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ABSTRACT Transfer entropymeasures the strength and direction of information flow between different time
series. We study the information flow networks of the Chinese stock market and identify important sectors
and information flow paths. This paper uses the daily closing price data of the 28 level-1 sectors from Shenyin
& Wanguo Securities ranging from 2000 to 2017 to study the information transmission between different
sectors. We construct information flow networks with the sectors as the nodes and the transfer entropy
between them as the corresponding edges. Then we adopt the maximum spanning arborescence (MSA) to
extract important information flows and the hierarchical structure of the networks. We find that, during the
whole sample period, the composite sector is an information source of the whole stock market, while the non-
bank financial sector is the information sink. We also find that the non-bank finance, bank, computer,media,
real estate,medical biology and non-ferrous metals sectors appear as high-degree root nodes in the outgoing
and incoming information flowMSAs. Especially, the non-bank finance and bank sectors have significantly
high degrees after 2008 in the outgoing information flow networks. We uncover how stock market turmoils
affect the structure of the MSAs. Finally, we reveal the specificity of information source and sink sectors
and make a conclusion that the root node sector acts as the information sink of the incoming information
flow networks. Overall, our analyses show that the structure of information flow networks changes with
time and the market exhibits a sector rotation phenomenon. Our work has important implications for market
participants and policy makers in managing market risks and controlling the contagion of risks.

INDEX TERMS Econophysics, transfer entropy, spanning arborescence, information flow network, sector
rotation.

I. INTRODUCTION
Complex systems are usually composed of some interrelated
subsystems and understanding the interactions between dif-
ferent subsystems makes a lot of sense. A network represen-
tation is found advanced to characterize the complex systems
and has been applied far and wide in many scientific fields,
such as stock networks [1], [2], communication networks [3],
Internet [4], World Wide Web [5], and economic networks
[6]–[9], to list a few. Financial markets, as a representative
type of complex systems, reflect a dynamic interaction of a
large number of different elements at different levels, includ-
ing different traders, stocks and sectors, etc. The financial
crises such as those in China since 2000 (June 2001 [10],
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December 2007 [11], June 2009 [11] and June 2015 [12])
demonstrate a critical demand for a fundamental and new
understanding of the structure and dynamics evolutions of
financial market networks.

There are many techniques have been proven effective
to construct networks for financial markets, such as corre-
lation analysis [8], [13]–[18], Granger causality [19], [20],
mutual information [21]–[24], tail dependence [25], [26],
and so on. Compared to undirected networks or directed but
unweighted networks, directed and weighted networks can
characterize better the interaction between subsystems and
the structure of complex systems. Information flow theory is
characterized by interaction and has been widely adopted in
analyzing economic systems [27], [28]. The main idea of the
interaction is the direction and strength of coupling. In this
study, we use transfer entropy to identify the information
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transfers between different industrial sectors in the Chinese
stock market and construct an information flow network.
Transfer entropy (TE), as a kind of log-likelihood ratio [29],
is a measurement method that quantifies information flow
based on the probability density function (PDF). It cannot
only identifies the direction of the information flow but also
quantifies the flows between different subsystems, which has
been widely applied [30]–[38].

There are also many scholars study the impact of financial
crisis on the structure of stock markets from the perspec-
tive of information flow network. Oh et al. investigated the
information flows among different sectors of the Korean
stock market [39]. They measured the amount of information
flow and the degree of information flow asymmetry between
industrial sectors around the sub-prime crisis and showed
clearly that the insurance sector as the key information source
after the crisis. Sandoval Jr. built dynamic networks based
on correlation and transfer entropy, unveiling node strength
peaks in times of crisis [40]. Gonçalves and Atman used the
visibility graph algorithm combined with information theory
to construct an estimator of stock market efficiency for the
impact caused by the 2008 European crisis in the global
markets [41].Wang andHui applied effective transfer entropy
to study the information transfer in the Chinese stock market
around its crash in 2015. They divided the crash into the
tranquil, bull, crash, and post-crash periods and they found
the information technology sector is the biggest information
source, while the consumer staples sector receives the most
information [42]. Li et al. used transfer entropy to research
the risk contagion in Chinese banking system, and evaluated
the stability of Chinese banking system by simulating the risk
contagion process [43]. To extend these works, we detect the
evolution of out-degree and in-degree of the root sector during
the crisis period, and then we expose the key sector in our
information flow networks between pre-crisis and post-crisis
periods.

How to extract important information and understand the
properties of the aforementioned information flow networks
become more difficult and crucial since these networks are
usually complete graphs which means all links between pairs
of nodes are present. There are a variety of filtering tools
applied by different researchers, such as Planar Maximally
Filtered Graph (PMFG) [44], Minimum (or maximum) Span-
ning Tree (MST) [45] and bootstrap reliability estimation
[46]. Among them, MST is an efficient tool to detect the
hierarchical structure in financial markets [7], which has been
adopted in many works [47]–[59]. Kwon and Yang stud-
ied the strength and direction of information flow between
25 stock indices using transfer entropy and minimum span-
ning tree. They found that the Standard and Poor’s 500 Index
is located at the information source in the global stock market
[60]. We note that the directed analog of maximum span-
ning tree is usually called maximum spanning arborescence
(MSA). To the best of our knowledge, there is no work
combining these two methods TE and MST (or more specif-
ically MSA) to analyze the evolution of the information flow

networks of different industrial sectors in financial markets.
Hence, we construct transfer entropy based networks and
use MSA to conduct a dynamic analysis to give some new
insights into the Chinese stock market.

It has been a ‘‘stylized fact’’ that the stock price can be
considered as a barometer of the company reflecting the sen-
timent of participants about the company. Similarly, the stock
index price can be deemed as a barometer of a series of com-
panies which belong to the same economic sector. We aim
to reveal the interrelationship between different economic
sectors of the Chinese stock market and the impact of market
crashes on its structure. To this end, in our empirical analysis,
we first choose 28 level-1 stock indices issued by Shenyin
& Wanguo Securities to construct transfer entropy based
information flow networks, which are directed and weighted.
Next, by employing the filtering technique of MSA, we iden-
tify the important information flow propagation paths and the
key sectors of the incoming and outgoing information flow
networks in different years. Finally, we investigate how the
two market crashes (occurred in 2008 and 2015) impact the
structure of the information flow network.

Overall, this paper contributes to the literature on infor-
mation flow networks in several ways. First, we identify
and analyze the paths of information flow transfers among
different sectors. In particular, we investigate the role of
different sectors in the information flow networks such as root
sectors, leaf sectors and the sectors located in the maximal
information flow paths, which have important implications
in risk management for policy makers and strategy design for
market participants. Second, we compare not only the rela-
tionship between the degree of root sectors and the status of
the stock market but also the relationship between the amount
information of MSAs and the status of the stock market.
Third, such an analysis has not been conducted on the Chinese
stock market, which is becoming more and more important in
the global market and attracting increasing interest.

The remainder of this paper is organized as follows.
Section II describes the minimum spanning tree approach,
the method for calculating transfer entropy, and howwe use it
to construct information flow networks. Section III overviews
the sector index time series for the Chinese stock market.
Section IV presents the empirical results about the evolution
of MSAs of the information flow networks and how financial
crisis affect the shape of the MSAs. Section V concludes this
work and provides some new insights to the Chinese stock
market.

II. METHODS
In this section, we describe the main methods adopted in
this work. The analyses are implemented using MatLab, with
which our university (ECUST) has a license. Certainly, soft-
wares other than MatLab can also do the job.

A. SYMBOLIC TRANSFER ENTROPY
Transfer entropy is a useful method in information theory.
Schreiber is the first to use transfer entropy to measure
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information transfer and detect asymmetry in the interac-
tions among subsystems [30]. To explore the transfer entropy
between two time series, there are a variety of approaches
in the literature. We use the symbolic transfer entropy intro-
duced by Staniek and Lehnertz [61].

Consider two time series of daily closing prices of two
sector indices {Yt} and {Xt}, t = 1, 2, . . . ,L. The sym-
bolic transfer entropy T Sy→x from the corresponding return
time series {yt} to {xt} can be calculated as follows. First,
we calculate the logarithmic returns {xt} of the original price
time series {Xt}, which are calculated as follows

xt ≡ ln(Xt )− ln(Xt−1). (1)

Then the returns are discretized into q non-overlapping
windows of identical length 1. The width of each win-
dow is 1x = [xmax − xmin]/q and the kth window is
[xmin + (k − 1)1x , xmin + k1x), where xmax and xmin
are respectively the maximum and minimum values of the
time series xt . Similarly, we repeat the procedure for yt ,
in which 1y is usually different from 1x . Next, we map
the logarithmic return time series to x̂ and ŷ by x̂t =
f (xt ) = kx and ŷt = f (yt ) = ky, where kx , ky =
1, 2, · · · , q, xt ∈ [xmin + (kx − 1)1x , xmin + kx1x) and
yt ∈ [ymin + (ky − 1)1y, ymin + ky1y). Finally, we count the
numbers of returns in the qth window, denoted by x̂qt and
ŷqt respectively, and then calculate the probabilities p(x̂t ) =
x̂qt /(L−1) and p(ŷt ) = ŷqt /(L−1), as well as the joint proba-
bilities p(x̂t , ŷt ), p(x̂t , x̂t+1) and p(x̂t+1, x̂t , ŷt ). The symbolic
transfer entropy from {yt } to time series {xt } is calculated as

T Sy→x =
∑

x̂t+1,x̂t ,ŷt

p(x̂t+1, x̂t , ŷt ) log2
p(x̂t+1, x̂t , ŷt )p(x̂t )
p(x̂t+1, x̂t )p(x̂t , ŷt )

. (2)

During this procedure, one need to determine the value of
q. Marschinski and Kantz considered q = 2 and 3 in their
research [62], while Sandoval Jr. used q = 6 and 24 [63].
In this work, we use q = 10, 15 and 20 to calculate the transfer
entropy between different sectors and present the results for
q = 15 since the results are similar.

B. INFORMATION FLOW NETWORK
For every pair of sectors i and j, there are two quantities
T Si→j and T

S
j→i measuring the information interaction between

them, where T Si→j measures the direction and strength of the
information flow from sector i to sector jwhile T Sj→imeasures
the direction and strength of the information flow from sector
j to sector i. We use the degree of asymmetric information
flow (DAI or1T Si→j) introduced by Kwon and Oh to quantify
the information effect between two stock sectors [64]:

1T Si→j = T Si→j − T
S
j→i. (3)

Following the above definition, we construct transfer entropy
based information flow networks of the Chinese stockmarket.
For two sectors i and j, if 1T Si→j > 0, there is a directed link
from sector i to sector j and the weight of the link is 1T Si→j,
on the contrary, if 1T Si→j < 0 then there is a directed link

from sector j to sector i and the weight of the link is1T Sj→i =

−1T Si→j. Note that1T
S
i→j = 0 holds if and only if the return

time series of sector i is exactly the same as the return time
series of sector j, which is impossible in reality.

C. MAXIMUM SPANNING ARBORESCENCE
Twomaximum spanning arborescences Amax (outgoingMSA
Aout and incoming MSA Ain) can be extracted from an
information flow network. The outgoing MSA Aout has a
source node and each vertex has exactly one incoming edge.
The incoming MSA Ain has a sink node and each vertex
has exactly one outgoing edge. For a connected network
G = (V ,E) with N nodes, a spanning arborescence A is a
directed loop-free subgraph that connects every node in the
network with N − 1 edges. There can be a lot of spanning
arborescences for any given directed network. Denoting w(Ee)
be the weight (or DAI in this work) of edge Ee, the total weight
of spanning arborescence A is

w(A) =
∑
Ee∈A

w(Ee). (4)

A maximum spanning arborescence is the spanning arbores-
cence whose edges have the total maximum total weight:

w(Amax) = max
A∈G

w(A). (5)

This can be implemented with the Chu-Liu/Edmond algo-
rithm [65], [66].

III. DATA DESCRIPTION
The sector indices data used in this study is retrieved
from Shenyin & Wanguo Securities Co., Ltd., which are
publicly available at http://www.swsresearch.com. In total,
we have 28 sector indices of the Chinese stock market,
which covers 3508 individual stocks. Each sector index
ranges from 4 January 2000 to 29 December 2017, contain-
ing 4359 daily closing prices. The sector names and their
corresponding six-digit codes are: Agriculture & forestry
(801010), Automobile (801880), Bank (801780), Building &
decoration (801720), Building materials (801710), Chemi-
cal (801030), Commercial trade (801200), Communications
(801770), Composite (801230), Computer (801750), Elec-
trical equipment (801730), Electronic (801080), Food &
drink (801120), Household appliances (801110), Leisure &
services (801210), Light manufacturing (801140), Mechani-
cal equipment (801890), Media (801760), Medicinal organ-
isms (801150), Mining (801020), National defense (801740),
Non-bank financial (801790), Non-ferrous metals (801050),
Real estate (801180), Steel (801040), Textile and apparel
(801130), Transportation (801170), and Utilities (801160).

Table 1 presents the summary statistics of the return
time series. We can see that the mean of the logarith-
mic returns of all the sectors are positive ranging from
0.000219 to 0.000555, which means that the Chinese stock
market exhibits a slow overall rising trend during the sam-
ple period. All of the returns varies from −10% to 10%
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FIGURE 1. The maximum spanning arborescences of the information flow network among the 28 Chinese stock market
sectors from 2000 to 2017 and the maximal information flow path (we use red edge with yellow square markers to
make a distinction). (a) Outgoing MSA. (b) Incoming MSA.

TABLE 1. Summary statistics of the return time series of the 28 SWS
industry sectors from 4 January 2000 to 29 December 2017. To simplify
the symbol, we use the last three digits of each 6-digit code to represent
the corresponding Chinese stock market sector.

constrained by the ±10% price limit rule in the Chinese
stock market, where some values exceed the ±10% range
due to the tick size of one cent. According to column of
standard deviation, the non-bank financial sector fluctuates
the most, while the food & drink sector is the least volatile.
It means that the non-bank financial sector is riskier than
the food & drink sector in the Chinese stock market. All
the return distributions are left-skewed except for the bank
sector (skewness = 0.182) and the non-bank financial sector
(skewness = 0.041). We assume that these two finance-
related sectors have a special economic position in the Chi-
nese stock market and we will give some insights in our
empirical results. The kurtosis of each return time series is
positive, means that the overall return distribution is broader
than the normal distribution, which is known to be ‘‘fat-
tailed’’ or ‘‘heavy-tailed’’, a well-established stylized fact
of financial returns [67], [68]. According to the Jarque-Bera
test, we find that all the Jarque-Bera test statistics are much
greater than the critical value 9.442 with the significant level
α = 0.01. Hence the return distributions of all the 28 sectors
are not normally distributed.

IV. EMPIRICAL RESULTS
A. MAXIMUM SPANNING ARBORESCENCES OF THE
WHOLE SAMPLE
Asmentioned in Section II, transfer entropy can proxy for the
strength and direction of the information flow between two
time series. Following Oh et al. [39], we use the degree of
asymmetric information flow (DAI) to measure the net infor-
mation flow between stock sectors and construct directed
information flow networks. We advance their method by
identifying the maximum spanning arborescences by con-
necting the highest DAI of each network and the maximal
information flow path which has the highest DAI from the
starting node (no inflow from others) to the ending node (no
outflow to others). The outgoing and incoming MSAs of the
28 Chinese stock sectors from 2000 to 2017 are illustrated
in Fig. 1.

According to Fig. 1(a), the composite sector (code 230)
locates at the root of the outgoing MSA, which acts as the
information source. It implied that the composite sector is the
most influencing sector. The maximal information flow path
travels from the composite sector to the building materials
sector through the bank sector (code 780), the transportation
sector (code 170), and the food & drink sector (code 120),
along which the bank sector (code 780) plays a crucial role
because its outgoing degree 6 is the highest and thus it has a
direct information impact on other six sectors. The important
role of the composite sector as an information source might
stem from the fact that this sector is closely related to our
daily life and feels rapidly the change in sentiment.

From Fig. 1(b), the non-bank financial sector (code 790)
lies at the center of the incoming MSA, acting as the infor-
mation sink of the information flow network. It means that
the non-bank financial sector is the most influenced sec-
tor. The maximal information flow path of the incoming
MSA starts from the food & drink sector (code 120), passes
through the building materials (code 710) sector, the non-
ferrous metals sector (code 050) and the computer sector
(code 750), and finally ends at the non-bank financial sector.
Along path, the non-ferrous metals sector (code 050) is also a
hub, affected by other four sectors including themedia sector
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FIGURE 2. Outgoing (top row) and incoming (bottom row) maximum spanning arborescences and the correspond maximum information flow paths
between 28 Chinese stock market sectors in 2001, 2008, 2015 and 2017.

(code 760), the commercial trade sector (code 200), the chem-
ical sector (code 030) and the textile and apparel sector (code
130). The observation that the non-bank financial sector acts
as a main information sink can be partly explained by the fact
that this sector is a main investment channel for the Chinese
people. The fluctuation in other sectors impact the savings
of people and their investment decisions among real-estates,
bank savings, stocks and non-bank financial products.

B. YEARLY EVOLUTION OF THE MAXIMUM SPANNING
ARBORESCENCES
Different MSAs have different patterns indicating that there
are different hierarchical structures of information flow.
Yao et al. studied information transfer routes between cross-
industry and cross-region electricity consumption data based
on transfer entropy and MST and found that the MSTs fol-
low a chain-like structure in developed provinces and star-
like structures in developing provinces [69]. Following their
study, we investigate evolving shapes of the yearly MSAs.
Figure 2 shows the yearly outgoing and incoming MSAs
in four representative years, together with the correspond
maximal information flow paths. It can be seen that the shapes
and the root nodes of the MSAs change with time.

Themaximum information flow path on the outgoingMSA
in 2001 is 020 → 170 → 120 → 730 → 040 → 780 →
130 → 720 → 160 → 890. It contains 10 sectors and its
total information is 58.27. The maximum information flow
path on the outgoing MSA in 2008 is 760→ 080→ 120→
780 → 110 → 150 → 710 → 720 → 890 → 170 →
160, which has 11 sectors and total information of 85.15.
The maximum information flow path on the outgoing MSA
in 2015 is 150 → 120 → 170 → 210 → 740 →
890→ 110→ 230, which possesses 8 sectors with the total
information flow being 67.35. The maximum information
flow path on the outgoing MSA in 2017 is 720 → 210 →
740 → 010 → 130 → 020 → 200, which consists
of 7 sectors with the total information flow equal to 57.76.

TABLE 2. The evolution of the maximal information outflow path of the
outgoing MSAs.

These paths changed a lot in different years. The situation is
very similar for the incoming MSAs. The information about
the root node sectors and the maximal information paths
are presented in Table 2 for the yearly outgoing MSAs and
in Table 3 for the yearly incoming MSAs for each year.

The root nodes play an important role in the corresponding
maximum spanning arborescences. The occurrence numbers
of sectors as a source in the outgoing MSAs and as a sink
in the incoming MSAs are shown in Fig. 3. It shows that the
bank and non-bank finance sectors appeared three times as
the source node in the outgoingMSAs. Net information trans-
fers from these two sectors to other sectors, indicating the
importance of financial firms in delivering market informa-
tion in the the Chinese market. Secondly, the public utilities
and media sectors appeared twice, whereas the excavation,
non-ferrous metals, electronics, medical biology, real estate,
commercial digital, architectural decoration and Computers
sectors appeared once, indicating that these sectors have
information transmission to the entire market and affect the
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FIGURE 3. Occurrence numbers n of sectors as a source in the yearly outgoing MSAs (a) and as a sink in the yearly incoming
MSAs (b).

TABLE 3. The evolution of the maximal information inflow path of the
incoming MSAs.

structure of the market. The variation of the maximum paths
and the source sector also implies the presence of the section
rotation phenomenon [70]–[72]. On the other hand, it can
be seen that there are three sectors (non-ferrous metals,
textiles and apparel and bank) appeared twice as the sink
nodes in the incoming MSA, showing that these three sectors
receive the information flow from other sectors and become
more representative among the whole market. In addition,
the chemical, steel, household appliances, food and beverage,
medical biology, real estate, comprehensive, building mate-
rials, national defense military, computer, media and non-
bank finance sectors appeared once as the sink node in the
incoming MSAs, meaning that these sectors are also quite
information-sensitive in different years.

As shown in Fig. 1, there are usually several hubs with
relatively high degrees in the outgoing and incoming MSAs,
which can be viewed as secondary sources and sinks. We
identify from the 36 MSAs seven sectors (non-bank finance,
bank, computer,media, real estate,medical biology and non-
ferrous metals), which are secondary information sources
and/or sinks. Consistent with our common intuition, these
sectors are prone to influence other sectors or be influenced
by other sectors. The bank sector has the highest degree of the
information outflow and inflow as the root node, whichmeans

that it occupies a very important position in the information
flow networks of the Chinese stock market. It is because that
the banking system is often adopted as an important tool
for the Chinese government to regulate the Chinese financial
markets and other industries.

Sectors with high degrees in the MSAs play an important
role in the information flow networks. For a given outgoing
information flow network, the higher the degree of the sector,
the more sectors are directly affected by it in terms of the
information interaction. On the contrary, for a given incoming
information flow network, the higher the degree of the sector,
the sector receives information from more sectors, and more
sectors directly affect the sector. We use two heat maps to
show the degree of different sectors in the outgoing and
incoming MSAs in Fig. 4. Our analysis also shows that the
outdegree and indegree of each sector in the information flow
networks vary with time, it means that the impact of various
sectors on the stockmarket varies from time to time. It reflects
a well known phenomenon of ‘‘industry rotation’’ or ‘‘sector
rotation’’ in the stock market all over the world [70]–[72].
As it can be clearly seen from Fig. 4(a), the non-bank finance
and bank sectors have significant high degrees in the outgoing
MSAs after 2008. We can conclude that these two sectors
are the key sectors in the economic recovery stage, proxied
by the five trillion yuan bailout action in China. In Fig. 4(b),
we can see that the bank sector has very high degree in 2002,
2006 and 2017, it reflects the fact that the bank sector is
a very special sector compared with others in the Chinese
stock market. Another very interesting result is that there is
a double center-like information flow structure based on the
media and computer sectors in 2015 which means these two
sectors have most information interaction with other sectors
and become the most representative ones in that year. Indeed,
the stock market bubble in 2015 was fueled by the ‘‘mass
entrepreneurship and innovation’’ policy of the central gov-
ernment, during which a huge number of startup enterprises
in the ‘‘Internet+’’ fields were registered.

C. THE MSAs BEFORE, DURING AND AFTER STOCK
MARKET TURMOILS
The structure of information flow network usually changes a
lot around financial turmoils (see [73] and references therein).
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FIGURE 4. Heat maps of the degree of different sectors in different information flow networks from 2000 to
2017. (a) outgoing information flow networks. (b) incoming information flow networks. A higher value of degree
will be reflected by a brighter color in our heat map.

FIGURE 5. The closing price of Shanghai Stock Exchange Composite Stock
Price (SSEC) Index from 04 January 2000 to 29 December 2017. The two
gray regions are on behalf of two crashes of the Chinese stock market
which from 16 October 2007 to 04 November 2008 and 12 June 2015 to
28 January 2016 respectively.

For instance, Jang et al. studied the impact of currency crises
on the MST structure of stock markets [74]. Motivated by
this, we investigate the evolution of the MSA structure of
the Chinese stock market before, during and after two stock
market turmoils. As shown in Fig. 5, the two crashes range
respectively from 16October 2007 to 4November 2008 span-
ning 259 trading days and from 12 June 2015 to 28 Jan-
uary 2016 spanning 155 trading days. We use the data of
the same length of trading days before and after the starting
date of a crash as the data sample during the market turmoils
(a bubble followed by a crash), denoted as C1,d and C2,d
in Fig. 5. In order to analyze and compare the changes of
MSTs of the information flow networks, the same time span
data before and after the turmoil periods are used as the
control data samples, which are denoted as C1,b and C1,a for
the first case and C2,b and C2,a for the second case.

We extract the outgoing and incoming MSAs before, dur-
ing and after the two large stock market turmoil periods,

which are illustrated in Fig. 6 and Fig. 7. Figure 6 shows
that, before the two turmoils, the household appliances, elec-
trical equipment and national defense sectors appeared at
the same time in the maximal information flow paths, which
suggests that these sectors were more active in the trans-
mission of information flow before market turmoil. During
the market turmoils, both the commercial trade and bank
sectors appeared in the paths, indicating that these two sectors
played a major role in information transmission during mar-
ket turmoil. After the market turmoils, the leisure & services
and computer sectors became more active in the information
transfer. With respect to the incoming MSAs in Fig. 7, before
these two market turmoil periods, the non-ferrous metals
sector made more information transfer along the paths. The
non-ferrous metals and computer sectors became more active
during market turmoils, while the building materials sector
participated much information transfer after the market tur-
moils. These structural variations also signal the presence of
sector rotation in the Chinese stock market in the sense that
different sectors dominate in the information transmission
process in the evolving market.

We further compare the degrees of the source and sink sec-
tors and the total weights along themaximumpaths of the out-
going and incoming MSAs, which are shown in Fig. 8. It can
be seen clearly in Fig. 8(a) that the degree of the root sectors
in all these four types MSAs rose first and then fell except for
the outgoingMSA before the secondmarket turmoil. The root
of this outgoing MSA is the bank sector and there is a clearly
cluster around it as shown in Fig. 6. The bank sector was
very special because the bubble in 2015 was mainly fueled
by the ‘‘mass entrepreneurship and innovation’’ policy during
which investing in Internet+ startup firms was hot and by the
high-leverage financing in stock trading. The higher degrees
of the source and sink sectors during market turmoils imply
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FIGURE 6. The outgoing MSAs before (left column), during (middle column) and after (right column) the large stock market
turmoils around the end of 2007 (top row) and around 2015 (bottom row).

FIGURE 7. The incoming MSAs before (left column), during (middle column) and after (right column) the large stock market
turmoils around the end of 2007 (top row) and around 2015 (bottom row).

that the information transfer behavior is more concentrated
and the market is more synchronized when the market is very
volatile. From Fig. 8(b), all the maximum information flow
paths have similar total weight after market turmoils, while
the information flows differed a lot before and during market
turmoils.

D. THE SPECIFICITY OF ROOT SECTORS OF OUTGOING
AND INCOMING MSAs
In order to study the particularity of the root node sectors
in the information flow networks, we use the correlation
coefficient between the yearly return of each sector and the
yearly return of the Shanghai Stock Exchange Composite

index price to measure the representative strength of the sec-
tor in the entire market. If the correlation coefficient between
the sector and SSEC is larger, it indicates that the trend of
the sector is more similar to the Shanghai Composite index
and the sector is more representative of the market behavior.
On the contrary, if the correlation coefficient is smaller, then
the sector is less representative of the whole market.

The correlation coefficient between two time series Xi and
Yi (i = 1, . . . , n) can be calculated as follows

ρX ,Y =

∑n
i=1(Xi − X̄ )(Yi − Ȳ )√∑n

i=1(Xi − X̄ )2
√∑n

i=1(Yi − Ȳ )2
. (6)
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FIGURE 8. The degree of the root sectors (a) and the total weight of the maximal information flow path (b) of
different MSTs before, during and after the two market turmoil periods.

FIGURE 9. Comparison of the correlation coefficients between the
returns of different types of sectors (source, sink and non-root) and the
SSEC index.

We first calculate the correlation coefficients between the
return time series of different sector indices and the Shanghai
Composite index and then calculate the correlation coeffi-
cients between the root sector indices of the outgoing and
incoming information flow MSAs and the Shanghai Com-
posite index. For each root node sector, we investigate the
correlation coefficient ρ(rroot, rssec), where rroot is the yearly
return time series of the root sector and rssec is the yearly
return series of the Shanghai Composite index. Note that the
root sectors are generally not the same in different years.
As a control group, for each year, we randomly select the
yearly return time series of non-root sectors to form a control
sample rst (t = 2000, . . . , 2017) and calculate the correlation
coefficients between these randomly selected sectors and the
Shanghai Composite index.

We use a PDF to show the result of the correlation coeffi-
cients between the return time series of the randomly selected
non-root sectors and the SSEC in Fig. 9. It shows that the cor-
relation coefficient between non-root sectors and the Shang-
hai Composite Index fluctuates around 0.9 (the black vertical
line), indicating that there is a high correlation between
different sector indices and the Shanghai Composite Index,

which verifies the overall consistency of the Chinese stock
market. As for the root sectors of the outgoing and incoming
information flow MSAs, the correlation coefficients deviate
from themean correlation coefficient for the non-root sectors,
which provides strong evidence for the particularity of the
root sectors. With respect to the source sector of the outgoing
information flow MSAs, the correlation coefficient (0.8724)
is smaller than the mean value of the control group, which
indicates that source sectors possess or produce idiosyncratic
information and exhibit active traits. On the other hand,
the sink sectors of the incoming information flowMSAs have
a significant high correlation coefficient (0.9202), which indi-
cates they exhibit passive traits and are more representative of
the Chinese stock market.

V. CONCLUSION
In this study, we measured the strength and direction of infor-
mation flow between 28 level-1 SWS sector indices of the
Chinese stock market, using transfer entropy. We constructed
transfer entropy based information flow networks with the
sector indices as the nodes and the net information flows
between different sectors as the edges. In order to detect
the structure of main information transfers among different
sectors of the whole stock market, we adopted the maximum
spanning arborescence technology to the information flow
networks to extract important information transfer paths.

We considered first the outgoing and incoming MSAs of
the information flow networks for the whole sample under
investigation (see Fig. 1). We found that the composite sector
located at the center of the outgoing MSA as the information
source to transmit information to other sectors. In contrast,
the non-bank finance sector was the root node of the incoming
MSA, playing a role of the information sink in the stock
market. By analyzing the MSAs in different years dynami-
cally, we found that the non-bank finance, bank, non-ferrous
metals, textiles and apparel sectors have appeared as high-
degree root nodes. These sectors had more direct informative
interactions with other sectors and played an important role
in the information transfer networks of the Chinese stock
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market. Especially after the 2008 economic crisis, the two
sectors (non-bank finance and bank) appeared as the highest-
degree nodes in the outgoing MSAs, indicating that they
played a crucial role during the economic recovery period.

We also investigated how the stock market turmoils affect
the structure of the information flow networks. To this end,
we analyzed the MSAs before, during and after the two main
market turmoils around 2008 and 2015. We found that the
degrees of the root sectors in all arborescences during mar-
ket turmoils were higher than those in calm periods, except
for the outgoing information flow MSA before the second
turmoil, where the source node was the bank sector. The
somehow ‘‘abnormal’’ role played by the bank sector was
determined by the economic environment and trader behavior
around 2015. For the maximal information flow paths of
the pre-turmoil and post-turmoil MSAs, we found their total
weights converged, which indicates that there is a similar
information status of the market after a crisis.

We further investigated the specificity of source and sink
sectors of the outgoing and incoming information flowMSAs
by comparing their correlation coefficients with the SSEC
returns. We found that the source sectors are less correlated
with the SSEC and the sink sectors are more correlated with
the SSEC, which means that information sources usually
have idiosyncratic information and exhibit active traits, while
information sinks usually exhibit passive traits in the market.

Overall, the structure of the information flow networks of
the Chinese stock market changes along time. Information
sources and sinks appear and also vary with time, showing
the presence of the sector rotation phenomenon. We believe
that these features observed in the Chinese stock market are
very likely to hold in other stock markets, be they emerg-
ing or mature.

Our work has several implications for different market
participants. More specifically, for policymakers such as the
China Securities Regulatory Commission (CSRC) of the
Chinese stock market, it will be useful to manage the market
risk and control the contagion of risks. For example, during
turbulent times, the CSRC should introduce policies to stabi-
lize the root sector since during turbulent times, information
sinks will be much riskier, while information sources may
carry more contagious risk factors. For institutional investors,
it provides clear direction in the process of asset allocation
in different sectors according to the role of sectors in infor-
mation flow networks. Furthermore, individual investors can
also invest depending on the industry to which the stock
belongs, for example, aggressive investors could buy stocks
of the root sectors or sectors in maximal information flow
paths which are the information source with high probability.
The work has also limitations. In particular, information sinks
and sources may change during different time periods and
differ in different markets. It is unclear if there are uni-
versal patterns in the appearance of information sinks and
sources and the information flow paths.More likely, such pat-
terns change with market circumstances and show adaptive
behavior [75].
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