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ABSTRACT This paper presents a fast nonlinear model predictive control method for rigid body dynamical
systems such as spacecraft or aerial vehicles on the special Euclidean group SE(3). The focus of this research
is on the real-time execution of the optimal control on a low-cost embedded computer. The position and
orientation of a rigid body are expressed as a 6-dimensional vector via the Cayley map for SE(3). Based on
the representation, the motion can be exactly discretized on the algebra se(3). As a result, coarse sampling
intervals can be selected to reduce the number of prediction steps. Furthermore, the recursive discretization
technique is applied to effectively reduce the decision variables of the nonlinear optimization problem by
eliminating states from them. Simulation results on a Raspberry Pi single-board computer are given to prove
that the present model predictive control method is feasible in real time. The effectiveness of the present
controller is further verified by an experiment using a fully actuated hexarotor unmanned aerial vehicle.

INDEX TERMS Optimal control, robot control, nonlinear control systems, special Euclidean group.

I. INTRODUCTION
Rigid body kinematics and dynamics are the fundamentals
of the modeling, control, and measurement of aerial robots,
spacecraft, robot manipulators, etc. The rigid body motion is
described with a dynamical model in the special Euclidean
group SE(3). The dynamicsmust be constrained on the group,
and thus, we need to consider specific control laws to achieve
regulation and tracking. For example, [1] presents coordinate-
free geometric PD controllers on SE(3) and its subgroup
SO(3), the special orthogonal group, based on the metric
structure of the groups. Lee et al. [2] study a trajectory
tracking controller of a quadrotor aerial vehicle on SE(3)
using an intrinsic attitude tracking error defined on SO(3).
Such a control strategy can also be applied for optimal con-
trol problems. Liu et al. [3] show an analytic solution of a
quadratic optimal control problem in a compact Lie group
such as SO(3) by using the logarithmmap. The authors of this
paper have presented an analytic optimal control method for
SE(3) considering a quadratic objective functionwith specific
weightmatrices [4]. It also shows an application of the control
of a fully actuated hexarotor aerial vehicle (Fig. 1) which can
be identified with a fully actuated rigid body.
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FIGURE 1. Fully actuated hexarotor aerial vehicle used in the experiment.
Each rotor is tilted and fixed so that the vehicle can generate force and
torque in every direction and around any axis.

In general, however, it is difficult to solve optimal con-
trol problems analytically. For example, [4] cannot consider
external force such as the force of gravity, and the objec-
tive function is limited to a certain form. Hence, we need
numerical methods if we consider constraints or complex
objective functions. The key to numerical optimal control for
rigid body motion is proper discretization of the dynamics
constrained on Lie groups. The simplest possible way of
discretization is a forward Euler approximation in a vector
space [5]. Although this approach can be sufficient for many
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other cases, it is not recommended for rigid body systems
because the Lie group structure is not preserved after the
integration. In related research [6]–[8], geometric integra-
tors are used to overcome this problem. Lee et al. [6] con-
sider structure-preserving optimal control of discrete-time
rigid body systems. They propose a computational approach
based on a Lie group variational integrator (LGVI) and New-
ton methods to solve a minimum-energy control problem.
Kobilarov and Marsden [7] study a generalized method of
LGVI-based discrete optimal control for both fully actuated
and underactuated systems on any Lie group. In these studies,
conditions regarding the variational principle and optimality
are combined into a system of nonlinear equations, and the
optimal control problem becomes equivalent to a nonlinear
root-finding problem. However, LGVI-based optimal control
methods usually require optimization over both states (or
costates) and inputs. This results in a larger scale problem that
can be intractable on embedded controllers in real time due to
the curse of dimensionality.Moreover, thesemethods are only
concerned with minimum-energy control problems where the
objective function is limited to the total of the squared input
norm.

For the purpose of developing a more versatile opti-
mal control method, we adopt nonlinear model predictive
control (NMPC) with a geometric integrator. In particular,
we focus on fast computation of NMPC for embedded con-
trollers in real time. To develop such a numerical opti-
mal control method, we need to reduce the number of
decision variables while preserving the Lie group struc-
ture. Instead of optimizing the sequence of both states
and inputs, we employ the so-called recursive discretization
technique [9, Chapter 10] to eliminate states from the deci-
sion variables. To apply the technique, we use a geometric
integrator based on the Cayley map for SE(3) [8], [10] instead
of an LGVI. The geometric integrator with the Cayley map
preserves the Lie group structure, and it enables us to pick a
coarse sampling interval for the prediction and to reduce the
number of decision variables. Next, we calculate the analytic
gradient of the objective function with respect to the sequence
of inputs, exploiting the sparsity of intermediate Jacobian
matrices. The novel usage of the geometric integrator together
with the recursive discretization technique reduces the com-
putational effort while maintaining the precision of the pre-
dicted trajectory.

The main contribution of this paper is to develop a
real-time NMPC method for wide variety of single rigid
body systems in 3-dimensional space such as spacecraft and
unmanned aerial vehicles [4]. The rigid body dynamicsmodel
includes an external force term such as the force of gravity
or airflows. The contribution is notable because this work
includes a real-time on-board NMPC experiment for an aerial
vehicle system that has fast dynamics and inherent instabil-
ity. In fact, many NMPC schemes for mobile robot systems
presented in [7], [11]–[14], for example, show that various
control objectives are achieved but have no experimental
validations.Moreover, experiments of NMPC usually employ

high-performance processors, e.g., Intel Core i7 CPUs, for
calculation on the ground [15]–[17]. To the author’s knowl-
edge, there are only a few exceptions such as a study on
NMPC for aerial manipulation using an aerial vehicle [18]
and their later work on obstacle avoidance control [19].
Although they perform experiments withNMPC computation
on an embedded computer, the optimal control law is used
to generate the reference trajectory, and it is not used for
real-time control. In this paper, on the other hand, we tackle
real-time control of such an unstable system with an NMPC
running on an embedded controller.

The rest of the paper is organized as follows. In Section II,
we first introduce a continuous-time model of a rigid
body dynamical system. Then, structure-preserving geomet-
ric integrators based on the exponential map and the Cayley
map for SE(3) are explained. Based on the Cayley map,
we present a discrete-time model of the rigid body dynamics
in Section III. In Section IV, the discrete-time model is used
to formulate an NMPC problem. A recursive discretization
technique is applied to reduce the number of decision vari-
ables, and the gradient of the objective function is analytically
obtained to further speed up the optimization. Simulations
are performed on a Raspberry Pi single-board computer in
Section V, and the results show that the present fast NMPC
is feasible in real time on the low-cost embedded system.
Finally, in Section VI, the effectiveness of the present NMPC
method is further verified through a flight control experiment
of a fully actuated hexarotor aerial vehicle. Section VII con-
cludes this paper.

II. PRELIMINARIES
This section describes mathematical notion of rigid body
dynamics as the target system of this research. In this paper,
we suppose that the body is not deformable, and the rigid
body has actuators such as thrusters or propellers so that the
vehicle can independently control 6 degrees of freedom of
the translational and rotational motions in the 3-dimensional
space.

A. MATHEMATICAL REPRESENTATION OF RIGID BODY
MOTION
In this paper, On and On×m, respectively, denote the n × n
and n × m zero matrices, and In denotes the n × n identity
matrix. Rx(θ ),Ry(θ ), and Rz(θ ) denote rotation matrices by
the angle θ around x, y, and z axes, respectively. For the
detailed explanation on the rigid body dynamics expressed
on Lie groups, the reader is referred to [20].

The special orthogonal group SO(3) is a set of
3-dimensional rotation matrices

SO(3)=
{
R ∈ R3×3

| R>R=RR>= I3 ∧ detR = 1
}
.

The special Euclidean group SE(3) is a semidirect product of
SO(3) and R3, and an element of SE(3) represents a pair of a
rotation matrix and a position vector in 3-dimensional space.
From the definition, the pose (position and orientation) of a
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FIGURE 2. Pose and twist of a rigid body. The pose g ∈ SE(3) is defined as
a pair of the rotation matrix R ∈ SO(3) representing the attitude of the
body and the position vector p ∈ R3. The pose is driven by the twist
V ∈ R6 representing simultaneous linear and angular motion of the body.

rigid body shown in Fig. 2 is expressed with an element of
SE(3) as

g = (R, p) =
[

R p
O1×3 1

]
∈ SE(3),

where R ∈ SO(3) and p ∈ R3 denote a rotation matrix
and a position vector, respectively. The matrix is referred to
as the homogeneous transformation matrix, and it represents
both the pose and coordinate transformation. The Lie algebras
so(3) and se(3) related to the infinitesimal changes on groups
SO(3) and SE(3), respectively, consist of the matrices

ω̂ = (ω)∧ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 ∈ so(3)

and

V̂ = (V )∧ =
[
ω̂ v

O1×3 0

]
∈ se(3),

where v ∈ R3 corresponds to the linear velocity, ω =
[ω1 ω2 ω3]> ∈ R3 is the angular velocity, and V =[
v> ω>

]>
∈ R6 denotes the twist (linear and angular veloc-

ity) of the rigid body. Here, the ‘‘wedge’’ operator (·)∧ is used
to identify the elements of the Lie algebras with real vectors.
We also define the ‘‘vee’’ operator (·)∨ as the inverse of the
wedge operator.

Now, we consider the dynamics of a rigid body with the
mass m ∈ R and the inertia tensor I ∈ R3×3. Let g ∈ SE(3)
and V =

[
v> ω>

]>
∈ R6 be the pose and the body twist of

the rigid body, respectively. Assume that the wrench (force
and torque) F ∈ R6 and the force of gravity expressed in the
body frame

Fgrav =
[
R>

[
0 0 −mG

]>
O3×1

]
are acting on the center of mass. Here, G ∈ R denotes
the gravitational acceleration constant. Then, the rigid body
dynamics evolve according to a kinematic equation on SE(3)
and the Newton-Euler equation of motion [20].

ġ = gV̂[
mI3 O3
O3 I

]
V̇ +

[
mω̂v
ω̂(Iω)

]
= F − Fgrav (1)

We transform the equations of motion by canceling the sec-
ond term of (1), namely, the Coriolis force and gyroscopic
torque, via feedback linearization. Finally, the dynamics are
expressed as the double-integrator system on SE(3) subject
to gravity

ġ = gV̂ , V̇ = u− ugrav, (2)

where u is the acceleration input of the body applied to the
center of mass, and ugrav = 1

mFgrav.
Remark 1: We explicitly consider the force of gravity

instead of simply canceling it out by using feedback lineariza-
tion. This is because we would like to penalize the gravity
compensation input, which consumes a significant amount of
energy in flight control of aerial vehicles.

B. EXPONENTIAL MAP FOR SE(3)
Now, we discretize the continuous-time dynamical model (2)
to apply a numerical optimal control scheme. The simplest
method to integrate the equation (2) is to perform finite-
order approximations such as forward Euler and Runge-Kutta
methods in a vector space [5]. However, its time evolution of
the pose cannot be constrained on SE(3) when the sampling
period or the twist is large. One simple approach to resolve
this problem is to use the exponential map for SE(3) to
integrate the piecewise constant twist of a rigid body [20]. Let
Vk =

[
v>k ω

>
k

]>
be the twist at the kth step that is constant for

the sampling period T > 0. The pose gk+1 is then computed
as

gk+1 = gk exp(V̂kT ), (3)

where exp : se(3) → SE(3), so(3) → SO(3) is given as
follows:

eV̂kT =

[
eω̂kT

(I3−eω̂k T )(ω̂kvk )+ωkω>k vkT
‖ωk‖2

O1×3 1

]
, (4)

eω̂kT = I3+
sin (‖ωk‖T )
‖ωk‖

ω̂k+
1− cos(‖ωk‖T )
‖ωk‖2

ω̂2
k (5)

if ‖ωk‖ 6= 0, and otherwise,

eV̂kT =
[

I3 vkT
O1×3 1

]
, eω̂kT = I3.

In other words, the exponential map generates the pose dif-
ference gk+1g

−1
k in SE(3) from the constant velocity vk and

angular velocity ωk . This geometric integration method is
referred to as the Lie-Euler method [5]. (3) provides exact
discrete-time evolution of the rigid body kinematics and
mathematically constrains g on SE(3), as shown in Fig. 3. The
exponential map for SE(3) described in (4) can be regarded
as the extended version of Rodrigues’ formula of rotation that
corresponds to (5).

We now vectorize the kinematic equation (3) because the
vector form is more convenient in both theory and computa-
tion than the matrix representation. Before showing our main
results, we try to use the exponential map and its inverse,
logarithm map [21], to obtain a vector form of (3). The
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FIGURE 3. Exact discretization of rigid body motion. By using the
exponential map, the continuous change in the pose can be exactly
written by a recurrence formula if the twist is constant for the time period.

logarithm map log : SE(3) → se(3) is used to calculate the
twist ψ̂ ∈ se(3) that is required to move the pose from the
identity, i.e., g = exp(ψ̂). By applying the ‘‘vee’’ operator to
the twist, we obtain

ψ = log(g)∨ ∈ R6. (6)

The vectorψ can be considered as a vector form of the pose g.
Applying (6) to (3) yields

ψk+1 = log(exp(ψ̂k ) exp(V̂kT ))∨. (7)

The new state ψk+1 can be expressed as a function of ψk and
Vk by using the Baker-Campbell-Hausdorff formula [22]

ψ̂k+1 = ψ̂k + V̂k +
1
2

[
ψ̂k , V̂k

]
+

1
12

[
ψ̂k ,

[
ψ̂k , V̂k

]]
+

1
12

[
V̂k ,

[
ψ̂k , V̂k

]]
+ · · · ,

where [·, ·] denotes the Lie bracket. It is reported that one can
obtain the closed-form equation by using dual vectors [23].
However, calculation of log needs a transcendental function
cos−1 to extract the angle from the rotation matrix, as men-
tioned in [10] and [20, Appendix A]. Moreover, log(g) is not
unique for an element of SE(3) because the rotation angle
may take multiple values θ+2πn, where θ is a representative
value of log(g) and n ∈ Z, for a rotation matrix. These
characteristics of the logarithmmapmake it difficult to derive
a simple discretized model to be used in the prediction part
of NMPC.

III. EXACT DISCRETIZATION BASED ON THE CAYLEY
MAP
In this paper, we discretize the rigid body dynamics based on
the Cayley map for SE(3) to overcome the problems of the
logarithm map, which we have mentioned in the last section.
There exist several definitions of the Cayley map. We refer to
[10] for the definition.

Let ψ̂ c©
∈ se(3) and g ∈ SE(3). The Cayley map for SE(3)

is a mapping from the Lie algebra se(3) to the group SE(3)
defined as follows:

Cay(ψ̂ c©) = (I4 − ψ̂
c©)−1(I4 + ψ̂

c©) = g,

Cay−1(g) = (g+ I4)−1(g− I4) = ψ̂
c©. (8)

FIGURE 4. Relation among ψ,ψ c©, and g. An element of SE(3) can be
expressed in two different ways in se(3) via the exponential map and the
Cayley map.

We call ψ c©
∈ R6 the Cayley parameter of g ∈ SE(3) in this

paper. The symbol (·) c© denotes a vector regarding the Cayley
map and its derivative. Fig. 4 shows the relation among these
symbols that we use throughout this paper.

A. TWIST AND ACCELERATION TRANSFORMATION
In contrast to the exponential map, the Cayley map does not
represent the mapping from the physically meaningful twist
to the pose. It is thus important to obtain transformations
between the actual twist ψ and the Cayley parameter ψ c©.
Here, we define ψ ∈ R6 such that g = exp(ψ̂), ψ =[
ξ> η>

]> and the corresponding Cayley parameter asψ c©
=[

ξ c©> η c©>
]>. We separately consider the translational and

rotational parts denoted by ξ and η, respectively. Direct cal-
culation of ψ c©

= Cay−1(exp(ψ̂))∨ yields

ξ c©
=

(
ηη>

2‖η‖2
−

tan ‖η‖2
‖η‖

η̂2

‖η‖2

)
︸ ︷︷ ︸

:=A(η)∈R3×3

ξ (9)

η c©
=

tan ‖η‖2
‖η‖

η, (10)

if η 6= O3×1. Likewise, η c©
= O3×1 and ξ c©

=
1
2ξ hold if

η = O3×1. Note that lim‖η‖→0 ψ
c©
= ψ c©

∣∣
η=O3×1

holds, and
thus (9) and (10) are continuous at η = O3×1.
The rotational part η c© in (10) corresponds to the classical

Rodrigues parameter, which is one of the representations
of 3-dimensional rotation [24]. In fact, we have the same
relation between the Rodrigues parameter η c© and the cor-
responding rotation matrix R, as in (8).

R = (I3 − η̂
c©)−1(I3 + η̂

c©)

Therefore, we can interpret ψ c©, the Cayley parameter for
SE(3), as an extended version of the Rodrigues parameter.
We also need to derive the relation between the actual

linear/angular acceleration u = [u>tr u
>
rot]
>
∈ R6 and the cor-

responding acceleration in the Cayley parametrization u c©
=

[u c©>
tr u c©>

rot ]> ∈ R6. We obtain the following equations by
taking the time derivatives of (9) and (10):

u c©
tr =

dv c©

dt

=

{A(ω)utr + B(v, ω)urot for ‖ω‖ 6= 0
1
2
utr for ‖ω‖ = 0

, (11)
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u c©
rot =

dω c©

dt

=



 ωω>

(1+ cos ‖ω‖)‖ω‖2
−

tan
‖ω‖

2
‖ω‖

ω̂2

‖ω‖2

 urot

for ‖ω‖ 6= 0
1
2
urot for ‖ω‖ = 0

(12)

Here, A is defined in (9), and B(v, ω) is a nonlinear matrix
derived by collecting the terms of urot from d

dt (A(ω)v). Sim-
ilarly, we can also obtain the inverse transformation that is
used to compute the actual acceleration input u from the
virtual control input u c©. These transformations are not men-
tioned in the related research that uses the Cayley map such
as [8], but they are required in applications.
Remark 2: It is easy to see from (10) that ‖η c©

‖ → ∞

as ‖η‖ → π . This means that the Cayley parameter cannot
express the rotation byπ rad in any axes, i.e., tr(R) = −1, and
the parametrization becomes singular at such orientations. A
dual quaternion [25] can be used to express the pose globally,
although it is not unique for a pose and raises the same issue
as the logarithm map.
Remark 3: The Cayley parameter ψ c©

∈ R6 can be
uniquely determined for a pose g ∈ SE(3) except for the
singular orientations described in Remark 2. Stabilization of
the origin ψ c©

= O6×1 results in the pose regulation g→ I4.

B. DISCRETIZATION BASED ON THE CAYLEY MAP
We now discretize the rigid body motion based on the Cayley
parameter for SE(3). With an analogy to (7), the kine-
matic equation of a rigid body can be written in the Cayley
parametrization as follows:

ψ
c©
k+1 =

[
ξ
c©
k+1
η
c©
k+1

]
= Cay−1(Cay(ψ̂ c©

k ) Cay(V̂ c©
k T ))∨. (13)

This is a discrete-time kinematic equation with the Cayley
parametrization, and it represents the same time evolution
as (3). It is geometrically exact, as described for the exponen-
tial map in Fig. 3, provided that the twist V c© is constant for
the time period. We show the detailed closed-form equation
of (13), which is not in the literature. The direct calculation
yields

ξ
c©
k+1 =

I3 − ω
c©
k Tη

c©
k
>
− ω̂

c©
k T

1− η c©
k
>ω

c©
k T

ξ
c©
k

+
I3 − η

c©
k ω

c©
k
>T + η̂ c©

k

1− η c©
k
>ω

c©
k T

v c©
k T , (14)

η
c©
k+1 =

I3
1− η c©

k
>ω

c©
k T

η
c©
k +

I3 + η̂
c©
k

1− η c©
k
>ω

c©
k T

ω
c©
k T .

(15)

The equations only require matrix and vector computation.
Therefore, it is easy to compute closed forms of mathematical
utilities such as the Jacobians of ψ c©

k+1 and the gradient of a
function with respect to trajectories defined by this formula.

These are useful for solving an optimal control problem
efficiently and will be used in Section IV.B.

We next consider the double-integrator system (2) on
SE(3). For simplicity, we neglect second- or higher order
terms regarding the continuous change in the velocity of the
body. Thismeans that both the twist (linear and angular veloc-
ity) and the wrench (force and torque) do not change during a
sampling period. Under this assumption, the whole discrete-
time dynamical model of the double-integrator system on
SE(3) is expressed as follows:

ψ
c©
k+1 = Cay−1(Cay(ψ̂ c©

k ) Cay(V̂ c©
k T ))∨, (16)

V c©
k+1 = V c©

k + (u c©
k + u

c©
grav,k )T . (17)

Here, the gravitational acceleration term u c©
grav,k is calculated

by applying the transformation (11) to ugrav. The correspond-
ing trajectory of the pose on the Lie group SE(3) can be
calculated from ψ c© through the Cayley map (8), and thus,
the Lie group structure is always preserved.
Remark 4: The assumption on constant twist and wrench

may cause small numerical errors in the predicted trajectory.
As we use an NMPC scheme in this paper, however, the error
can be treated as a disturbance affecting the twist, and it
can be attenuated by feedback. If the higher order terms are
needed, we can directly compute them by considering the
Taylor series expansion of the Cayleymap in the samemanner
as in [26]. We can also improve the accuracy of the trajectory
by using shorter sampling periods in the transient state. It is
a part of our future work.
Remark 5: The angular velocity parameter ω c©

k must sat-
isfy η c©>

k ω
c©
k T 6= 1. The equality η c©>

k ω
c©
k T = 1 means

that the orientation at the (k + 1)th step becomes singular.
For the case η c©>

k ω
c©
k T > 1 where the orientation leaps

across a singular orientation, the denominator 1−η c©
k
>ω

c©
k T

becomes negative. This might seem as if the rotation direction
is inverted, but it does not affect the result of integration since
rotation by the angles θ and θ−2π gives the same orientation.

IV. REAL-TIME NMPC OF RIGID BODY MOTION
A. PROBLEM SETTING
In this paper, we consider nonlinear model predictive control
of the discrete-time rigid body dynamics (16) and (17). For
simplicity, we use the same value T for the control period
and the sampling time of the prediction horizon. We solve
the following nonlinear programming problem at each control
period in a receding horizon manner:

J =
1
2

N∑
k=1

(
‖ψ

c©
k ‖

2
Qp + ‖V

c©
k ‖

2
Qv + ‖u

c©
k−1 − u

c©
term‖

2
Qu

)
,

min
ψ

c©
1 ,...,ψ

c©
N ,

V c©
1 ,...,V c©

N ,

u c©
0 ,...,u

c©
N−1

J subject to (16),(17), u c©
lb ≤u

c©
k ≤u

c©
ub. (18)

The objective function J is a quadratic form of the Cayley
parameters, and box constraints on the acceleration input
are considered. Here, we use the notation ‖x‖2A = x>Ax.
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Qp,Qv, andQu are positive semidefinite 6×6weightmatrices
for the pose, twist, and acceleration parameters, respectively.
We assume that the initial states ψ c©

0 and V c©
0 are given, and

terminal conditions are not specified. The control objective
is to achieve gk → I4 by ψ c©

k → O6×1,V
c©
k → O6×1. In

the objective function, u c©
term = [0 0 G

2 0 0 0]> denotes the
equilibrium input at the desired terminal state g = I4,V =
O6×1. We consider the input cost 12‖u

c©
k−1−u

c©
term‖

2
Qu to ensure

that the incremental cost becomes zero at the desired terminal
state and to induce u c©

→ u c©
term.

We stack the state and input time series into vectors as
follows:

ψ c©
=


ψ

c©
1
ψ

c©
2
...

ψ
c©
N

 , V c©
=


V c©
1
V c©
2
...

V c©
N

 , u c©
=


u c©
0 − u

c©
term

u c©
1 − u

c©
term

...

u c©
N−1 − u

c©
term

 .
We now rewrite the objective function (18) using these time
series vectors as

J = 1
2

(
ψ c©>Qpψ

c©
+ V c©>QvV

c©
+ u c©>Quu

c©
)
. (19)

Here, Qp,Qv, and Qu are defined as

Qp = IN ⊗ Qp, Qv = IN ⊗ Qv, Qu = IN ⊗ Qu,

where ⊗ denotes the Kronecker product such that

IN ⊗ Qp = blkdiag(Qp, . . . ,Qp︸ ︷︷ ︸
N

).

We use standard nonlinear optimization algorithms to
minimize J , instead of using LGVI-based methods. This is
because both the initial and terminal states are constrained in
LGVI-based methods, and imposing some input constraints
may result in ill-conditioned finite-time control problems. In
contrast, the terminal state is not constrained in our approach,
and thus such an issue merely arises as long as the constraints
are well-conditioned.

B. REDUCED DECISION VARIABLES AND ANALYTIC
GRADIENT COMPUTATION
We employ the recursive discretization technique [9] to elim-
inate the states ψ c©

k and V c©
k from (18). Recursively applying

(16) and (17), we obtain

V c©
k+1(V

c©
0 ,u

c©)

= V c©
0 +

k∑
j=0

(u c©
j +u

c©
grav,j(ψ

c©
j ,V

c©
j ))T , (20)

ψ
c©
k+1(ψ

c©
0 ,V

c©
0 ,u

c©)

= f (. . .f (f (ψ c©
0 ,V

c©
0 ),V c©

1 ). . .,V c©
k ), (21)

where f (ψ c©
k ,V

c©
k ) = ψk+1. The objective function (18) is

then rewritten as a function that takes only the initial con-
ditions ψ c©

0 ,V
c©
0 and the input sequence u c©. The resulting

nonlinear optimization problem becomes as follows:

min
u c©

J (ψ c©
0 ,V

c©
0 ,u

c©) subject to u c©
lb ≤ u

c©
k ≤ u

c©
ub. (22)

In this case, the decision variables of the NMPC problem are
now only the input sequence u c©, and the number of them is
reduced from 18N to 6N . Moreover, the dynamics constraints
(16) and (17) are no longer needed since they are satisfied
during the calculation of (20) and (21).
Instead of using finite-difference approximations, we com-

pute the closed-form gradient of the objective function (18)
with respect to the input time series u c© by utilizing (20) and
(21). This is because centered finite-difference approxima-
tions evaluate the objective function 12N times, that is, twice
the number of decision variables. They usually takemore time
than the analytic computation due to the repetitive recursive
integration of (16) with (21).
From (19), the analytic gradient is readily available as

follows:

∂J
∂u c© = ψ

c©>Qp
∂ψ c©

∂u c© + V
c©>Qv

∂V c©

∂u c© + u
c©>Qu.

The Jacobian matrices ∂ψ
c©

∂V c© and ∂V c©

∂u c© are calculated as block
lower triangular matrices in the following equations:

∂ψ c©

∂u c© =


O6 · · · · · · O6
∂ψ

c©
2

∂u c©
0

O6 · · · O6

...
. . .

. . .
...

∂ψ
c©
N

∂u c©
0

· · ·
∂ψ

c©
N

∂u c©
N−2

O6

 , (23)

∂V c©

∂u c© =



∂V c©
1

∂u c©
0
· · · · · · O6

∂V c©
2

∂u c©
0

∂V c©
2

∂u c©
1
· · · O6

...
. . .

. . .
...

∂V c©
N

∂u c©
0
· · ·

∂V c©
N

∂u c©
N−2

∂V c©
N

∂u c©
N−1


. (24)

From (20) and (21), we have recurrence formulas of the block
components as follows:

∂u c©
grav,n+1

∂u c©
m
=
∂u c©

grav

∂ψ c©

∣∣∣∣∣ψ c©
=ψ

c©
n

V c©
=V c©

n

·
∂ψ

c©
n

∂u c©
m
+
∂u c©

grav

∂V c©

∣∣∣∣∣ψ c©
=ψ

c©
n

V c©
=V c©

n

·
∂V c©

n

∂u c©
m
,

∂V c©
n+1

∂u c©
m
=
∂V c©

n

∂u c©
m
+
∂u c©

grav,n

∂u c©
m

T ,

∂ψ
c©
n+1

∂u c©
m
=

∂ f
∂ψ c©

∣∣∣∣ψ c©
=ψ

c©
n

V c©
=V c©

n

·
∂ψ

c©
n

∂u c©
m
+

∂ f
∂V c©

∣∣∣∣ψ c©
=ψ

c©
n

V c©
=V c©

n

·
∂V c©

n

∂u c©
m

for n ≥ m+ 2, m ≥ 0, and

∂u c©
grav,m+1

∂u c©
m

= O6,
∂V c©

m+1

∂u c©
m
= TI6,

∂ψ
c©
m+1

∂u c©
m
= O6.

Here, the states ψ c©
k and V c©

k are precalculated by (20) and

(21) and plugged into Jacobian matrices
∂u c©

grav
∂ψ c© ,

∂u c©
grav

∂V c© ,
∂ f
∂ψ c© ,

and ∂ f
∂V c© . Therefore, the gradient can be computed only with

the initial state ψ c©
0 , V

c©
0 and the control input sequence u c©.

Moreover, with the sparse structure of the Jacobian matrices
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FIGURE 5. Time response of pose (Simulation A). The convergence of the Cayley parameter ψ c© =

[
ξ c©> η c©>

]>
implies the convergence of

the pose g = Cay(ψ̂ c©) to the identity. (a) Pose trajectory in the Cayley parametrization. (b) Pose trajectory. (c) Visualization of the trajectory.

∂ψ c©

∂u c© and ∂V c©

∂u c© , the total computation time for matrix multi-
plication can be reduced to less than half of that for dense
matrix multiplication.

C. ACCELERATION INPUT CONSTRAINT
The input constraints should be imposed on the physical
acceleration u, but the control input is its corresponding
Cayley parameter u c©, which has no physical meaning. As
we have shown in (11) and (12), the transformation between u
and u c© requires the twistV = [v> ω>]> which is a part of the
state. This means that the simple box constraints on the actual
acceleration u turn into complicated nonlinear constraints on
u c©, and this is undesirable.
Although we cannot strictly constrain the actual acceler-

ation, we can approximate the input constraints when the
angular velocity ω is sufficiently small. Here, we use the
relation between u and u c© in (11) and (12) for ‖ω‖ = 0.
The approximated lower and upper bounds ulb and uub of the
actual acceleration become as follows:

ũlb ≈ 2u c©
lb , ũub ≈ 2u c©

ub.

As we will see in the next section, this approximation is com-
putationally efficient and behaves well in both the transient
and steady states.

V. ON-BOARD SIMULATION
We have implemented the NMPC algorithm on a Rasp-
berry Pi 3 Model B+ single-board computer (ARMv8 CPU,
1.4 GHz) in C++. We have used the low-storage Broyden-
Fletcher-Goldfarb-Shanno algorithm [27] with box con-
straints (L-BFGS-B algorithm) implemented in NLopt [28]
library to solve the problem (22). The dynamics of a rigid
body are simulated by using the discretized model (14), (15),
and (17), and the nonlinear programming problem (22) is
solved at each step. We exploit the sparsity of Jacobian matri-
ces (23) and (24) to compute the analytic gradient efficiently.

In this section, we show numerical examples for the fol-
lowing two applications:
• Simulation A: Spacecraft with input saturation.
The dynamical model (17) and the objective function

(18) are calculated without gravity, i.e., G = 0m s−2.
The acceleration input is constrained by using the
approximation shown in the last section.

• Simulation B: A fully actuated aerial vehicle subject to
gravity.
The dynamical model and the objective function are
calculated with gravitational acceleration constant G =
9.8m s−2. The control input is not constrained.

Both systems can be modeled as second-order fully actuated
systems on SE(3) [29], [30]. For both cases, the weight matri-
ces in the objective function are Qp = Qv = Qu = I6. The
initial state is given by ψ c©

0 = Cay−1(g0) and V
c©
0 = O6×1,

where g0 ∈ SE(3) is the initial pose. The control objective is
to achieve gk → I4 by ψ

c©
k → O6×1,V

c©
k → O6×1.

A. SIMULATION A
In Simulation A, we consider optimal pose regulation of
spacecraft with input saturation. This can also be identified
with a dynamical system of a fully actuated aerial vehicle
with gravity compensation applied. The input is constrained
by u c©

ub = [0.3 0.3 0.3 0.2 0.2 0.2]> and u c©
lb = −u

c©
ub,

that is, uub ≈ [0.6 0.6 0.6 0.4 0.4 0.4]>. The gravitational
acceleration constant is set to G = 0, and accordingly,
u c©
term = u c©

grav,k = O6×1. The initial pose is defined as
g0 = (R0, p0), where R0 = Rx(π4 )Rz(

π
6 ) and p0 = [10 0 0]>.

The duration of the prediction horizon is 1 s, and it is divided
into N = 20 periods (i.e., T = 0.05 s).

Figure 5 shows the optimal trajectory of the pose g and
the corresponding Cayley parameter ψ c©. The acceleration
input in the Cayley parametrization u c© is shown in Fig. 6(a).
The pose g = Cay(ψ̂ c©) converges to the identity under the
input constraints. The physical acceleration u calculated from
the corresponding Cayley parameter u c© is shown in Fig. 6.
Although the approximated lower bound ũlb is violated at
some steps, as illustrated in Fig. 6(b), the error is suffi-
ciently small and is not critical in practice. The measured
computation time for optimization is shown in Fig. 7. The
computation time is far less than the sampling period, and the
present method successfully achieves real-time computation
of NMPC on board.
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FIGURE 6. Time response of input (Simulation A). Note that the control input u c© =

[
u c©>

tr u c©>

rot

]>
in (a) does not represent the

physical acceleration. In (b), the linear acceleration utr violates the approximated constraint shown in the red region. However,
the approximation error is sufficiently small and not critical in practice. (a) Control input.

FIGURE 7. Computation time for each sampling period (Simulation A).
The proposed NMPC method is feasible in real time on a Raspberry Pi
single-board computer.

B. SIMULATION B
In Simulation B, we consider control of a fully actuated aerial
vehicle without prior gravity compensation. The gravitational
acceleration constant is set to G = 9.8m s−2. From (2) and
(11), the equilibrium input at the desired terminal state is then
given as u c©

term = [0 0 4.9 0 0 0]>. When the control input is
only applied to counter the force of gravity, the input cost
equals 1

2‖u
c©
grav,k + u

c©
term‖

2
Qu . This value is positive except for

ψ
c©
k = O6,Vk = O6, and we can say that the cost for gravity

compensation is also included in the objective function (18).
The initial pose is R0 = I3, p0 = [10 6 0]>, and the
acceleration input is not constrained in this simulation. The
prediction horizon duration is 2 s, and it is divided into N =
20 periods (i.e., T = 0.1 s). We have selected the prediction
horizon longer than that of Simulation A to improve stability.

Figure 8 shows the optimal pose trajectory and control
input. The rigid body decelerates by tilting the body in the
opposite direction of travel. This notable behavior is the result
of considering the gravity compensation cost. The sum of
squared norm of u c©

0 −u
c©
term is 46.03 when we utilize the body

tilt with the acceleration input in the+z-direction of the body
frame. If we force the controller to use only the horizontal
acceleration by constraining the rotational input u c©

rot to be
always zero, the value becomes 74.81. This result shows that
the most efficient maneuver subject to gravity is not the par-
allel motion. It is also shown that our present NMPC method
and the objective function can deal with the external force,
which is difficult to consider in analytic solution methods.

TABLE 1. Summary of the computation time on a Raspberry Pi embedded
computer.

The measured computation time for the optimization is
shown in Fig. 9. The optimization takes longer time than
that of Simulation A because computation regarding u c©

grav is
additionally required in this case. It is still applicable to real-
time applications since the computation time remains less
than half of the control period.

C. DISCUSSION
Note that long computation time is observed in the first period
of Simulations A and B. We can avoid this by setting a proper
initial guess of the input sequence. We have experimented
for several other cases with different N and T to determine
how they affect the computation time. The computation time
is summarized in Table 1. As a result, the longer prediction
horizon leads to longer computation, and the required time is
affected not only by the number of prediction stepsN but also
by the sampling period T .
As seen in Table 1, we cannot afford N = 40 in

this case, since the computation time significantly increases
with increasing N . To achieve real-time computation for a
long prediction horizon together with a fine time resolution,
we may need to combine our proposed techniques with more
efficient NMPC algorithms such as the continuation/GMRES
method [31].We can also consider nonuniform sampling time
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FIGURE 8. Time response of pose and input (Simulation B). The rigid body decelerates by tilting the body in the opposite direction of travel.
This behavior is achieved by considering the cost for gravity compensation. (a) Pose trajectory. (b) Visualization of the trajectory. (c) Control
input.

FIGURE 9. Computation time for each sampling period (Simulation B).
The computational time is longer than that of Simulation A, but it is still
feasible in real time.

as in [32] and [33] to use a fine sampling time resolution
in the transient state while sampling coarsely in the steady
state, which can achieve a long horizon with a small N .
Since our discretization method based on the Cayley map is
geometrically exact, it is easy to apply it to the nonuniform-
sampling NMPC without being concerned about the variable
numerical precision due to approximations. Such additional
techniques could be used to further improve the computa-
tional performance.

VI. EXPERIMENT
In this section, we apply the proposed NMPC method to a
fully actuated hexarotor system and conduct a pose control
experiment. The objective of the experiment is to show the
real-time feasibility of the proposed method and with some
input constraints and the force of gravity considered.

Figure 1 is a picture of the experimental vehicle. The rotors,
which consists of motors and propellers, are tilted and fixed
so that the vehicle can generate force and torque in every
direction and around any axis. The dynamics of this vehicle
can be modeled as a fully actuated second-order system on
SE(3) [4]. The mass and inertia tensor of the vehicle are
m = 0.61 kg and I = diag(2.5 × 10−3, 2.5 × 10−3,
4.6 × 10−3) kgm2, respectively. Fig. 10 shows the block
diagram of the experimental system. Controllers are imple-
mented on the Raspberry Pi used in the last section and a 3D
Robotics Pixhawk Mini flight controller by using Simulink
and Embedded Coder. The high-level controller running on
the Raspberry Pi estimates the current state and calculates the
NMPC input at 20Hz (T = 0.05 s). The computed NMPC

FIGURE 10. Block diagram of the experimental system. The present
NMPC method is implemented on the high-level controller.

input u c© is converted to the real acceleration vector u by
using the inverse maps of (11) and (12). The Pixhawk Mini
implements the low-level controller, which controls the linear
acceleration utr =

[
axref ayref azref

]> and the angular velocity
ω by a feed-forward and PID controller, respectively.
The pose of the vehicle is measured by an OptiTrack

motion capture system by observing the reflective markers
on the body, and the information is sent to the high-level
controller via UDP on the wireless LAN at the rate 100Hz.
The pose information from the motion capture system to
the vehicle has a latency of approximately 0.1 s. Due to
this latency and the relatively long control period of NMPC,
the attitude dynamics easily become unstable when we use
angular acceleration as the control input. It is especially
critical if modeling errors of force and torque exist, which
can include unmodeled rotor dynamics or the aerodynamic
behavior such as the ground effect. As the verification of the
real-time NMPC is the objective of this experiment, we do
not directly command the angular acceleration as the input.
Instead, we control the angular velocity with the low-level
controller. The angular velocity input is calculated by (17)
with the estimated current state and the NMPC input.

In this experiment, the vehicle is first commanded to stay
at the initial pose (R, p) = (I3, [0 0 0.8]>), and then at
t ≈ 15 s and 25 s, the reference y coordinate is changed
to −1 and 1, respectively. The reference position is set by
shifting the origin. The origins of the attitude and twist are
R = I3 and V = O6×1, respectively. The objective function
is the same as that of simulations defined in (19). We set the
weight matrix for the pose to Qp = 5I6 in order to penalize
the position error, and Qv = Qu = I6 for the twist and the
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FIGURE 11. Result of the experiment with a fully actuated hexarotor. The pose trajectory and the control
input are displayed in (a) and (b), respectively. (c) shows that the vehicle can quickly respond to the
acceleration input. The computation time for NMPC shown in (d) confirms that the present NMPC method
is also real-time feasible in the experiment. (a) Pose trajectory. (b) Control input. (c) Response of
acceleration. (d) Computation time.

control input. According to the simulation results, the pre-
diction horizon is defined by N = 20 and T = 0.05 s. The
gravitational acceleration constant is set to G = 9.8m s−2 to
explicitly compensate for the force of gravity. We constrain
the horizontal linear acceleration axref and ayref in [−1, 1]
by restricting the corresponding Cayley parameters in u c©

tr to
[−0.5, 0.5].

Figure 11 shows the result of this experiment. The
pose trajectory and the control input are displayed
in Figs. 11(a) and 11(b), respectively. The pose successfully
converges to the step reference in the y coordinate. In
Fig. 11(c), the time response of the y-acceleration to the
reference value is presented. Although the transient error is
observed, we can see that the vehicle immediately responds
to the change in reference acceleration. We can also confirm
that the acceleration input constraint in y axis is activated
from t ≈ 15 to 15.5 and from t ≈ 25 to 26. The computation
time for NMPC shown in Fig. 11(d) remains at approximately
0.01 s during the experiment. This time is sufficiently shorter
than the control period 0.05 s, and the result verifies that
the present NMPC method is also real-time feasible in the
experimental setup with a low-cost single-board computer.
This result is notable because there are only a few studies that
report experiments of the real-time mobile robot control by
on-board NMPC computation. By combining the exact dis-
cretization method and the recursive discretization technique,
we have achieved reduction of the decision variables and the
fast analytic computation of the objective function gradient.

The experiment shows local stability in presence of dis-
turbances such as unmodeled dynamics of the battery or
rotors. Although the stability is not proven yet, the stabilizing
constraint technique discussed in [9, Chapter 5] could be

applied to our case. The main challenge is that we need to
explicitly consider the external force, namely the force of
gravity, in the stability analysis.

VII. CONCLUSION
In this paper, we have presented a fast NMPCmethod for rigid
body dynamics that can run on an embedded computer in real
time. We have combined the following methods to speed up
the nonlinear optimization:
• Geometrically exact discretization based on the Cay-
ley map: it allows us to pick coarse sampling inter-
vals and reduces the required number of prediction
steps.

• The recursive discretization technique [9]: it reduces
the number of decision variables by eliminating the
sequence of states from the objective function and con-
straints.

• The analytic gradient of the objective function: with the
Cayley-map-based discretization, the gradient is easily
calculated, and the sparsity of intermediate matrices can
be exploited to speed up matrix multiplication.

The present NMPC method is feasible in real time on a
Raspberry Pi single-board computer, and it is shown by sim-
ulations and an experiment with a fully actuated hexarotor.

Future work includes NMPC with a singularity-free rep-
resentation of the rigid body pose, the stability analysis, non-
linear state constraints with reduced computational effort, and
nonuniform sampling intervals to consider a long prediction
horizon with a small number of prediction steps.
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