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ABSTRACT Maneuver decision-making directly determines the success or failure of air combat. To improve
the dogfight ability of unmanned combat aerial vehicles and avoid the deficiencies of traditional methods,
such as poor flexibility and a weak decision-making ability, a maneuver method using deep learning
is proposed. A total of 72 different maneuvers are constructed, and 544320 states are designed. Flight
simulations are conducted under these different states to obtain corresponding future azimuth angles. A deep
neural network is trained with these offline data, and thus, the network possesses state prediction capability.
A situation assessment function and a decision objective function based on azimuth angles are constructed.
During air combat, the optimal maneuver is selected from the maneuver library according to the predicted
state and the decision objective function. The results of air combat simulations indicate that the unmanned
combat aerial vehicle (UCAV) can win the air combat game by the proposed method in a balanced situation
and can meet missile launching conditions in an adverse situation. The operational time of this method has
been reduced by 0.01 s compared with the comparison method.

INDEX TERMS Unmanned combat aerial vehicle, decision-making, deep learning, air combat simulation,
situation assessment.

I. INTRODUCTION
Unmanned aircraft systems (UASs) have been successful in
replacing manned aircraft in a variety of commercial and
military aerial missions. UAVs have been used to travel over
the sensed environment to collect data, and they exhibit faster
data collectionwhile achieving a high packet delivery rate and
low energy usage [1]. However, because of the challenging
and dynamic nature of air combat, these missions are solely
accomplished by manned platforms.

Since the late 1970s, NASA has funded the development of
a computer program for the simulation of a dogfight between
two fighter planes. The goal of the program is to develop a
solution technique for computing the near-optimal maneuver-
ing decisions of unmanned combat aerial vehicles (UCAVs).
Maneuvering decision-making can be summarized as fol-
lows: first, several elemental maneuvers are chosen based
on human-pilot air combat experiences, which are indicated
by three control variables (roll angle, normal overload and
tangential overload); then, at each decision point, the fighter
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predicts the position of the elemental trial maneuvers after
the same time period; finally, a value is placed on each of
the maneuvers by answering questions about the state of
each maneuver relative to the positions of the enemy and the
UCAV itself. The maneuver that scores the highest value is
chosen as the next to be performed. Austin et al. proposed
seven elementary maneuvers and selected the most beneficial
maneuver by means of a scoring matrix [2]–[4]. The authors
stated that the maneuver selection only guaranteed optimality
in the short term and only with respect to the chosen heuris-
tic scoring function. Even so, the method produced some
maneuvering decisions similar to those made by experienced
human pilots. The elementary maneuvers were also used by
Sun et al. [5] to build an air combat decision support system.
Virtanen et al. [6], [7] proposed a moving horizon decision-
making model to solve the air combat game. In this approach,
the time horizon of the original game is truncated, and a feed-
back Nash equilibrium of the dynamic game lasting for only
a limited planning horizon is determined and implemented
at each decision stage. Although a limited planning horizon
can mitigate the computational complexity, long planning
horizons are essential to making good maneuver choices
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during air combat. Huang et al. [8] introduced fuzzy logic and
Bayesian inference into a moving horizon decision-making
model. By means of fuzzy logic, the authors built maneuver
decision factor functions according to the state or situation,
such as the relative distance vector between a UCAV and
an opponent fighter, azimuth angles, height and velocity
of fighters. The situation constitutes the maneuver decision
objective function, the maneuver decision is to optimize the
decision objective function, and the function weights can
be changed adaptively using Bayesian inference. Ren et al.
[9] proposed a decision-making model based on a structure-
varied discrete dynamic Bayesian network (SVDDBN). This
model is composed of three parts: threat evaluation, target
value assessment and situation assessment. According to the
evaluative results of the above three parts, the SVDDBN
inference algorithm is applied for current mission decision-
making.

Mcgrew et al. [10], [11] regarded the air combat game
as a dynamic programming problem; further, assuming that
computing the optimal policy using an exact DP is intractable
because of the exponential growth of the state-space size with
the number of state-space variables, they adopted approxi-
mate dynamic programming (ADP) to make decisions during
the air combat game. However, ADP limited aircraft within
the horizontal plane, and only three maneuvers were used.
Wang et al. [12] proposed a robust maneuvering decision
method. They improved the membership function of situation
evaluation during the decision process on the basis of the
MIN-MAX decision method to make the situation function
have a certain insensitivity to changes in the air combat
situation. The specific process of this decision method can
be summarized as follows: based on the information of the
UCAV and the enemy aircraft at the current decision time t ,
the control command of all the actions in themaneuver library
is sent to the flight dynamical model for maneuver trial; all
possible locations of the UCAV in the next stage are obtained,
and the corresponding situation assessment function values
are computed; finally, the maneuver with the highest situation
assessment function value is chosen. A genetic fuzzy-based
artificial intelligence algorithm is used for UCAV control
in simulated air combat missions [13]. A combination of
particle swarm optimization and game theory is utilized for
the cooperative decision-making of multiple UCAVs [14].
Holsapple studied the autonomous decision-making method
of the UCAV in uncertain environments for intelligence,
surveillance, and reconnaissance (ISR) tasks [15].

Since Deepmind’s team used recent advances in train-
ing deep neural networks to develop a novel artificial
agent [16]–[18], termed a deep Q-network [19], which was
able to surpass the performance of all previous algorithms
and achieve a level comparable to that of a professional
human games tester, deep reinforcement learning (DRL)
has become a useful method to solve control problems
and decision-making problems [20], [21]. Unlike the above
decision-making method, DRL decision-making does not
need to make trial maneuvers and predict the positions at

each decision-making stage. It chooses a maneuver by means
of a deep neural network that is able to output the maneu-
ver with the highest situation assessment function value
according to the state directly without a maneuver trial [22].
Zhang et al. [23] proposed a heuristic Q-Network method
integrating expert experience and used expert experience
as a heuristic signal to solve the super-horizon air combat
maneuver decision-making problem. To find the shortest
flight path of a UCAV to avoid enemy missiles, Lee and
Kim [24] proposed a new reinforcement learning algorithm
that enhances exploration by amplifying the imitation effect.
However, these methods require plenty of time to sample, and
convergence of the neural network that outputs the maneuver
with the highest situation assessment function value is diffi-
cult.

While the aforementioned approaches achieved some suc-
cess, there are still several deficiencies: these methods uti-
lized only seven typical flight maneuvers designed by NASA
scholars, which cannot meet the requirement of air combat
maneuvering; and a fighter predicts the position of the ele-
mental trial maneuvers after the same time period through
the dynamic model, but predicting the position after long
time period takes much more time. Therefore, the goal of the
paper is to improve upon these aspects in terms of real-time
implementation, increased planning horizons, and increased
optimality. These objectives are achieved via a deep neural
network and a novel maneuver library.

To avoid the deficiencies of the above decision-making
methods, we propose a novel tactical decision-making frame-
work for the autonomous air combat of a UCAV using a
deep neural network. The inputs of the neural network are
the current state including the current roll angle, the target
roll angle, the pitch angle and the velocity, and the outputs
are the future pitch angle and the yaw angle. We choose
only the pitch angle and the yaw angle as neural network
outputs. Further, the other factors are contained abstractly
in the changes of the pitch angle and the yaw angle. Then,
the two angles constitute the maneuver decision objective
function. To find the increased optimality of a maneuver, we
construct a novel maneuver library consisting of 72 different
maneuvers. These maneuvers are based on the seven element
maneuvers designed by NASA scholars, and their normal
overloads and tangential overloads are set to a maximum.
The reason these overloads are set to a maximum is that
maximum overloads ensure maneuverability. Finally, one on
one air combat under different conditions is simulated with
enemy fighters using the decision-making model in [12].

II. UCAV DYNAMICAL MODEL AND MANEUVER LIBRARY
A. DYNAMICAL UCAV MODEL
In the course of researching maneuver decision-making,
the UCAV motion dynamics model adopts the normal over-
load, tangential overload and roll angle as control parameters.
To simplify the complexity of the problem, the angle of attack
and the sideslip angle are taken as zero, and the ground
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coordinate system is treated as the inertial system. Mean-
while, the effects of the rotation of the earth are overlooked.
The UCAV dynamical model is shown as follows:

ẋt = vt cos γt cosψt
ẏt = vt cos γt sinψt
żt = vt sin γt
v̇t = g(ntx − sin γt )
γ̇t =

g
vt
(ntz cosµt − cos γt )

ψ̇t =
g

vt cos γt
ntz sinµt

(1)

where xt , yt , and zt indicate the positions of the UCAV in
the inertial coordinate system; γt is the pitch angle; ψt is
the yaw angle; vt is the velocity; and g is the acceleration
of gravity. Roll angle µt , tangential overload ntx , and normal
overload ntz are control parameters. The simulation step is set
to 0.01 s. At every simulation step, the derivatives of vt , γt ,
and ψt are updated, and then new derivatives of xt , yt , and
zt are obtained. Thus, a new point consisting of three coordi-
nates can be computed by their derivatives. After some time,
numerous points are acquired, these points are connected into
lines, and we can obtain the flight trajectory of the aircraft.
The model parameters are shown in Fig. 1.

FIGURE 1. Definition diagram of the dynamical model parameters.

B. UCAV MANEUVER LIBRARY
NASA scholars have designed seven typical flight maneu-
vers: (1) continued stable flight, (2) maximum acceleration
flight, (3) maximum deceleration flight, (4) maximum over-
load left-turn flight, (5) maximum overload right-turn flight,
(6) maximumoverload upward flight, and (7)maximumover-
load downward flight. However, although these maneuvers
are usually applied in air combat simulations, they are not
flexible enough. Thus, we design 72 different maneuvers
according to the dynamical model. The specific method is
to take a roll angle at intervals of 5◦ between −180◦ and
180◦ and maximize the normal overload at the same time.
Therefore, 72 maneuvers are constructed. As shown in Fig. 2,
there are 72 flight trajectories simulated for six seconds
according to the dynamical model. Because of the existence
of the angular speed of the roll angle, the aircraft needs to

FIGURE 2. Seventy two different maneuvers.

roll from zero; therefore, there is an opening in the graph
composed of trajectories.

III. MANEUVER DECISION-MAKING MODEL USING DEEP
LEARNING
A. REVIEW OF DEEP LEARNING
Deep learning is a new research direction in the field of
machine learning. Deep learning originates from artificial
neural networks. An artificial neural network will be in the
local optimum and gradient disappearance or gradient explo-
sion as the number of layers increases [25]. Deep learning can
overcome the shortcomings of artificial neural networks and
acquire distributed representation of data by means of com-
bining low-level features to form more abstract high-level
features. Unlike traditional shallow learning, deep learning
emphasizes depth in neural networks and is able to transform
the representation of a sample in the original space to the
new space by layer-by-layer feature transformation, which
consequently promotes the classification and regression accu-
racy. A deep neural network, which has a certain number of
neural nodes and multilevel network structures, selects the
appropriate input and output layers and is then trained to
establish a functional relationship from input to output. The
schematic structure of a deep neural network is shown in
Fig. 3.

B. DECISION-MAKING MODEL USING DEEP LEARNING
1) AIR COMBAT SITUATION INFORMATION
The process of maneuver decision-making is the process of
selecting the maneuver that is the most beneficial to one’s
own side on the basis of air combat situation information.
The combat effectiveness of airborne weapons such as mis-
siles and aircraft guns is affected by the air combat situation
directly or indirectly, and different situations correspond to
different decisions. Therefore, situation information is crucial
to maneuver decision-making. There are three basic kinds of
situation information:
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FIGURE 3. Schematic structure of a deep neural network.

1) Distance situation: the distance between the two sides
of air combat in three dimensional space, the absolute
altitude and the relative altitude of the two sides.

2) Velocity situation: the absolute and relative velocities
of the two sides.

3) Angle situation: The angles between the velocity vector
of one fighter and the line-of-sight vector in the hori-
zontal and vertical directions, the angles between the
velocity vector of another fighter and the line-of-sight
vector in the horizontal and vertical directions, and the
angular velocity of the line-of-sight vector.

2) DECISION-MAKING MODEL USING A DEEP NEURAL
NETWORK
We propose a novel decision-making model by means
of a deep neural network that includes two parts:
deep neural network training and deep neural network
decision-making. The network training procedure is shown
in Fig. 4.

As shown in Fig. 4, the upper left indicate the process
of sampling: regard the direction of the projection on the
horizontal plane of the velocity vector of the UCAV as
the direction of the x-axis; the z-axis is perpendicular to the
horizontal plane; and the y-axis is defined according to the
right hand rule. Thus, a coordinate system is established for
sampling in the flight simulation. Every time sampling starts,
the UCAV is put at the coordinate origin with different initial
pitch angles γ0, different initial roll anglesµ0, different initial
velocities v0, and different target roll angles µtar , which
represent the 72 maneuvers. Then, a flight simulation lasting
for a period of time T is conducted, and the pitch angle γtar
and yaw angleψtar are recorded at the end of each simulation.
Therefore, samples consisting of inputs and outputs that are
used for training the deep neural network are acquired. The
inputs are made up of different groups of γ0, µ0, v0, and µtar ,

FIGURE 4. Deep neural network training.

and corresponding outputs are made up of different groups of
γtar and ψtar .

By means of uniformly sampling four inputs and flight
simulations under these different conditions, the correspond-
ing outputs are acquired. As a result, a large number of
flight samples are obtained. Then, the deep neural network
is trained so that it has the ability to predict future states
based on the current situation and maneuver. The sampling
range and interval are shown in Table 1. The pitch angles,
yaw angles, speeds, and control quantities are divided evenly.
Then, flight is simulated under these different situations, and
544320 groups of data consisting of the current situation,
the control quantity and the future state (pitch angle and
yaw angle) are obtained. The deep neural network is trained
with these data, and thus, the network is capable of pre-
dicting future situations according to the current situation.
The maneuver with the best future situation can be selected
from the maneuver library using the deep neural network.
Meanwhile, the operational speed of the deep neural network
is fast, which can meet the real-time requirement of decision-
making.

Fig. 5 indicates the procedure of decision-making on the
basis of the deep neural network. At each decision time-step,
the UCAV figures out the outputs including the pitch angles
and yaw angles of all maneuvers by means of the deep neural
network. These angles in the sampling coordinate system are
then converted into angles in the inertial coordinate system,
and the maneuver with the maximum decision-making tar-
get function value can be found according to the converted
angles. Therefore, the UCAV can use this maneuver to grad-
ually bring the enemy fighter into the missile attack range.

3) DECISION-MAKING TARGET FUNCTION
The current decision-makingmethod usuallymakes decisions
according to the situation assessment function, which is also
used for assessing the situation. The situation assessment
function includes the factors of angle, distance, and velocity.
However, the goal of air combat within-the-horizon is to meet
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FIGURE 5. Deep neural network decision-making.

missile launch conditions as soon as possible. Only after
meeting the angle conditions of the launching missile does
it make sense to consider other factors. Thus, we separate the
processes of assessment and decision-making by designing a
novel decision objective function:

Tar = α1
∣∣γpre − γlos∣∣+ α2 ∣∣ψpre + ψt − ψlos∣∣ (2)

where γpre and ψpre are the pitch angle and the yaw angle of
the UCAV in the sampling coordinate system, respectively;
and alpha1 and α2 are the corresponding weights of the
angles in decision-making. Different weights suggest differ-
ent degrees of importance for the pitch angle and the yaw
angle. Both the weights are set to 0.5. γlos and ψlos are the
pitch angle and the yaw angle, respectively, of line-of-sight
vector Rlos in the inertial coordinate system. The goal of
the deep neural network is to select the maneuver with the
lowest decision objective function value from all maneuvers,
and thus, the UCAV is able to rapidly meet the conditions of
missile launching

IV. AIR COMBAT SITUATION ASSESSMENT AND
VICTORY OR DEFEAT JUDGEMENT
A. SITUATION ASSESSMENT FUNCTION
To describe the air combat process objectively, a situation
assessment function is designed. The existing decision-
makingmethod usually regards themaneuver with the highest
situation assessment function value as the best maneu-
ver. However, in our decision-making method, the situation
assessment function is used only to evaluate the status in air
combat and is not involved in maneuver decision-making.

1) ANGLE SITUATION
He most significant thing in air combat is to fire, followed by
various tactical maneuvers and, finally, flight performance.
Regardless of whether an aircraft gun or a missile is used
to attack the enemy, it is necessary to get in the right place
and meet the angle requirements. Thus, the angle situation is
the most important thing in air combat. The angle situation

function is

Qγ =

{
3
2 cos γr + 1−

√
3
2 , |γr | <

π
6

6
π
(
√
3
2 − 1)(|γr | − π

3 ),
π
6 ≤ |γr | ≤

π
2

(3)

Qψ =


3
2 cosψr + 1−

√
3
2 , |ψr | <

π
6

5
3 −

4
π
|ψr | ,

π
6 ≤ |ψr |<

5π
12

5− 12
π
|ψr | ,

5π
12 ≤ |ψr | <

π
2

−1, π
2 ≤ |ψr | ≤ π

(4)

where γr is the relative pitch angle of the velocity vector with
respect to the line-of-sight vector, and ψr is the relative yaw
angle of the velocity vector with respect to the line-of-sight
vector. (xa, ya, za) are the coordinates of the UCAV in three
dimensional space, and (xb, yb, zb) are the coordinates of the
enemy fighter in three dimensional space. When calculating
the situation assessment function value of the UCAV, the line-
of-sight vector is set as Rlos = (xb− xa, yb− ya, zb− za), and
when calculating the situation assessment function value of
the enemy fighter, the line-of-sight vector is set as Rlos =
(xa − xb, ya − yb, za − zb).

2) DISTANCE SITUATION
The main factor that has an impact on the distance situation is
the missile attack range. Thus, the distance situation function
can be defined as

QR =

1, R < RD

e
−(R−RD)2

2σ2 , RD ≤ R
(5)

where RD is the missile attack range, σ is the standard devi-
ation of the attack range, and R is the distance between both
sides of air combat. When the enemy aircraft is within the
range of the missile, the distance situation function value is
always equal to 1. When the enemy aircraft is out of the range
of the missile, the distance situation function value decreases
as the distance increases. The real-time altitude of the aircraft
is also important because if the altitude is too low, there may
be a plane crash, and it is not conducive to the performance of
the aircraft if the altitude is too high. Therefore, the altitude
situation function can be defined as

QH =

{
−1, H < HL or H > HU
0, HL ≤ H ≤ HU

(6)

where HL is the lower limit of height, HU is the upper limit
of height, and H is the real-time height of the aircraft.

Taking into account the angle and distance, the air combat
situation assessment function can be defined in the form of
weighted summation as:

Q = ω1Qγa+ω2Qψa+ω3Qγb+ω4Qψb+ω5QR+ω6QH (7)

where Qγ a and Qψ a are the pitch angle situation value and
the yaw angle situation value of the UCAV, respectively;Qγ b
andQψ b are the pitch angle situation value and the yaw angle
situation value of the enemy fighter, respectively; Qγ a is the
distance situation value; QH is the altitude situation value;
and ωi is the weight of the corresponding situation value.
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B. VICTORY OR DEFEAT JUDGEMENT OF AIR COMBAT
1) DECISION-MAKING METHOD OF THE OPPONENT
The maneuver libraries of both sides are equal. The decision-
makingmethod of the enemyfighter is identical to themethod
in [12], which can be summarized as selecting the maneuver
with the maximum situation function value in the next stage
at each decision-making time-step.

2) VICTORY OR DEFEAT JUDGMENT
To win the air combat, it is indispensable to meet the missile
launch condition first. Therefore, victory or defeat judgment
of air combat can be constructed as

R < Rfire

|ψra| <
π
6

|γra| <
π
6

Qb < Qa

(8)

where R represents the distance between both sides of air
combat, Rfire is the optimum missile launching distance, γra
is the relative pitch angle of the velocity vector of the UCAV
with respect to the line-of-sight vector, ψra is the relative
yaw angle of the velocity vector of the UCAV with respect
to the line-of-sight vector, and Qa and Qb are the situation
assessment functions of the UCAV and the enemy fighter,
respectively. First, the missile launch condition must be sat-
isfied, namely, the first three in (8). Then, to verify the effec-
tiveness of this decision-making method, after meeting the
missile launch condition, the situation function value of the
UCAV must be greater than the situation function value of
the enemy fighter. Then, the UCAV wins the combat, or vice
versa. The block diagram of air combat judgment is shown in
Fig. 6.

FIGURE 6. Judgment block diagram.

V. DEEP NEURAL NETWORK TRAINING
The sampling range and interval are shown in Table 1. Using
dynamical model (1) to simulate the flying process of the
UCAV, 544320 samples are acquired in total. Because of the
large number of samples, a deep neural network is used to
construct themapping from the current flight situation and the

TABLE 1. Sampling range and interval.

TABLE 2. Structure of the deep neural network.

control parameters to future flight situations. The inputs are
the pitch angles, yaw angles, speeds, and control quantities,
and the outputs are the pitch angle and yaw angle of the
aircraft. A fully connected network is utilized due to its strong
ability to fit a function. The input shape of the network is
4, and the output shape is 2. The network has five hidden
layers. The hidden layers and the output layer are shown
in Table. 2. To reduce overfitting, dropout layers are added
in the network [25]. The neural network gradient descend
algorithm is RMSprop, the loss function is the mean square
error, and the learning rate is 0.001.

Fig. 7 indicates the change of accuracy of the training set
and the validation set. As shown in Fig. 7, because the training
sample is evenly sampled and the network has a certain depth,
the deep neural network has a good prediction accuracy.

VI. AIR COMBAT SIMULATIONS AND ANALYSIS
A. COMMON PARAMETERS
Common parameters: the initial flight speed is set to 250 m/s,
the maximum flight speed is set to 400 m/s, and the minimum
flight speed is set to 90 m/s. The optimum launching distance
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FIGURE 7. Accuracy curves.

of missiles Rfire is set to 4000 m, the attack range of missiles
RD is set to 5000 m, the standard deviation σ is set to 100 m,
the lower limit of heightHL is set to 500 m, the upper limit of
height HU is set to 12000 m, and the initial altitude is set to
5000m. Themaximumflight time is set to 100 s, the decision-
making period is set to 1 s, and the initial roll angle is set to
0.

B. AIR COMBAT SIMULATION
First initial condition: the initial position of the enemy is (0,
7000, 5000), the initial pitch angle is 0, and the initial yaw
angle is−25◦; the initial position of the UCAV is (0, 0, 5000),
the initial pitch angle is 0, and the initial yaw angle is 0. As
seen from the above parameters, the UCAV is at a disadvan-
tage. Fig. 8 shows the results of air combat confrontation. The
solid lines represent the trajectory and corresponding flight
information of the UCAV, and the dashed lines represent
the trajectory and corresponding flight information of the
enemy fighter. (d) and (e) indicate the included angles and the
distance between the two sides, respectively. In (d), the two
black dashed lines represent 30◦ and −30◦, the two solid
lines represent projections of the included angles between
the UCAV velocity vector and the line-of-sight vector in the
horizontal and vertical planes (yaw angle and pitch angle),
respectively. The two dashdot lines represent projections of
the included angles between the enemy fighter velocity vector
and the line-of-sight vector in the horizontal and vertical
planes, respectively. In (e), the black dashed line represents
4000 m, and the solid line indicates the distance between the
two sides. Once the distance is less than 4000 m and the two
angles of a fighter are less than |30◦|, the missile launching
conditions are met. If only one side meets the launching
conditions, it wins. If both sides meet the conditions, the side
with the higher situation function value wins.

As shown in Fig. 8, the initial situation function value of
the UCAV is less than that of the enemy. According to the
curves of the roll angle change, it can be seen that the UCAV
chose to change its roll angle to 100◦, and at approximately
1.5 s, its roll angle was 100◦. At 4 s, the UCAV changed

its roll angle to 90◦ from 100◦. Simultaneously, the enemy
changed its roll angle to −110◦ at 1 s and changed it to -
70◦ at 3 s. At 4 s, it changed its roll angle to 90◦ as well.
As shown in (d), the two angles of the enemy were less
than |30◦| at approximately 2 s, the two angles of the UCAV
were less than |30◦| at approximately 5.5 s, and because
the distance between the two sides was more than 4000 m,
the air combat game continued. At 7 s, the distance was less
than 4000 m; therefore, both sides met the missile launching
conditions. Since the situation function value of the UCAV
was less than that of the enemy, the UCAV was defeated.
However, this does not mean that the deep neural network
decision making method is useless because the UCAV still
met the missile launching conditions even if it was at a dis-
advantage at the beginning. Meanwhile, considering several
minor adjustments during flying, it can be concluded that
the designed maneuver library is effective compared with
traditional maneuver library in which the difference between
roll angles of different maneuvers is usually 45◦ or 90◦.

Second initial condition: the initial position of the enemy
fighter is (7000, 7000, 5000), the initial pitch angle is 0, and
the initial yaw angle is -135◦; the initial position of the UCAV
is (0, 0, 5000), the initial pitch angle is 0, and the initial
yaw angle is 0◦. As seen from the above parameters, at the
beginning of the simulation, there was an intersection angle
of 45◦ between the flight direction of the UCAV and the line-
of-sight, and the UCAV was at a disadvantage. Fig. 9 shows
the results of the air combat game.
As shown in Fig. 9, because the UCAV was at a dis-

advantage at the beginning of the air combat simulation,
the situation function value was less than that of the enemy
fighter. The UCAV chose the maneuver with a 100◦ roll angle
at the beginning and then changed the maneuver multiple
times. As shown in (d), the two angles of the enemy were
less than |30◦| at the beginning. At approximately 2 s, the two
angles of the UCAV were less than |30◦|. At 9 s, the situation
function value of the UCAVwas more than that of the enemy;
however, its advantage disappeared before long. Finally, both
sides met the missile launching conditions.

Third initial condition: the initial position of the enemy
fighter is (5000, 5000, 5000), the initial pitch angle is 0, and
the initial yaw angle is 45◦; the initial position of the UCAV
is (0, 0, 5000), the initial pitch angle is 0, and the initial yaw
angle is −135◦. As seen from the above parameters, at the
beginning of the simulation, neither side posed a threat to the
other. The results of the air combat confrontation are shown
in Fig. 10.

Because the azimuth angles of both sides were a max-
imum, much more time was required to meet the launch-
ing conditions, and there was a significant increase in the
simulation time. According to the situation function value
diagram, in the first four seconds, the situation function
value gap between the two sides was small. According to
the roll angle diagram, the UCAV flew to the right in the
first 15 s. The enemy fighter flew to the right first and then
flew to the left, causing itself to be chased by the UCAV
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FIGURE 8. The results of an air combat confrontation under the first condition. (a) Air combat trajectories. (b) Simulation function value.
(c) Change of the roll angle. (d) Projections of the included angles in the horizontal and vertical planes. (e) Distance between the two sides.

and putting the UCAV in a dominant position for nearly
40 s. Therefore, it can be concluded that it is beneficial to
consider only the azimuth angles in decision-making. After
that, the enemy aircraft kept changing its flight direction to
get rid of the chase, and the UCAV followed it by means
of turning. Because 180◦ is equivalent to −180◦, the yaw
angle of the two sides changed to −180◦ from 180◦ and

changed to 180◦ from −180◦ immediately, as shown in (d).
In (e), the distance between the two sides was less than
4000 m from approximately 44 s to 53 s; however, nei-
ther side met the angle conditions for missile launching.
Finally, because the UCAV took the lead in meeting the
missile launching conditions and the situation function value
of the UCAV was greater than that of the enemy fighter,
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FIGURE 9. The results of an air combat confrontation under the second condition. (a) Air combat trajectories. (b) Simulation function value.
(c) Change of the roll angle. (d) Projections of the included angles in the horizontal and vertical planes. (e) Distance between the two sides.

the UCAVwon. Third initial condition is mutually beneficial,
because neither side of the air combat posed a threat to
each other, therefore, we can conclude that our decision-
making method can win the air combat in mutually beneficial
circumstances.

Fourth initial condition: the initial position of the enemy
fighter is (7000, 7000, 5000), the initial pitch angle is 0,

and the initial yaw angle is −135◦; the initial posi-
tion of UCAV is (0, 0, 5000), the initial pitch angle
is 0, and the initial yaw angle is −135◦. As seen
from the above parameters, at the beginning of the sim-
ulation, the UCAV was chased by the enemy fighter.
The result of the air combat confrontation is shown
in Fig. 11.
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FIGURE 10. The results of an air combat confrontation under the third condition. (a) Air combat trajectories. (b) Simulation function value. (c) Change
of the roll angle. (d) Projections of the included angles in the horizontal and vertical planes. (e) Distance between the two sides.

Because the UCAV was chased by the enemy fighter at
the beginning of the air combat simulation, its situation func-
tion value was lower than that of the enemy fighter. Then,
the UCAV chose to fly to the left to avoid being chased.
The enemy fighter chose different flying directions, as shown
in Fig. 11, because it needed to maximize its situation func-
tion value, which contains not only its own azimuth angles
but also the azimuth angles of the UCAV. However, even if
the enemy fighter was at a strong advantage at the beginning

and its situation function value was always higher than that
of the UCAV, the UCAV still met the conditions of missile
launching after approximately 14 s, as shown in (d). Because
both sides met the conditions of missile launching at the same
time and the enemy fighter’s situation function value was
higher than that of the UCAV, the enemy fighter won. Finally,
the average time taken to select the optimalmaneuver is 0.06 s
in the deep neural network decision-making and 0.07 s in the
enemy fighter’s decision-making.
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FIGURE 11. The results of an air combat confrontation under the fourth condition. (a) Air combat trajectories. (b) Simulation function value. (c)
Change of the roll angle. (d) Projections of the included angles in the horizontal and vertical planes. (e) Distance between the two sides.

Even though the UCAV only won enemy once in the
four air combat simulations, we can still conclude that our
decision-making method is better, because the UCAV still
met the conditions of missile launching when it was at a
disadvantage in the three defeated simulations.

VII. CONCLUSION
In this study, we develop a novel decision-making method
using a deep neural network and a novel maneuver library
containing 72 maneuvers. A new decision objective function
consisting of the pitch angle and the yaw angle is proposed.
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The deep neural network aims at predicting the pitch angles
and yaw angles of the 72 maneuvers if they were selected
and used for simulating. This prediction system is trained
with offline simulation data, and the test results show that the
network performs well and accurately captures the tendency
of the state development within a tolerant prediction error.
Particularly, the neural network prediction system provides a
reliable method to predict the aircraft movement after a long
period without increasing the operational time.

We designed three disadvantageous conditions and one
mutually beneficial condition. Our decision-making method
can win the air combat in mutually beneficial circumstances
and can meet missile launching conditions when in adverse
circumstances. Therefore, the proposed method can solve
the decision making problem effectively and competitively
compared with the method in [12]. The decision-making time
of the deep neural network method is reduced by 0.01 s com-
pared with the method in [12]. However, the limitation in our
method is that the neural network cannot be improved once
the training has been accomplished. It is necessary to develop
a novel neural network that can be improved automatically
and a novel maneuver library containing more maneuvers.

REFERENCES
[1] S. Goudarzi, N. Kama,M.H. Anisi, S. Zeadally, and S.Mumtaz, ‘‘Data col-

lection using unmanned aerial vehicles for Internet of Things platforms,’’
Comput. Electr. Eng., vol. 75, pp. 1–15, May 2019.

[2] F. Austin, G. Carbone, M. Falco, H. Hinz, and M. Lewis, ‘‘Game theory
for automated maneuvering during air-to-air combat,’’ J. Guid., Control,
Dyn., vol. 13, no. 6, pp. 1143–1149, Nov. 1990.

[3] H. Park, B.-Y. Lee, M.-J. Tahk, and D.-W. Yoo, ‘‘Differential game
based air combat maneuver generation using scoring function matrix,’’ Int.
J. Aeronaut. Space Sci., vol. 17, no. 2, pp. 204–213, Jun. 2016.

[4] J. Poropudas and K. Virtanen, ‘‘Game-theoretic validation and analysis of
air combat simulation models,’’ IEEE Trans. Syst., Man, Cybern. A, Syst.
Hum., vol. 40, no. 5, pp. 1057–1070, Sep. 2010.

[5] T.-Y. Sun, S.-J. Tsai, Y.-N. Lee, S.-M. Yang, and S.-H. Ting, ‘‘The study on
intelligent advanced fighter air combat decision support system,’’ in Proc.
IEEE Int. Conf. Inf. Reuse Integr., Sep. 2006, pp. 39–44.

[6] K. Virtanen, J. Karelahti, and T. Raivio, ‘‘Modeling air combat by amoving
horizon influence diagram game,’’ J. Guid., Control, Dyn., vol. 29, no. 5,
pp. 1080–1091, Sep. 2006.

[7] K. Virtanen, T. Raivio, and R. P. Hamalainen, ‘‘Modeling Pilot’s sequen-
tial maneuvering decisions by a multistage influence diagram,’’ J. Guid.,
Control, Dyn., vol. 27, no. 4, pp. 665–677, Jul. 2004.

[8] H. Changqiang, D. Kangsheng, H. Hanqiao, T. Shangqin, and Z. Zhuoran,
‘‘Autonomous air combat maneuver decision using Bayesian inference and
moving horizon optimization,’’ JSEE, vol. 29, no. 1, pp. 86–97, Feb. 2018.

[9] J. Ren, X. Gao, J. Zheng, and Y. Zhang, ‘‘Mission decision-making for
UCAV under dynamic environment,’’ J. Syst. Eng. Electron., vol. 32, no. 1,
pp. 100–103, Jan. 2010.

[10] J. S. Mcgrew, J. P. How, and B. Williams, ‘‘Air combat strategy using
approximate dynamic programming,’’ J. Guid. Control. Dyn., vol. 33, no. 5,
pp. 1641–1654, Oct. 2010.

[11] J. S. Mcgrew, ‘‘Real-time maneuvering decisions for autonomous air com-
bat,’’ M.S. thesis, Dept. Electron. Eng., MIT, Massachusetts, CA, USA,
2008.

[12] Y. Wang, C. Huang, and C. Tang, ‘‘Research on unmanned com-
bat aerial vehicle robust maneuvering decision under incomplete tar-
get information,’’ Adv. Mech. Eng., vol. 8, no. 10, Oct. 2016,
Art. no. 168781401667438.

[13] N. Ernest, D. Carroll, and C. Schumacher, ‘‘Genetic fuzzy based artificial
intelligence for unmanned combat aerial vehicle control in simulated air
combat missions,’’ J. Defense Manage., vol. 6, no. 10, pp. 144–156,
Apr. 2016.

[14] H. Duan, X. Wei, and Z. Dong, ‘‘Multiple UCAVs cooperative air combat
simulation platform based on PSO, ACO, and game theory,’’ IEEE Aerosp.
Electron. Syst. Mag., vol. 28, no. 11, pp. 12–19, Nov. 2013.

[15] R. W. Holsapple, P. R. Chandler, and J. J. Baker, ‘‘Autonomous decision
making with uncertainty for an urban intelligence, surveillance and recon-
naissance (ISR) scenario,’’ in Proc. AIAA Guid., Navigat., Control Conf.,
Aug. 2008, pp. 1–14.

[16] Y. Bengio, ‘‘Learning deep architectures for AI,’’ Found. Trends Mach.
Learn., vol. 2, pp. 1–127, Mar. 2009.

[17] A. Krizhevsky, I. Sutskever, and G. Hinton, ‘‘ImageNet classification with
deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 25, Oct. 2012, pp. 1106–1114.

[18] G. E. Hinton, ‘‘Reducing the dimensionality of data with neural networks,’’
Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[20] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. Van Den Driessche, T. Graepel, and D. Hassabis,
‘‘Mastering the game of Go without human knowledge,’’ Nature, vol. 550,
no. 7676, pp. 354–359, Oct. 2017.

[21] C.-J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and
M. J. Kochenderfer, ‘‘Combining planning and deep reinforcement
learning in tactical decision making for autonomous driving,’’ May 2019,
arXiv:1905.02680. [Online]. Available: https://arxiv.org/abs/1905.02680

[22] P. Liu and Y. F. Ma, ‘‘A deep reinforcement learning based intelligent
decision method for UCAV air combat,’’ in Proc. Int. Conf. Cloud Comput.
Intell. Syst., Mar. 2017, pp. 274–286.

[23] X. B. Zhang, G. Q. Liu, and C. J. Yang, ‘‘Research on air confrontation
maneuver decision-making method based on reinforcement learning,’’
Electronics, vol. 7, no. 279, pp. 1–19 , Apr. 2018.

[24] G. T. Lee and C. O. Kim, ‘‘Amplifying the imitation effect for
reinforcement learning of UCAV’s mission execution,’’ Jan. 2019,
arXiv:1901.05856. [Online]. Available: https://arxiv.org/abs/1901.05856

[25] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, Beijing, China:
Posts Telecom, 2017, pp. 126–149.

HONGPENG ZHANG was born in 1996. He
received the bachelor’s degree from Air Force
Engineering University, Xi’an, China, in 2017,
where he is currently pursuing the master’s degree
in unmanned aircraft combat system and technol-
ogy. His current research interests are autonomous
air combat for unmanned combat aerial vehicle
and machine learning, including deep learning and
its application on unmanned aerial vehicle combat
systems.

CHANGQIANG HUANG was born in Jiangsu,
in 1961. He received the Ph.D. degree in navi-
gation, guidance and control from Northwestern
Polytechnical University, Xi’an, China, in 2006.
He is currently a Professor and a Doctoral Tutor
with Air Force Engineering University. His cur-
rent research interests are autonomous air combat
for unmanned combat aerial vehicle and artifi-
cial intelligence, including knowledge extraction,
big data application, and air combat simulation
systems.

VOLUME 8, 2020 12987


