IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 2, 2019, accepted January 1, 2020, date of current version January 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2964271

Deep Residual Haze Network for Image

Dehazing and Deraining

CHUANSHENG WANG 12, ZUOYONG LI"“13, JIAWEI WU, HAOYI FAN“2,

GUOBAO XIAO !, AND HONG ZHANG 2

!Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou 350121, China
2School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
3The Fujian College’s Research Base of Humanities and Social Science for Internet Innovation Research Center, Minjiang University, Fuzhou 350121, China

Corresponding authors: Zuoyong Li (fzulzytdq@126.com) and Hong Zhang (zhangh @hrbust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61972187 and Grant 61702101, in part
by the Natural Science Foundation of Fujian Province under Grant 2017J01768 and Grant 2019J01756, in part by the Key Project of
College Youth Natural Science Foundation of Fujian Province under Grant JZ160467, in part by the Fujian Provincial Leading Project
under Grant 2017H0030 and Grant 2019H0025, in part by the Government Guiding Regional Science and Technology Development under
Grant 2019L3009, and in part by the Technology Project of Education Department of Fujian Province under Grant JT180406.

ABSTRACT Image dehazing on a hazy image aims to remove the haze and make the image scene
clear, which attracts more and more research interests in recent years. Most existing image dehazing
methods use a classic atmospheric scattering model and natural image priors to remove the image haze.
In this paper, we propose an end-to-end image dehazing model termed as DRHNet (Deep Residual Haze
Network), which restores the haze-free image by subtracting the learned negative residual map from the
hazy image. Specifically, DRHNet proposes a context-aware feature extraction module to aggregate the
contextual information effectively. Furthermore, it proposes a novel nonlinear activation function termed as
RPReLU (Reverse Parametric Rectified Linear Unit) to improve its representation ability and to accelerate
its convergence. Extensive experiments demonstrate that DRHNet outperforms state-of-the-art methods both
quantitatively and qualitatively. In addition, experiments on image deraining task show that DRHNet can also

serve for image deraining.

INDEX TERMS Image dehazing, image deraining, negative residual map, context-aware feature extraction,

reverse parametric rectified linear unit (RPReLU).

I. INTRODUCTION

The goal of the image dehazing algorithm is to restore a
hazy image to a clear image, which has received significant
research interest because various advanced image processing
tasks require a clear scene (e.g., [1]-[6]). Traditional image
dehazing algorithms (e.g., [7], [8]) are dedicated to accurately
estimate the transmission and the global atmospheric light in
hazy images, and then use the atmospheric scattering model
to restore haze-free images. McCartney [9] first proposed the
atmospheric scattering model, which is further developed by
Narasimhan and Naya [10], [11]. The atmospheric scattering
model can be formally written as:

I(x) =Jo)t(x) + a(l —1(x)) (1)
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where I(x) is the haze-degraded image, J(x) is the haze-free
scene, « is the global atmospheric light, and #(x) is the scene
transmission that describes the portion of the light that is not
scattered and reaches the camera sensors. In practice, 7(x) and
« are not provided in advance. Therefore, most prior based
image dehazing algorithms attempt to estimate #(x) and « and
then recover the haze-free scene using Eq. (1).

The estimation of #(x) plays a significant role that directly
impacts the performance of haze removal algorithms. How-
ever, these transmission approximations are often inaccurate,
especially in the scenes where the color of an object is
inherently similar to the haze [7], [8]. Therefore, the tra-
ditional image dehazing algorithms are not robust enough
to handle images in some special conditions. So, there are
numerous defects when adopting traditional algorithms to
perform image dehazing task. With the prosperous advance-
ment of deep learning, an increasing number of researchers
have explored image dehazing algorithms using convolution
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(b) Our dehazing result
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FIGURE 1. The results of the proposed DRHNet for image dehazing and deraining.

neural networks (CNNs) [12]-[15]. Among them, [12] and
[15] adopted a CNN to precisely estimate the transmission
t(x). Although these algorithms based on CNNs can estimate
the #(x) more accurately, it still needs to estimate the «
accurately to recover the haze-free image perfectly.

To overcome the problem mentioned above, we propose a
Deep Residual Haze Network (DRHNet) that does not require
the estimation of #(x) and «. The primary purpose of DRHNet
is to learn the residual between the haze-free image and the
hazy image, rather than learning the haze-free image directly.
The benefits of this approach are as follows. First, He et al.
demonstrated in [16] that optimizing the residual mapping is
more straightforward than optimizing the original mapping.
In the image dehazing task, the residuals between the haze-
free image and the hazy image can be thought of as the
residual mapping. Second, the complexity of the residual is
much lower than the of the haze-free image, so the deep
learning network is easier to fit the residual. Third, since
the proposed DRHNet is not need the atmospheric scattering
model for image dehazing, it can not only process image
dehazing task, but also be used for other image enhancement
tasks. Fourth, the residual can accurately determine the extent
of different regions of the image affected by the haze. Fig. 1
shows the image dehazing and deraining performance of the
proposed DRHNet.

Fig. 2 can show the fourth advantage mentioned above.
From left to right in Fig. 2, the original hazy image (Fig. 2(a)),
the output of the proposed DRHNet (Fig. 2(b)) and the
dehazed result (Fig. 2(c)). As far as we know, the haze is
evenly distributed in the atmospheric, but the damage degree
is not also evenly distribute on each patch. Fig. 2(b) can
be used to express the degree of image damage by haze in
different areas. For example, as can be seen in the region
marked by the white rectangle in Fig. 2, there are little
differences between Fig. 2(a) and Fig. 2(c), so the color
in the corresponding area pixel in Fig. 2(b) is darker than
other region. Therefore, it can be seen from Fig. 2 that the
proposed DRHNet not only accurately indicates the effect of
the image dehazing algorithm, but also shows the degree of
distortion caused by haze in different regions of the same hazy
image.
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FIGURE 2. From left to right, the original hazy image, the negative
residual map obtained from DRHNet and the final dehazed result.

To prove that the proposed DRHNet is useful in the image
dehazing task, we conducted a lot of experiments on the
RESIDE [17]. The experiment demonstrates that the pro-
posed DRHNet surpasses other leading dehazing algorithms
both in quantitative evaluation and qualitative evaluation.
Furthermore, additional experiments for image deraining task
demonstrate the capability of the generality of the DRHNet.
In addition, we also applied DRHNet to other challenging
tasks related to image dehazing but not absolutely the same
to prove the generality of the proposed DRHNet. A large
number of experiments have demonstrated that the proposed
DRHNet can not only perfectly handle any image dehazing
task, but also show excellent performance in other tasks
related to image dehazing. The contributions of this paper are
as follows:

o We propose a novel end-to-end image dehazing network
called the DRHNet to restore the haze-free image by
subtracting the estimated negative residual map from the
hazy image. The negative residual map can reflect the
extent of haze damage and the dehazing effect explicitly.

o Moreover, a novel activation function, called the reverse
parametric rectified linear unit (RPReLU), is designed to
improve the representation ability of the dehazing model
and accelerate the convergence of the training.

e We conduct extensive experiments on multiple
real-world datasets, and the results demonstrate
DRHNet’s effectiveness compared to other state-of-the-
art baselines.
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o We also apply the proposed DRHNet for image
deraining task, and the results show that DRHNet
outperforms the other state-of-the-art image deraining
methods, which demonstrates the generalizability of the
proposed method.

The remainder of the paper is organized as follows. First,
we review the related research in the field of image dehaz-
ing in Section II, which provides background knowledge
of understanding the DRHNet’s design, and then introduce
the DRHNet detailedly in Section III. Finally, we conduct
the DRHNet with comprehensive experiments results and
ablation analysis in Section IV, before the conclusions are
given in Section V.

Il. RELATED WORK

As the importance of the image dehazing algorithms in the
field of computer vision, a lot of image dehazing algorithms
have been proposed to solve this challenging problem. These
algorithms can be roughly divided into traditional prior-
based algorithms and modern learning-based algorithms. The
key difference between prior-based algorithms and learning-
based algorithms is that the prior-based algorithms extract
features through handcrafted approaches, while learning-
based algorithms extract features automatically by CNNs.
These two completely different ideas have their advantages
and defects. In this section, we briefly review some repre-
sentative image dehazing algorithms that contain both prior-
based algorithms and modern learning-based algorithms and
discuss their superiorities and disadvantages.

A. ATMOSPHERIC SCATTERING MODEL
Eq. (1) is proposed to describe the formation of a hazy image,
which can be rewritten as:

I(x) —a(l —1(x))

J(x) = pron @

where, 7(x), o« and J(x) are unknowns. According to Eq. (2),
the real scene J(x) can be recovered easily after #(x) and «
have been estimated. Eq. (2) suggests that « and 7(x) are the
keys to atmospheric scattering model based image dehazing
algorithms. Therefore, most traditional atmospheric scatter-
ing model based image dehazing algorithms are dedicated to
estimating the transmission #(x) and the global atmospheric
light o accurately. In general, with the deepening of scene
depth, the more seriously the image is affected by haze,
which leads to the decrease of the transmittance. Therefore,
the scene transmission #(x) is closely related to the scene
depth, which can be expressed as:

1(x) = e PO (3)

where B is the scattering coefficient of the atmosphere and
d(x) is the scene depth. Eq. (3) indicates that if we can
estimate the d(x) of the image, then we can use Eq. (3) to
estimate 7(x), and vice versa.
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B. PRIOR-BASED ALGORITHMS

Image prior knowledge is the empirical statistics from the
observations of the images. Due to the superiority of the
prior-based dehazing algorithms, some important prior-based
dehazing algorithms have been proposed [7], [8], [18]-[23].
The two most representative algorithms are the dark channel
prior (DCP) [7] (proposed by He et al.) and the color attenu-
ation prior (CAP) [8] (proposed by Zhu et al.). We introduce
these two important image dehazing algorithms in detail.

1) DARK CHANNEL PRIOR

Dark Channel Prior (DCP) is a representative algorithm in the
field of image dehazing [7]. He ef al. made statistics on a large
number of haze-free images and found a rule: In most of the
nonsky patches of RGB images, at least one color channel
has some pixels with very low intensity and close to zero.
Equivalently, the minimum intensity in this path is also very
low and close to zero. For an arbitrary RGB image J, the dark
channel is given by:

J9E (x0) = minyeqe) (mince(r.¢.pJ () 4

where, c represents one of the three RGB channels, 2(x) is
a small patch center on x. A dark channel has two minimum
OpErators: minye(r g by is the minimum filtering operation of
three channels at a pixel, and minycq(y) is the minimum
filtering operation for the patch centered on x.

2) COLOR ATTENUATION PRIOR

Zhu et al. proposed Color Attenuation Prior (CAP) to
describe the relevant image features in hazy weather [8].
Zhu et al. found that the brightness and the saturation of the
hazy images are affected by the haze concentration. To be pre-
cise, in a less-affected area with a hazy image, the saturation
is pretty high, and the brightness is within the normal range.
However, if a certain region of the image is seriously affected
by haze, its brightness will rise sharply, but its saturation will
decline. As a result, the difference between the brightness
and saturation becomes larger. As the haze concentration
increases with the depth of the scene in general, Zhu et al.
deduced that:

d(x) o c(x) o v(x) — s(x) (@)

where, the d(x) is the scene depth, c(x) is the haze concen-
tration, the c(x) and v(x) is the saturation and the brightness
respectively. Therefore, the depth of the image with hazy can
be approximately estimated by the Color Attenuation Prior
(CAP), so the transmittance of the scene can be estimated by

Eq. 3).

C. LEARNING-BASED ALGORITHMS

Although the DCP and CAP are effective estimators of haze
concentration, there are still some defects, such as their
inability to accurately estimate the atmospheric light o and
adaptively adjust the parameters. The problems associated
with these two algorithms also appear in other prior-based
approaches.
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FIGURE 3. The framework of the proposed DRHNet.

In recent years, researchers have progressively focused on
utilizing CNNs to estimate the transmission of the hazy image
and use Eq. (2) to restore the haze-free image [12], [14].
But it is not completely out of the bounds of the traditional
image dehazing algorithm, which causes the disadvantages
of the traditional image dehazing algorithm also exist in
these learning-based algorithms. For example, it is necessary
to estimate the #(x) and o to recover the haze-free image
from the hazy image perfectly. Different from these image
dehazing algorithms that combine deep learning and atmo-
spheric scattering model, the proposed DRHNet is to learn the
residual between the network’s output (clear image) and input
(hazy image), which significantly reduces the complexity of
the image dehazing task. Therefore, the proposed DRHNet
can achieve an excellent effect on image dehazing task.

lll. THE PROPOSED DRHNeT

As illustrated in Fig. 3, the proposed DRHNet consists of
three components, the context-aware encoder (left side),
transformation (middle), and haze decoder (right side). The
DRHNet learns the residuals between the clear images and
hazy images directly because reformulating the layers as
learning residual functions is useful to decrease computa-
tional burden [16]. In the image dehazing task, clear images
are the layer outputs, while hazy images are the layer inputs.
Therefore, the DRHNet is directly motivated to learn the
residual between the clear image and the hazy image. The
dehazed result generated by DRHNet can be generated as
follow:

J = DRHNet(I) + I ()

where J is the dehazed result, DRHNet(I) is the output of the
proposed DRHNet, 7 is the hazy image. Since the proposed
DRHNet generates the residual between clear image and hazy
image directly, rather than #(x) and «, Eq. (2) can not be used
to restore the haze-free image.

‘We propose a context-aware feature extraction module to
aggregate contextual information and then encode it into
the feature maps. Subsequently, we adopt a transformation
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module to extract the high-level feature. These feature maps
will be decoded back by the haze decoder to estimate the
residual map. Because the residual between haze and the
haze-free image is negative in most of the region, we put the
negative residual map obtained by taking the opposite value
of each pixel of the residual map obtained from DRHNet
in Fig. 3 to provide convenience for readers to understand
this concept. Finally, the haze-free image is obtained by
subtracting the hazy image to the negative residual. It’s worth
note that we put a Group Normalization layer (GN) [24] after
each convolutional layer because GN is stable in a wide range
of batch sizes and its computational cost is independent of
batch sizes. In Section IV, we will show GN is more suitable
than Batch Normalization (BN) [25], Instance Normalization
(IN) [26], and Layer Normalization (LN) [27] for the image
dehazing task. The following subsections will introduce the
detailed design of the proposed DRHNet.

A. DESIGN OF THE CONTEXT-AWARE ENCODER

The context-aware feature extraction module has been pro-
posed to make DRHNet extract features effectively. In this
section, we detail the context-aware feature extraction mod-
ule and how to use it in the context-aware encoder component.

1) CONTEXT-AWARE FEATURE EXTRACTION MODULE

The most significant characteristic of hazy image is that
different regions of the hazy image are affected by differ-
ent degrees of haze, but the influence degree of each pixel
affected by haze is very close to its surrounding areas. There-
fore, it is necessary to use multi-scale convolution to extract
the features of hazy image. To aggregate the contextual
information, the kernel sizes of the context-aware encoder
component are set to 3, 5, and 7, respectively, and the dimen-
sions of the feature maps obtained from each part of context-
aware encoder component are 64, 32, and 32 respectively,
these feature maps are concatenated together. The formula to
calculate the size of the feature maps are as follows:

W =W —F+2P)/S +1 @)
H =H-F+2P)/S+1 8)
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where W’ and H' are the widths and the heights of the output
feature map, respectively, F is the kernel size, S represents
for stride, P is the number of surrounding layers filled in the
feature map. According to Eq. (7) and Eq. (8), we can use P
to ensure the equality of the output sizes of the feature maps
obtained by different F'.

2) CONTEXT-AWARE ENCODER COMPONENT

Image dehazing is an important image processing task that
has high requirements on the integrity of the spatial image
information [7]. In the first layer of the proposed DRHNet,
we adopt the context-aware feature extraction module to
aggregate the contextual information. The next layer is
obtained from the previous layer by the convolution with a
kernel size of 3 and a step size of 2. There are only three-
layer convolutions in the context-aware encoder component.
The size of the feature map of the next convolution is half
of the size of the feature graph of the previous convolution.
Generally, the pixel value of haze-free images is lower than
that of the hazy images, but sometimes the opposite happens.
Therefore, parametric rectified linear unit (PReLU) is used
in this context-aware encoder component, because PReLU
improves model fitting with nearly zero extra computational
cost and keeps the areas of the negative axis [28]. The func-
tion of PReLU is shown in Fig. 5(a).

B. TRANSFORMATION COMPONENT

The depth of CNN has a significant influence on the dehazing
networks’ performance. He et al. provides a large number of
experiments to prove that the strategy of adopting bottleneck
building blocks to extract features is easier to optimize deep
networks [16]. To improve the performance of the DRHNet,
the bottleneck building blocks [16] are used in the transforma-
tion component to learning residual functions with reference
to the layer inputs, instead of learning unreferenced functions.
In the experiment part, we will explore the best trade-off
between the performance and the number of parameters.

1) REVERSE PARAMETRIC RECTIFIED LINEAR UNIT
Choosing the correct activation function is essential for image
dehazing algorithms. We design a useful activation function
inspired by some traditional haze removal algorithms. Refer-
ences [7] and [8] proved that the pixel values of hazy images
are higher than the haze-free image. The DCP [7] demon-
strated that the pixel values of the dark channel increase after
the image is affected by haze, and the CAP [8] showed that the
brightness of the image would increase after being affected
by the haze. Therefore, the residual obtained from DRHNet
should be a negative matrix. Based on this prior knowledges,
we maintain the original signal strength in the negative part
of the activation function and suppress the original signal
by adding coefficients in the positive part. This activation
function (denoted as RPReLU) is shown in Fig. 5(b) and can
be written as:
axi, if x>0

RPReLU (x) = )
Xi, otherwise

©))
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FIGURE 4. The architecture of the proposed transformation component.

where the coefficient a is set to 0.1, and i represents the dif-
ferent channels. RPReLU is useful to the proposed DRHNet
and the effectiveness has been validated in the experimental
section.

2) DESIGN OF TRANSFORMATION COMPONENT

The relationship between the hazy image and the residual is
nonlinear. Therefore, the transformation component converts
the hazy information into high-dimensional residual informa-
tion. As illustrated in Fig. 4, the structure of the transfor-
mation component is composed of seven bottleneck building
blocks [16]. Different from traditional CNNs, a bottleneck
building block performs a mapping as follows:

Xi+1 = RPReLU (F (x;, w;i) + I(x;)) (10)

where x; and x;41 are the input and output of the ith bottleneck
building block, respectively, w; is a set of weights and biases
associated with ith block and I(.) is the identify function.
To obtain a superior tradeoff between the runtime and the
performance, we set the dimension of the bottleneck block
to 512.

C. HAZE DECODER COMPONENT

The motivation of the DRHNet is to learn the residual
between the haze-free image and the hazy image accurately.
It is necessary to concatenate the features obtained by the
haze decoder component with features obtained by haze
decoder component because the features extracted from the
shallow module of DRHNet is significant for the dehazing
performance. RPReLU is also used in the haze decoder com-
ponent because the primary purpose of haze decoder is to
estimate the residual map from high-level features obtained
from the transformation component. Because the structure of
the proposed DRHNet is symmetric, the other parameters of
the haze decoder component are set the same as the context-
aware encoder component. Finally, the haze decoder compo-
nent outputs the residual between hazy and haze-free image

VOLUME 8, 2020
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FIGURE 5. Parametric Rectified Linear Unit (PRelLU) [28] and the proposed
Reverse Parametric Rectified Linear Unit (RPReLU).

and uses the residual map and the original input hazy image
to obtain the dehazed image by Eq. (6).

D. LOSS FUNCTION

1) MEAN SQUARE ERROR

A lot of data-driven dehazing networks use the mean square
error (MSE) as a loss function [12], [29]. However, unlike
previous works, our goal is to learn the residuals between the
hazy scenes and clear scenes. To clearly describe the afore-
mentioned target, let I,, = {(I,),n = 1,..., N} denote the
hazy image data set, where G,, = {(G,) ,n =1, ..., N}isthe
corresponding ground truth clear image for 7,,. In the sequel,
we omit the subscript n since inputs are all independent of
one another. Therefore, the residual between the ground truth
and the hazy image can be described as follows:

R=G-1I (11)

where G is the ground truth image, / is the hazy image. So,
the first part of the loss function is described as:

L = ||DRHNet(I)—R|? (12)
where, DRHNet (1) is the residual obtained by DRHNet.

2) FEATURE RECONSTRUCTION LOSS

We use the feature reconstruction loss [30] as the second part
of the loss function. Li et al. have proved that the similar
images are similar both in their underlying and high-level
features extracted from the complex deep learning model
named as the ““loss network [30].” Therefore, we run images
through the loss network to extract features and measure the
similarities between their underlying and high-level features.
We chose the VGG-16 model [31] as our loss network and
used the first, second, and third layers as the measurement to
determine the loss function. The formula is as follows:

L,= i ! |VGGi(R) — VGGi(DRHNet(I))||3  (13)

p = . Cl‘ HW, i i 2

where, VGG() is the network of VGG-16 model, R is the
residual between the ground truth and the hazy image. H,
W, and C represents the length, width, and the number of
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channels of the feature map, i represents the number of layers
of the VGG-16.
The final loss function can be described as follow:

Lioar = L +yLyp (14)

where y is set to 0.5 in this paper, it is noted that designing
the loss function is not our primary focus, but the proposed
DRHNet also can achieve state-of-the-art performance in
image dehazing task.

IV. EXPERIMENTS

In this section, we conduct sufficient experiments to ver-
ify the superiority of the proposed DRHNet. By default,
the network is trained for 120 epochs. The default initial
learning rate is 0.1 and decays by 0.01 every 40 epochs.
All experiments are performed on a server with an
Intel(R) Xeon(R) CPU E5-2620, 128GB RAM, and NVIDIA
TITAN X. More results and the code can be found at
https://github.com/fpklipic/DRHNet.

A. DATASETS

We adopt the benchmark datasets to train and test the pro-
posed DRHNet. To ensure the fairness of the comparison
experiment, we use the same training and testing datasets for
each comparison algorithms.

1) IMAGE DEHAZING DATASET

For the image dehazing algorithms, most algorithms only
use their datasets for evaluation, which makes it is difficult
for researchers to compare the proposed algorithms with
these algorithms. Therefore, Li et al. proposed a bench-
mark dataset (named RESIDE) to compare different dehazing
algorithms [17]. To ensure the fairness of the comparison
experiment, we adopt the same training strategy to train
the proposed DRHNet and other comparison algorithms in
RESIDE. In addition, we also collect 30 real-world hazy
images for evaluating to demonstrate the superiority of the
proposed DRHNet in the real hazy scene.

2) IMAGE DERAINING DATASET

The field of image deraining also has public datasets for
training and testing the image deraining algorithms. Recently,
Zhang et al. proposed a useful dataset [36] to train and test
the state-of-the-art image deraining networks, which con-
tains raining density tags of light rain, moderate rain, and
heavy rain. We ignore these tags and use the whole training
set to train the proposed DRHNet. Although ignoring the
raining density tags degrades the performance, the DRHNet
still surpasses the previous state-of-the-art image deraining
algorithms.

B. QUANTITATIVE AND QUALITATIVE EVALUATION FOR
IMAGE DEHAZING TASK

The quantitative and qualitative evaluations on the synthetic
dataset and real-world hazy images are conducted to verify
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TABLE 1. Dehazing quantitative evaluations result in terms of average PSNR (dB) and SSIM in the dataset of [17] (reb font: 15¢, blue font: 25t and green

font: 35t).
500 synthetic indoor images in SOTS [17]
DCP[7] BCCR[32] GRM[33] CAP[8] NLD[34] DehazeNet[12] MSCNN[15] AOD-Net[13] GMAN [35] DRHNet
PSNR 18.87 17.87 20.44 21.31 18.53 20.01 21.01 27.94 31.39
SSIM 0.794 0.770 0.823 0.824 0.702 0.833 0.791 0.897 0.974
500 synthetic outdoor images in SOTS [17]
DCP[7] BCCR[32] GRM[33] CAP[8] NLD[34] DehazeNet[12] MSCNN [15] AOD-Net[13] GMAN [35] DRHNet
PSNR 18.54 17.71 20.77 23.95 19.52 21.73 24.08 28.58 30.23
SSIM 0.710 0.741 0.762 0.869 0.733 0.826 0.831 0.909 0.973
10 synthetic images in HSTS [17]
DCP[7] BCCR[32] GRM[33] CAP[8] NLD|[34] DehazeNet[12] MSCNN [15] AOD-Net[13] GMAN [35] DRHNet
PSNR 17.27 16.61 20.48 22.88 18.92 26.94 20.53 20.24 29.79
SSIM 0.721 0.695 0.763 0.822 0.741 0.876 0.789 0.793 0.942

the superiority of the proposed DRHNet. Through the exper-
imental results on synthetic datasets and real-world datasets,
we can conclude that the proposed DRHNet can achieve state-
of-the-art dehaziing performance.

1) QUANTITATIVE EVALUATION FOR SYNTHETIC IMAGES

As shown in Table 1, we compare the proposed DRHNet
with several state-of-the-art image dehazing algorithms quan-
titatively, including two representative traditional algorithms,
i.e., Dark-Channel Prior (DCP) [7] and Boundary Con-
strained Context Regularization (BCCR) [32], and three
latest traditional image dehazing algorithms, i.e., Gradient
Residual Minimization (GRM) [33], Color Attenuation Prior
(CAP) [8], Non-local Image Dehazing (NLD) [34], and
four learning-based methods, i.e., DehazeNet [12], Multi-
scale CNN (MSCNN) [15], All-in-One Dehazing Network
(AOD-Net) [13] and Generic model-agnostic convolutional
neural network (GMAN) [35]. The quantitative evaluation
was performed on the three testing sets, which include
500 synthetic indoor images in SOTS [17], 500 synthetic
outdoor images in SOTS [17], and 10 synthetic images in
(HSTS) [17]. We evaluate these algorithms using two full-
reference image quality assessment measures: the Peak Sig-
nal to Noise Ratio (PSNR) and the Structure Similarity
(SSIM) [37]. Table 1 shows the PSNR and SSIM scores of the
comparison algorithms and the proposed DRHNet on three
different testing sets. As shown in Table 1, we can see that
the proposed DRHNet outperforms the other state-of-the-art
dehazing algorithms by a large margin.

2) QUALITATIVE EVALUATION FOR SYNTHETIC IMAGES

Fig. 6 shows the dehazed images obtained from differ-
ent image dehazing algorithms in the synthetic datasets.
As shown in Fig. 6, we can observe that the DCP [7], GRM
[33], and CAP [8] overestimate the haze thickness, so the
dehazed results tend to darker than the ground truth, espe-
cially the building region of the fifth image of Fig. 6(b),
Fig. 6(c) and Fig. 6(d). The dehazed results of DehazeNet [12]
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and AOD-Net [13] are shown in Fig. 6(e) - 6(f). Although the
dehazed results by DehazeNet and AOD-Net are similar to
the ground truth (GT) than the dehazed results by DCP [7],
GRM [33], and CAP [8], there is still some remaining haze
in the dehazed results, especially the sixth image of Fig. 6(e)
and Fig. 6(f). The dehazed results generated by GMAN [35]
and the proposed DRHNet are most similar to the GT. But
the quantitative evaluation score of DRHNet is higher than
GMAN [35]. Therefore, the performance of DRHNet is better
than GMAN [35].

3) QUANTITATIVE EVALUATION FOR REAL-WORLD IMAGES

To further evaluate the dehazed performance of the proposed
DRHNet and other image dehazing algorithms in the real-
world hazy images, we collected the 30 real-world hazy
images for evaluating. As the ground truth of the real-world
image is not available, we can not evaluate the dehazed per-
formance on real-world datasets by full-reference image qual-
ity assessment measures, i.e., PSNR and SSIM. Therefore,
we compare the proposed DRHNet with different dehazing
algorithms using reduced-reference and no-reference image
quality assessment, i.e., spatial-spectral entropy-based qual-
ity (SSEQ) [38] and the rate of new visible edges (e) [39].
Table 2 exhibits the result of the proposed DRHNet and other
state-of-the-art dehazing algorithms on the collected real-
world dataset. From Table 2, we can observe that the proposed
DRHNet outperforms the current state-of-the-art methods.
Therefore, we can conclude that the proposed DRHNet can
achieve excellent performance on real-world hazy images.

4) QUALITATIVE EVALUATION FOR REAL-WORLD IMAGES

As most of the state-of-the-art dehazing algorithms can obtain
acceptable results on real-world images, it is challenging to
rank them perceptibly. To compare the proposed DRHNet
with other state-of-the-art dehazing algorithms, we focus on
six representative images from the dataset of Ref. [7]. Fig. 7
shows a qualitative comparison with six advanced dehaz-
ing algorithms on these six challenging images. As shown
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TABLE 2. Dehazing quantitative evaluations result in terms of average SSEQ and e in the real-word dataset (reb font: 15, blue font: 25t and green

font: 35t).
Average no-reference evaluations result of dehazed results on 30 challenging real-word images.
DCP[7] BCCR[32] GRM][33] CAP[8] NLD|[34] DehazeNet[12] MSCNN[15] AOD-Net[13] GMAN [35] DRHNet
SSEQ 21.27 22.50 23.14 21.46 21.46 21.27 21.48 20.10 23.66 24.31
e 0.72 0.76 0.60 0.64 0.65 0.56 0.54 0.59 0.64 0.77

() Hazy image (b)DCP[7] ) GRM [33] (d) cAP[8]

¢) DehazeNet [12]

(f) AOD-Net[13]  (g) GMAN [35] (h) DRHNet (Gt

FIGURE 6. The dehazing effect of different image dehazing algorithms on synthetic images [17].

in Fig. 7, the dehazed results by DCP [7] also achieve decent
dehazed performance. However, the dehazed images still
suffered by color distortions. For example, the color of the
dehazed Tiananmen image by DCP [7] is different from
that in the real scene. GRM [33] achieved excellent dehazed
performance on Gugong, but other dehazed results are not
visually pleasing. Similar to DCP, CAP [8] tends to overes-
timate the thickness of the haze, which causes the dehazed
results darker than the real scene. For example, the color of
the dehazed Gugong image tends to be darker than the actual
color, especially in the white region. DehazeNet [12] can
enhance image visibility and clearness, but the dehazed result
on Canyon is still blurry. The dehazed results of AOD-Net
on Tiananmen, Forest, and Canyon tend to underestimate the
haze thickness, which causes some remaining haze. GMAN
can enhance the image visibility and augment the image

VOLUME 8, 2020

details on the real-world images, excluding the image of
Canyon. In general, the dehazed results obtained by the pro-
posed DRHNet on real-world hazy images are visually more
pleasing.

C. QUANTITATIVE AND QUALITATIVE EVALUATION FOR
IMAGE DERAINING

We adopt the representative dataset [36] for training and test-
ing to demonstrate the superiority of the proposed DRHNet
on the image deraining task. We compare the proposed
DRHNet with other state-of-the-art image deraining algo-
rithms, i.e., Discriminative sparse coding-based method
(DSC) [40], Gaussian mixture model (GMM) [41], CNN
Method (CNN) [42], Joint Rain Detection and Removal
(JORDER) [43], Deep detailed Network method (DDN)
[44], Joint Bi-layer (JBO) [45], De-raining method using
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(a) Hazy image (c) GRM [33] V () CAP [8]

I e e i | B —
(e) DehazeNet [12]  (f) AOD-Net[13]  (g) GMAN [35] (h) DRHNet

FIGURE 7. The dehazing effect of different image dehazing algorithms on real-world images. (From the first image to the sixth image, they are

New York, Hong Kong, Tiananmen, Forest, Canyon, Gugong, respectively.)

TABLE 3. Deraining quantitative results evaluated in terms of average PSNR (dB) and SSIM in the dataset of [36] (reb font: 15¢, blue font: 25t and green

font: 35t).
Input DSC [40] GMM [41] CNN[42] JORDER [43] DDN[44] JBO[45] DID-MIN [36] UMRL [46] DRHNet
PSNR 21.15 21.44 22.75 22.07 24.32 27.33 23.05 27.95 29.77 31.58
SSIM  0.7781 0.7896 0.8352 0.8422 0.8622 0.8978 0.8522 0.9087 0.920 0.9352

a Multi-stream Dense Network (DID-MDN) [36] and
Uncertainty guided Multi-scale Residual Learning using
cycle spinning (UMRL) [46]. The quantitative and qualitative
evaluation for image deraining is presented in Table 3 and
Fig. 8. As shown in Table 3, our DRHNet achieves best per-
formances in both PNSR and SSIM values on this synthetic
dataset and significantly improves the latest UMRL [46]
1.81 dB in PSNR. As shown in Fig. 8, the proposed DRHNet
has achieved excellent image deraining performance.

D. PERFORMANCE ON WHITE SCENERY IMAGES

To the best of our knowledge, image dehazing algorithms
often fail in white scenes or objects. Many useful dehazing
algorithms, such as the DCP [7] and CAP [8], fail on white
scenes and the DehazeNet [12] relies on the robustness of
white regions, but this causes the inevitable sacrifices of the
visual details. Although the DRHNet does not consider or
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design particular parts to handle white scenes, our algorithm
seems to have stronger robustness. Fig. 9 exhibits two images
of white objects and their dehazed results obtained by the
representative dehazing algorithms. The unbearable shadows
of the DCP [7] results are easily observed, especially in the
marked regions of the first row. This problem is alleviated in
the GRM [33], CAP [8], DehazeNet [12] and AOD-Net [13],
but still persists. However, the proposed DRHNet has stronger
robustness in white scenery images, even in the challenging
regions of the cat’s mouth and swan’s neck, DRHNet does not
introduce fake color or lose original details.

E. PERFORMANCE ON HAZE-FREE IMAGES

Although the DRHNet is trained on hazy images, it has
limited negative impacts on haze-free images. This is a highly
desirable property as it demonstrates the effectiveness and
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[RRCATNE -

(a) Rain image (b) DDN [43]

FIGURE 8. Image deraining results on sample images from the synthetic dataset [36].

}

(a) Input

FIGURE 10. Examples of impacts over haze-free images. Left column:
haze-free images. Right column: outputs by DRHNet.

robustness of the DRHNet. Fig. 10 shows the output results of
two challenging haze-free images by the proposed DRHNet.

F. IMAGE ANTI-HALATION PERFORMANCE
Halation is the spreading of light beyond appropriate bound-
aries and forms an undesirable haze effect in image bright
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(c) DDN-MIN [36]

(d) UMRL [45]

) |
(h) DRHNet

FIGURE 11. Image enhancement for anti-halation by DRHNet. Left
column: real photos with halation. Right column: results by DRHNet.

areas [13]. Due to the color offset caused by haze particles
and light sources, the color of halation is sometimes sim-
ilar to haze. We applied the DRHNet to anti-halation task
without retraining to verify its robustness to these situations.
As shown in Fig. 11), the results of the anti-halation by
DRHNet are also excellent.
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(a) The training process with different feature extraction models in first
layer.
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(b) The training process with different activation functions in DRHNet.

BN [47.86]

T IN[3.73]
T LN[31.03]
"~ — GN (our) [11.60]

700
600
500
400
300 NN e e
200 TEL

100

0.00 = = = = ——

0.000 200.0 400.0 600.0 800.0 1000 1200 1400 1600 1800

(c) The training process with different normalization methods.

FIGURE 12. Detailed abalation analysis for each important components
with different configurations.

G. MODEL AND PERFORMANCE

We have conducted a series of ablation experiments to ver-
ify the performance of each specific design or choice for
DRHNet. Specifically, we focus on three major components,
including the context-aware feature extraction module / com-
ment convolution, RPReLU / PReLLU, GN / other normaliza-
tion methods. In addition, the influence of the transformation
component layers on the performance and running speed is
also analyzed.

1) DIFFERENT FEATURE EXTRACTION MODELS IN THE FIRST
LAYER

The context-aware feature extraction module is designed to
extract multi-scale haze-relevant features. We conducted a
series of experiments to prove the proposed context-aware
feature extraction module can effectively improve the perfor-
mance of the DRHNet. Fig. 12(a) shows the learning process
when different convolution is used in the first layer of the
proposed DRHNet. We can observe that the convergence
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speed of the context-aware feature extraction module is faster
than the convergence speef when other common convolutions
are used, and the loss value is 70.19, 48.25, 80.00 lower
than that when 3 x 3, 5 x 5 and 7 x 7 convolutions are
used, respectively. Therefore, the proposed context-aware
feature extraction module can improve the performance of the
DRHNet in the image dehazing task.

2) COMBINATION OF DIFFERENT ACTIVATION FUNCTIONS
IN DRHNeT

The RPReLU is a novel activation function with certain
advantages in image dehazing because it is based on some
prior knowledge of hazy images. In this ablation experiment,
the PReL.U is used to gradually replace the RPReLU in the
context-aware encoder, transformation, and haze decoder.
The selected activation function in each part is illustrated in
the upper right corner of Fig. 12(b). The first item represents
the activation function used in the context-aware encoder
component, the second item represents the activation function
used in the transformation component, and the third item
represents the activation function used in the haze decoder
component. The experimental results prove that the proposed
DRHNet has the best performance when PReLU is used in a
context-aware encoder component, and RPReLU is used in
the transformation component and haze decoder component.

3) DIFFERENT NORMALIZATION METHODS FOR DRHNeT

To investigate the most suitable normalization method,
we adopt four different normalization methods to conduct
experiments, respectively. The normalization methods used in
the experiments have GN (which is selected by us) as well as
BN, IN, and LN. As shown in Fig. 12(c), GN is most suitable
for the proposed DRHNet.

4) DIFFERENT TRANSFORMATION IN DRHNeT

The performance would improve with the increase of layers
in the network when the bottleneck building blocks were
used to extract high-level features [16]. However, in most of
the computer vision applications, it is desired to obtain the
best trade-off between dehazing performance and parameter
size. To get the best trade-off between dehazing performance
and parameter size, we gradually supplement the bottleneck
building blocks in the transformation component. As shown
in Table. 4, we experimented with four network structures
with different transformation components. Table. 4 shows the
training loss and test loss for different structures.

Overall, the DRHNet with ten bottleneck building blocks
had the best performance, but its training loss and test-
ing loss were higher than other structures. The losses of
DRHNet with seven bottleneck building blocks were also
small (11.60/12.73) compared to the DRHNet with ten bot-
tleneck building blocks (11.33/12.72). As far as we know,
choosing a reasonable structure to balance the performance
and losses is more important than only achieving the best
performance. Therefore, as shown in Table. 4, the seven-layer
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TABLE 4. Comparison on transformation component part in different
layers.

Architecture  Training losses ~ Testing losses # Param
1 layer 29.63 33.44 29,566,558
3 layers 22.97 27.07 32,982,632
7 layers 11.60 12.73 39,814,782
10 layers 11.33 12.72 44,938,895

transformation component is the best choice for the proposed
DRHNet.

V. CONCLUSION

In this paper, we proposed a novel end-to-end deep residual
haze network termed as DRHNet for single image dehazing
and deraining. DRHNet designed a context-aware feature
extraction module to aggregate the contextual information
more effectively and proposed a novel activation function
called RPReLU to accelerate the convergence of DRHNet.
Experiments on RESIDE [17] demonstrated the superiority
of DRHNet over the counterparts. In addition, experiments
on the image deraining dataset proposed by Zhang and Patel
[36] also demonstrated its significant improvement of perfor-
mance on image deraining. In the future, we are interested in
the researches on general deep learning networks for a variety
of image restoration tasks, or on extension of the network for
video dehazing task.
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