ra < rb’’, we set a link from node rb to ra,
the matrix element rab is 1/s, and s is the total number of
rules inherited from rb. As mentioned above, the inheritance
relationship ‘‘r1 < r2 < r3’’, we can construct the matrix:

R2R =

0 1 1/2
0 0 1/2
0 0 0


Then, we construct two matrices based on the coverage infor-
mation between rules and test models. Construct a matrix
T2R of size Nr × Nt , which denotes the weight that the test
models assign to the rules: If a test model tj covers the rule
ri, we set the matrix element tij is 1/m, m is the total number
of rules covered by the test model ti. When the number of
rules covered by a test model is smaller, the weight value
assigned to the rule is larger. Construct a matrix R2T of size
Nt ×Nr , which denotes the weight that the rules assign to the
test models: if a rule rj is covered by a test model ti, a matrix
element value rij is 1/n, where n is the total number of test
models covering this rule. Taking the motivating example in
Section II, we can obtain the matrices T2R and R2T under the
failing test models respectively:

T2R =
[
1/3 1/3 1/3 0 0 0
1/6 1/6 1/6 1/6 1/6 1/6

]T
R2T =

[
1/2 1/2 1/2 0 0 0
1/2 1/2 1/2 1 1 1

]
In general, the number of test models is much larger than
the number of rules, we consider that the impact of our
coverage information should be greater than the inheritance
relationship. We set a parameter d to adjust the proportion of
R2R, in the following experiment, we also consider the effect
of adjusting different d values. Finally, we construct a block
matrix A as the connection matrix for calculating the weight
of the rule, matrix A is shown in eq (2).

A =
[
d · R2R T2R
R2T O

]
(2)

where O is the zero matrix, because there is no connection
relationship between the test models. The matrix A is a square
matrix of size (Nr + Nt )× (Nr + Nt ).

2) CONSTRUCTION OF TRANSITION VECTOR
According to the above analysis, the vector b = [wrT ,wtT ]T

should be composed of two sub-vectors, where wr =
[wr1,wr2, . . . ,wrm]T and wt = [wt1,wt2, . . . ,wtn]T denote
the weight value of m rules and n test models respectively,
each rule and test model initial value is set to 1/(m+ n).

Construct a transition vector v = [vrT , vtT ]T to present
the impact of different test models. Similarly, the vector v
consists of two sub-vectors vr = [vr1, vr2, . . . , vrm]T and
vt = [vt1, vt2, . . . , vtn]T . The value of the vector vr is set to
0 for both passing and failing test models. But the value of
vt is different, as we have analyzed, a test model with fewer
covering rules is more helpful for fault localization and it
should be assigned more weight. Therefore, in the failing test
models, according to the number of covering rules, the value
of each failing test model is assigned as shown in eq (3).

vtj = N−1j /

n∑
j=1

N−1j (3)

where Nj is the number of rules covered by the jth failing
test model, and n is the total number of failing test models.
Therefore, the transition vector in the motivating example can
be set as v = [0, 0, . . . , 0, 2/3, 1/3]T , t1 is assigned a higher
value than t2 because of t1 covers fewer rules.
However, for a passing test model, the rules it covers are

not necessarily the correct rules. If there is a faulty rule in
the transformation program, but the target model attribute
obtained by the transformation does not violate the OCL
assertion, the checking mechanism considers this is a passing
test model. In this case, we cannot simply say that the rules
covered by the passing test model with higher weights are
more likely to be correct, the false-negative situation makes
the passing test model not meet the property of covering the
number of rules. Therefore, in the passing case, we evenly
assign the same weight value to each test model: 1/Np, where
Np is the number of passing test models.

3) WEIGHTS CALCULATION
According to eq (1), we can use the calculation of the block
matrix to get the weight values of rules and test models shown
in eq (4).

w(k)
r = α · [dR2R · w

(k−1)
r + T2R · w(k−1)

t ]

w(k)
t = αR2T · w

(k−1)
r + (1− α) · vt (4)

Finally, we normalize two sub-vectors wr,wt , the weights of
the i-th rule and the j-th test model are respectively:

wri =
wri

max(wr)
,wtj =

wtj
max(wt)

(5)

D. WEIGHTED-BASED SPECTRUM OF FAULT
LOCALIZATION
After two iterative calculations under the connection matrix
of failing and passing test models, two sets of vector values
will be obtained. It denotes the weight of each rule in case of
failing and passing, respectively.

We get the weighted-spectrum based on the original spec-
trum information, the updated approach is shown in eq (6).

N̄cfi = wfri · Nf , N̄ufi = Nf − N̄cfi
N̄cpi = wpri · Np, N̄upi = Np − N̄cpi

(6)

14058 VOLUME 8, 2020



P. Li et al.: Fault Localization With Weighted Test Model in Model Transformations

where wfri and wpri denote the weight value of the i-th rule
calculated in the failing and passing respectively, Nf and Np
are the numbers of failing and passing test models respec-
tively, N̄cfi, N̄ufi, N̄cpi, N̄upi are the new metric value of the
SBFL technique. We use the same SBFL technique to cal-
culate the weighted-spectrum information to get an updated
list of suspicious rule rankings and evaluate the effectiveness
of our approach.

We reconsider the example in Section II, based on the
constructed connection matrix, after calculation and normal-
ization, we can get the weight of rules in the failing and
passing cases: wfr = [1, 1, 1, 0.202, 202, 202]T , wpr =
[1, 1, 0.596, 0.163, 0.163, 0.326]T . After theweighted calcu-
lation of eq (6), it obtains the final suspicious score of the
6 rules are [0.5, 0.5, 0.627, 0.554, 0.554, 0.383]T under the
Tarantula. The rule r3 ranking is improved and ranked the
top. This proves that our approach is effective to some extent.
Further, we analyze the feasibility and effectiveness of the
approach through specific experiments.

E. COMPLEXITY EVALUATION
In this part, we evaluate the time and space complexity of
the approach. Suppose we randomly generate S input models
and constructM ocls. It can form S ×M test cases. After the
model transformation execution, every ocl judges the failing
and passing of the transformation. Suppose that in the S ×M
test cases, there are Nf failing test models and Np passing test
models. After collecting the coverage information from the
TraceAdder, it assumes that Nf failing test models execute a
total of rf rules and Np passing test models execute a total
of rp rules. The time complexity of the algorithm mainly
comes from the iterative calculation of the matrices, so the
time complexity is O(max(r2f + rf · Nf , r2p + rp · Np)). The
space complexity mainly use to store the operation results of
matrices, it is O(max(r2f + rf · Nf , r

2
p + rp · Np)). It depends

on which part of the failing and passing test models account
for the majority in quantity.

VI. EXPERIMENT
In this section, we carried out a series of experiments to
verify the accuracy of our approach. Firstly, we introduce
our experimental setup, list the detailed experimental data.
And then introduce metrics to evaluate experimental results.
At last, we analyze the experimental results and consider the
impact of different parameter values on the effectiveness of
our approach. To distinguish and compare the experimental
results, we mark our method of the weighted-spectrum as
‘‘Weight’’.

A. EXPERIMENTAL SETUP
In this paper, we use the three open-source model transforma-
tion suites for our experimental evaluation. BibTeX2DocBook
is the transformation in the ATL Transformation Zoo, which
is used to transformBibTeXMLfiles to DocBook documents.
UML2ER is an experimental project in the field of structural
modeling [22], which is used to transform the UML class

diagrams into the Entity-relationship diagrams.Ecore2Maude
is used on the specific modeling language tool [23], it is used
to transform models that conform to the Ecore metamodel to
the models that conform to the Maude metamodel. To com-
pare with the spectrum approach, we use the same test models
and OCL assertions, which means that we can have the
same test cases and coverage information. We compare the
effectiveness of the twomethods under the same experimental
conditions. Table 3 summarizes this information. Most of
them come from the experimental configuration information
in the SBFL [11]. Three model transformation artifacts are
different in the number of transformation rules, rules size,
test cases, OCL assertions, and mutants.

TABLE 3. Details of the three model transformation artifacts.

We select 12 suspicious formulas that are widely used in
the field of fault localization. As shown in Table 4, the tech-
nical names and calculation formulas are listed. The basis of
our assessment is the coverage information generated by the
514 OCL assertions violated shown in Table 3, we analyze
coverage information and transformation results and evaluate
the result of the updated rules ranking list.

B. EVALUATION METRICS
We use the two metrics EXAM score and Top-N to evaluate
the effectiveness of the approach, they are also often used
to evaluate the fault localization effectiveness of traditional
software programs.
EXAM score: The metric denotes the ratio of the number

of rules to be examined to the total number of rules before
the first faulty rule is located. It is usually called the fault
localization cost and is described by the eq (7).

EXAMscore =
number of rules examined
Total number of rules

(7)

As we observe from the eq(7), the fewer rules need to be
examined before locates the faulty rule, the EXAM score is
smaller, the approach is considered more effective. While the
faulty rule has the same suspicious value with the other rules,
that is, the ranking is the same, the EXAM score can be divided
into three cases: if there is a faulty rule ranking the same as the
other (n-1) rules, the best-case means that the faulty rule is the
first one to be checked and it is in the first position, the worst-
case means that the faulty rule is the last one to be checked
and it is in the n position and the average-case indicates that
the faulty rule is in the middle of the same ranking and it
is in the (n/2) position. We consider the EXAM score of the
average-case to evaluate the effectiveness of our approach,
to avoid the impact of special cases.
Top-N : This metric denotes that the number of faulty rules

that can be successfully located in the top N position of the

VOLUME 8, 2020 14059



P. Li et al.: Fault Localization With Weighted Test Model in Model Transformations

TABLE 4. Techniques applied for suspiciousness calculation.

suspicious list. Generally, debuggers only check the rules
at the top of the suspicious list. Therefore, if an approach
has a higher Top-N value, it is considered more effective.
In the experiment, we only consider the number of faulty
rules that can be successfully located in Top-1, Top-2, and
Top-3 cases. It means that if the transformation program has
a bug, the debugger will only check the top three rules of the
suspicious list. If a faulty rule ranking the same as other rules,
we consider the average-case, that is, the faulty rule is in the
average position.

C. EXPERIMENTAL RESULTS
We first set the parameter values α and d to 0.1 during the
experiment, separately evaluate the effectiveness under the
three transformation programs. Table 5, Table 6 and Table 7
respectively denote the overall localization results of Bib-
tex2DocBook, UML2ER and Ecore2Maude.
In the table, each row represents the localization results of

each SBFL technique, and each column represents the values
of Top-N and EXAM score under two approaches. The ‘‘S’’
column denotes the spectrum-based approach, and the ‘‘W’’

TABLE 5. The overall effectiveness comparison results of
BibTex2DocBook.

TABLE 6. The overall effectiveness comparison results of UML2ER.

column denotes our approach based on weighted. The value
of the ‘‘Imp’’ column shows the improved ratio compared to
the spectrum approach in the EXAM score. It is calculated by
the eq (8).

Imp(%) =
EXAMS − EXAMW

EXAMS
× 100 (8)

where EXAMS and EXAMW denote the EXAM score value of
the spectrum and our approach respectively. The last row in
the table represents the overall fault localization effective-
ness. For the metric of Top-N, it indicates the total number
of faulty rules can be located at the Top-N. For the metric of
EXAM score, it indicates the average improvement ratio of all
technologies.

As shown in Table 5, the result of BibTex2DocBook,
we can observe that all techniques have been improved.
In general, three of the most obvious improvements are
Dstar, B-U&Buser, and Ochiai2. About the improvement of
EXAM score, they all improved by more than 15%. This means

14060 VOLUME 8, 2020



P. Li et al.: Fault Localization With Weighted Test Model in Model Transformations

TABLE 7. The overall effectiveness comparison results of Ecore2Maude.

that Dstar as an example, the original debugger needs to check
2.9 of the 9 rules, but now it only needs to check 1.6 rules.
About the Top-N, the B-U&Buser locates the number of the
faulty rule within Top-1 from 87 to 128, which has increased
by 47.1%, the Ochiai2 ranks from 72 to 90, increases by
25%, the Dstar ranks the number of Top-1 from 127 to
186, increases by 46.5%. If we see the last row in the table,
the overall is that within Top-3, our approach locates nearly
300 faulty rulesmore than the SBFL. In theBibTex2DocBook,
the improvement of the EXAM score is basically consistent
with Top-N. The overall effectiveness of all techniques is
improved to nearly 14% on average. For ease of observation,
we draw a histogram to show the number of faulty rules that
can be successfully located in Top-3. As shown in Fig.2,

FIGURE 2. The number of faulty rules at Top-3 in Bibtex2DocBook.

FIGURE 3. The number of faulty rules at Top-3 in UML2ER.

the three most increased are Ochiai2, Dstar, B-U&Buser,
they are increased by 60, 53, 39 respectively.

Table 6 shows the result of UML2ER, most techniques can
locate 50% more the faulty rules in the Top-1 position. Over-
all, in the Top-3, the number of faulty rules that our approach
can locate is increased from 371 to 744. About the improve-
ment of EXAM score, three relatively obvious technologies are
Dstar, Op2, and Zoltar. The most obvious improvement in
the EXAM score is also Dstar, it is improved by 43.88%. The
overall effectiveness is improved by 6.7%. It can be seen
that in different model transformations, the efficiency of each
technique improvement is not consistent, but Dstar as one
of the methods still obtains good results. On the other hand,
it is worth noting that there are a large number of inheritance
relationships in theUML2ERmodel transformation. By static
analysis of the inheritance relationships, we can receive good
results on the Top-N metrics. On the other hand, we observe
the change of the number of faulty rules in Fig. 3,the three
most increased areDstar,Mountford,Op2, they are increased
by 65, 43, 38 respectively.

Table 7 is the localization result of Ecore2Maude, com-
pared with the other two, its effectiveness did not be improved
significantly. The reason is that the EcoreMaude transfor-
mation rules include many called helpers, and the calling
relationships between rules may lead to error propagation.
In our next study, we need to further analyze the calling
relationship between the rules in the transformation execution
process, it may need to extend the corresponding dynamic
analysis technology to analyze rule calls.

But, we should also see that the Dstar can be greatly
improved in all three model transformation programs. The
reason is that we can see in Table 4, the value of Ncf in Dstar
formula accounts for a large proportion. We adjust the weight
value of Ncf by the covered range of the failing test model
weights and get good results after calculating again. It also
proves that our approach has a certain effect.

VOLUME 8, 2020 14061



P. Li et al.: Fault Localization With Weighted Test Model in Model Transformations

FIGURE 4. The number of faulty rules at Top-3 in Ecore2Maude.

According to the above analysis, we consider the aver-
age improvement of the EXAM score under three transforma-
tion programs in each suspiciousness technique, the most
improvement technique is the Dstar, which can be improved
by about 50.42%. We calculate the average value of all
techniques improvement to estimate the overall effective-
ness of our approach, BibTex2DocBook, UML2ER, and
Ecore2Maude are improved by 13.994%, 5.713%, 6.659%,
respectively. The overall effectiveness of the approach can be
improved by 8.9%.

On the other hand, we evaluate the average growth rate of
the number of faulty rules that can be successfully located
at Top-1, Top-2, and Top-3 benchmarks. From the overall
result, BibTex2DocBook can locate 15.4%, 18.2% and 12.1%
more faulty rules than the SBFL.UML2ER can locate 59.3%,
89.0% and 100.5% more faulty rules than the SBFL. And
these value in Ecore2Maude are 2.3%, -24.6%, 0.57%.
Overall, after the calculation, the average growth of the

three transformation programs can be derived, we can locate
25.7%, 27.5%, 37.7% more faulty rules than the SBFL at
Top-1, Top-2, Top-3, so we believe that our approach is more
effective than the SBFL.

D. IMPACT OF PARAMETERS
In this section, we consider the impacts of different parame-
ters on the fault localization effectiveness. It includes differ-
ent values of α and d.

First, we consider different α values. We set 10 different
values in the interval (0,1) to generate different results. The
results of three model transformations are shown in the Fig.5,
Fig.6 and Fig.7. In the line chart, the X-axis denotes different
values of α, and each group of values increases by 0.1. The
Y-axis denotes the improvement ratio of the Exam value.
To make the figure clearer, we fold the blank part. We use dif-
ferent colors to represent different SBFL techniques. As the

FIGURE 5. The impact of different α value on Bibtex2DocBook.

FIGURE 6. The impact of different α value on UML2ER.

value of different α in the X-direction changes, the SBFL
techniques have different improvement ratio changes. If we
observe these three sets of charts, we can find that when
the value of α is closer to 1, the improvement ratio about
the Exam value will decrease, which means the lower the
effectiveness of localization. This is mainly because the larger
the value of α, the smaller the weight of v in eq (1), and
the smaller the weight assigned to the test models. Finally,
the covered range of test models plays a small role in the
calculation.

Next, we consider the proportion of the inheritance rela-
tionships between rules in the connection matrix. Similarly,
we set the values of d to 0, 0.01, 0.1 and 1 to analyze the
influence of different values. When d = 0, it means that the
influence of inheritance relationship is not considered. When
d = 1, the proportion of rule inheritance is the same as the

14062 VOLUME 8, 2020



P. Li et al.: Fault Localization With Weighted Test Model in Model Transformations

FIGURE 7. The impact of different α value on Ecore2Maude.

FIGURE 8. The impact of different d value on UML2ER.

test models. As shown in Fig 8, the X-axis denotes the dif-
ferent SBFL techniques, and the Y-axis denotes the different
improvement ratio of Exam values. We mark different values
of d with four different colors. When d= 0.1, compared with
the other three group values, the effectiveness higher than the
cases of d= 0 and d= 0.01, but the difference is not obvious
compared with d = 1. This is mainly because the number
of test models used in this paper is only 100, which is not
much larger than the number of rules, but in a production
environment, the number of test models should be much
larger than the number of rules. So we believe it is necessary
to consider the impact of rule inheritance relationship.

VII. RELATED WORK
The current research on model transformation fault localiza-
tion is mainly divided into two categories: static and dynamic

approaches. The static approaches mean that the model trans-
formation program is not executed, the time overhead is small
and no input model needs to be generated. The dynamic
approach is to execute the model transformation program
on one or a set of input models, it is more suitable for
small-scale transformation scenarios, and usually can obtain
more accurate debugging results.

Hibberd et al. [24] propose a static analysis approach to
identify the relationship between the source model, the tar-
get model, and the transformation rules by analyzing the
trace information of the model transformation. Infer the map-
ping between the generated element types and the rules that
may generate these types, ultimately supports fault local-
ization by answering a series of questions related to faults.
Wimmer et al. [8] provide a model debugging environment,
using the Petri-net model transformation language TROPIC
to describe the QVT model transformation, and then using
its characteristics to implement a debugging environment,
providing an interactive platform to support the debugging
of model transformation. Burgueno et al. [10] use a static
analysis approach, extract the types and characteristics of
transformation rules and constraints, identify the possible
faulty rules by establishing thematching relationship between
the rules and the constraints, eventually, when the constraint
is violated, it provides a list of suspicious rules related to
constraints.

Aranega et al. [9] proposes the trace model on the fault
localization, by defining and analyzing a trace model describ-
ing the execution information of model transformation to
determine a series of transformation rules that cause an error.
On the basis of static analysis, Troya et al. [11] further pro-
pose a spectrum-based technique for improving fault local-
ization effectiveness, collecting the information on model
transformation runtime in the passing and failing test models
and using the idea of the spectrum to identify the model
transformation rules that may be faulty. Similar to static
analysis, the spectrum-based approach also provides a list
of suspicious rules and experimentally demonstrates that the
spectrum-based approach is better than the static analysis.

VIII. CONCLUSION AND FUTURE WORK
As the complexity of model transformation increases,
the debugging of model transformations becomes more and
more difficult. The SBFL can help the debugger locate faults
to some extent, but due to the limitations of the spectrum
approach, that is, only the rule execution information is
considered. We propose an optimized strategy based on the
covered range of the test models. The experimental results
show that the effectiveness of the fault localization can be
improved by using our approach.

However, in our experiments, we also considered the limi-
tations of the approach, that is, it relies on differentiated test
models to trigger the execution of different rules, the diver-
sified rule coverage information as a condition for distin-
guishing the weights of the test models. In further research,
we need to consider the impact of different test models

VOLUME 8, 2020 14063



P. Li et al.: Fault Localization With Weighted Test Model in Model Transformations

generation methods on the efficiency of fault localization.
At the same time, since our study in fault localization is
at the rule level, we consider to locate the fault in model
transformations at the statement level to meet the needs of
more precise fault localization.

REFERENCES
[1] M. Brambilla, J. Cabot, and M. Wimmer, ‘‘Model-driven software engi-

neering in practice,’’ Synth. Lect. Softw. Eng., vol. 1, no. 1, pp. 1–182,
Sep. 2012.

[2] C. Ouyang, M. Dumas, A. T. Hofstede, and W. Van Der Aalst, ‘‘From
BPMN process models to BPEL Web services,’’ in Proc. IEEE Int. Conf.
Web Services (ICWS), Chicago, IL, USA, Sep. 2006, pp. 285–292.

[3] T. Hornung, A. Koschmider, and J. Mendling, ‘‘Integration of heteroge-
neous BPM schemas: The case of XPDL and BPEL,’’ in Proc. CAiSE,
Luxembourg, 2006, pp. 231.

[4] C. Agostinho, H. Bazoun, G. Zacharewicz, Y. Ducq, and H. Boye, ‘‘Infor-
mation models and transformation principles applied to servitization of
manufacturing and service systems design,’’ in Proc. MODELSWARD,
Lisbon, Portugal, 2014, pp. 657–665.

[5] M. Wieber, A. Anjorin, and A. Schürr, ‘‘On the usage of TGGs for auto-
mated model transformation testing,’’ in Proc. ICMT, York, U.K., 2014,
pp. 1–16.

[6] E. Denney and B. Fischer, ‘‘Generating customized verifiers for auto-
matically generated code,’’ in Proc. 7th Int. Conf. Generative Program.
Compon. Eng. (GPCE), Nashville, TN, USA, 2008, pp. 77–88.

[7] L. Lúcio, B. Barroca, and V. Amaral, ‘‘A technique for automatic valida-
tion of model transformations,’’ in Proc. MoDELS, Oslo, Norway, 2010,
pp. 136–150.

[8] M. Wimmer, G. Kappel, J. Schoenboeck, A. Kusel, W. Retschitzegger,
and W. Schwinger, ‘‘A Petri net based debugging environment for QVT
relations,’’ in Proc. IEEE/ACM Int. Conf. Automat. Softw. Eng., Auckland,
New Zealand, Nov. 2009, pp. 3–14.

[9] V. Aranega, J.-M.Mottu, A. Etien, and J.-L. Dekeyser, ‘‘Traceability mech-
anism for error localization in model transformation,’’ in Proc. ICSOFT,
Sofia, Bulgaria, 2009, pp. 66–73.

[10] L. Burgueno, J. Troya, M. Wimmer, and A. Vallecillo, ‘‘Static fault local-
ization in model transformations,’’ IEEE Trans. Softw. Eng., vol. 41, no. 5,
pp. 490–506, May 2015.

[11] J. Troya, S. Segura, J. A. Parejo, and A. Ruiz-Cortés, ‘‘Spectrum-based
fault localization in model transformations,’’ TOSEMACM Trans. Softw.
Eng. Methodol., vol. 27, no. 3, pp. 1–50, Sep. 2018.

[12] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, ‘‘A survey on
software fault localization,’’ IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707–740, Aug. 2016.

[13] J. A. Jones, M. J. Harrold, and J. Stasko, ‘‘Visualization of test information
to assist fault localization,’’ in Proc. ICSE, Orlando, FL, USA. 2002,
pp. 467–477.

[14] J. Troya, S. Segura, J. A. Parejo, and A. Ruiz-Cortes, ‘‘An approach for
debugging model transformations applying spectrum-based fault localiza-
tion,’’ in Proc. JISBD, La Laguna, Spain, 2017.

[15] F. Jouault, ‘‘Loosely coupled traceability for ATL,’’ in Proc. ECMDA,
Nuremberg, Germany, 2005, p. 2.

[16] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, ‘‘ATL: A model trans-
formation tool,’’ Sci. Comput. Program., vol. 72, nos. 1–2, pp. 31–39,
Jun. 2008.

[17] Y. Rhazali, Y. Hadi, and A. Mouloudi, ‘‘Model transformation with
ATL into MDA from CIM to PIM structured through MVC,’’ in Proc.
ANT/SEIT, Madrid, Spain, 2016, pp. 1096–1101.

[18] F. Allilaire, J. Bézivin, F. Jouault, and I. Kurtev, ‘‘ATL-eclipse support for
model transformation,’’ in Proc. ECOOP, Nantes, France, 2006, p. 66.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd, ‘‘The pagerank citation
ranking: Bringing order to the Web,’’ Stanford InfoLab, Stanford, CA,
USA, Tech. Rep. SIDL-WP-1999-0120, Nov. 1999.

[20] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, ‘‘Guided mutation test-
ing for JavaScript Web applications,’’ IEEE Trans. Softw. Eng., vol. 41,
no. 5, pp. 429–444, May 2015.

[21] M. Zhang, X. Li, L. Zhang, and S. Khurshid, ‘‘Boosting spectrum-based
fault localization using pagerank,’’ in Proc. ISSTA, Santa Barbara, CA,
USA, 2017, pp. 261–272.

[22] M. Wimmer, S. M. Perez, F. Jouault, and J. Cabot, ‘‘A catalogue of refac-
torings for model-to-model transformations,’’ J. Object Technol., vol. 11,
no. 2, pp. 1–40, Apr. 2012.

[23] J. E. Rivera, F. Duran, and A. Vallecillo, ‘‘A graphical approach for
modeling time-dependent behavior of DSLs,’’ in Proc. VL/HCC, Corvallis,
OR, USA, 2009, pp. 51–55.

[24] M. Hibberd, M. Lawley, and K. Raymond, ‘‘Forensic debugging of
model transformations,’’ in Proc. MoDELS, Nashville, TN, USA, 2007,
pp. 589–604.

PENGFEI LI is currently pursuing the M.S. degree
with the School of Information Science and Tech-
nology, Zhejiang Sci-Tech University, Hangzhou,
China. His current research interests include sys-
tem modeling, fault localization, and defect pre-
diction.

MINGYUE JIANG (Member, IEEE) received the
B.Sc. degree in computer science and technol-
ogy from Yunnan Normal University, the M.Eng.
degree in computer applied technology from Zhe-
jiang Sci-Tech University, Hangzhou, China, and
the Ph.D. degree from the Swinburne University
of Technology, Melbourne, VIC, Australia. She is
currently a Teacher with the School of Informa-
tion Science and Technology, Zhejiang Sci-Tech
University. Her current research interests include

software testing and automated program repair.

ZUOHUA DING (Member, IEEE) received the
M.S. degree in computer science and the Ph.D.
degree in mathematics from the University of
South Florida, Tampa, FL, USA, in 1996 and 1998,
respectively.

He is currently a Professor and the Director of
the Laboratory of Intelligent Computing and Soft-
ware Engineering, Zhejiang Sci-Tech University,
Hangzhou, China. He has authored or coauthored
more than 70 articles. His current research inter-

ests include system modeling, software reliability prediction, intelligent
software systems, and service robots.

14064 VOLUME 8, 2020


	INTRODUCTION
	MOTIVATING EXAMPLE
	FRAMEWORK
	PRELIMINARY
	ATL MODEL TRANSFORMATION
	 PAGERANK ALGORITHM 

	FAULT LOCALIZATION USING WEIGHTED TEST MODELS
	STATIC INHERITANCE ANALYSIS
	DYNAMIC COVERAGE ANALYSIS
	RULE WEIGHT ASSIGNING
	CONSTRUCTION OF CONNECTION MATRIX
	CONSTRUCTION OF TRANSITION VECTOR 
	WEIGHTS CALCULATION

	WEIGHTED-BASED SPECTRUM OF FAULT LOCALIZATION
	COMPLEXITY EVALUATION

	EXPERIMENT
	EXPERIMENTAL SETUP
	EVALUATION METRICS
	EXPERIMENTAL RESULTS
	IMPACT OF PARAMETERS

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	PENGFEI LI
	MINGYUE JIANG
	ZUOHUA DING


