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ABSTRACT Most of the existing cross-modal retrieval methods make use of labeled data to learn projection
matrices for different modal data. These methods usually learn the original semantic space to bridge
the heterogeneous gap, ignoring the rich semantic information contained in unlabeled data. Accordingly,
a semantic consistency cross-modal retrieval with semi-supervised graph regularization (SCCMR) algorithm
is proposed, which integrates the prediction of labels and the optimization of projection matrices into a
unified framework to ensure that the solution obtained is globally optimal. At the same time, the method
uses graph embedding to consider the nearest neighbors in the potential subspace of paired images and texts
as well as images and texts with the same semantics. l21-norm constraint is applied to the projection matrices
to select the discriminative features for different modal data. The results show that our method outperforms
several advanced methods on four commonly used cross-modal retrieval datasets.

INDEX TERMS Cross-modal retrieval, semi-supervised, graph regularization, subspace learning.

I. INTRODUCTION
With the arrival of the big data era, data such as texts, images,
audio, and videos have experienced an explosive growth on
the Internet. Users need a variety of hybrid modalities of
retrieval, so that retrieval methods based on single modal
[1]–[3] data can no longer meet people’s needs. The cross-
modal retrieval [4]–[6] technology has emerged in a historic
moment and, owing to its great significance in both theo-
retical research and practical applications, it will gradually
become the most popular research direction in the field of
information retrieval.

Cross-modal retrieval technology, as its name implies, is a
technology that differentmodal data could retrieve each other.
As shown in Figure 1, when we show a picture of a tiger,
there will appear text describing the picture, as well as audio
and video related to tigers. Cross-modal retrieval is popular
among users because of its more comprehensive and detailed
description of content. However, the following chanllenges
are emerged: (1) the underlying features and dimensions of
different modal data are different, and it is impossible to
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FIGURE 1. The description of cross-modal retrieval. When a picture of a
tiger as a query instance is submitted, the text description of the tiger,
audio of the tiger’s call and the video of the tiger will be returned.

measure their similarity directly; how to bridge the heteroge-
neous gap between underlying features and high-level seman-
tics is the most important issue in cross-modal retrieval; (2) as
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data of different modalities coexist, there are many types of
noise and redundancies; how to select discriminant features
and remove noise effectively is also a problem to be solved
urgently in cross-modal retrieval; (3) in practice, multi-modal
data are complex and diverse, but the labeled data account
for only a small part; how to effectively utilize the rich
semantic information contained in labeled and unlabeled data
has become a major challenge in cross-modal retrieval.

To solve the first problem, many methods [7]–[9] learn a
potential subspace for different modal data. In this subspace,
multi-modal data have the same dimension representation
characteristics, hence they can directly measure the similarity
of different modal data. For example, a series of algorithms
[10], [11] based on canonical correlation analysis (CCA) [12]
projected different modal data into a shared subspace via
subspace mapping. Zhang and Chen [13] proposed kernal
CCA (KCCA) which mapped data of different modalities
into high-dimensional space to learn the semantic concepts
corresponding to images and text. However, these subspace
learning methods focus on the learning of projection matrices
and ignore the selection of discriminative features, which
can’t achieve satisfactory results. In the proposed method of
this article, l21-norm constraint is applied to the projection
matrices to select the discriminative features for different
modal data.

To solve the second problem, many methods [14]–[16]
use different constraints, such as the l1-norm [17], [18],
to obtain sparse representations of different modalities, which
can improve the speed of cross-modal retrieval. F-norm con-
straint [19], [20] is used to remove the noise of different
modalities and obtain more discriminant features. Different
from these above methods which concentrate on constraining
the projection matrices, our method makes full use of the
relationship of intra-modal data and inter-modal data, and can
achieve better result.

To solve the third problem, the joint feature selection and
subspace learning (JFSSL) method [21] made full use of
the structural information of labeled and unlabeled data, and
effectively improves the performance of cross-modal retrieval
by constructing a series of graphs. Semi-supervised methods
[22], [23] have also been developed, where the unlabeled data
are tagged with pseudo-labels under the help of the labeled
data, and the projection matrix is learned by using the original
labels and pseudo-labels for different modal data. Compared
with these above methods, our method can dynamically cor-
rect the prediction labels, and can obtain the global optimal
result.

Deep neural network (DNN) [24] has drawn more and
more attention because of its multi-layer nonlinear projec-
tion property. Therefore, DNN-based methods have become
the focus of cross-modal retrieval research. In particular,
Generative adversarial network (GAN) has widely used in
cross-modal retrieval because of its powerful characteristics
of modeling the underlying feature.Wang et al. [25] proposed
ACMR (Adversarial Cross-Modal Retrieval), and the core
idea of this method is to obtain an effective shared subspace
through the confrontation mechanism between feature pro-
jector and modality classifier, so as to retrieval for different
modalities in this subspace. Xu et al. [26] introduced the idea
ofmetric learning into the process of adversarial learning. Not
only the statistical characteristics of visual modality and tex-
tual modality are preserved, but also the correlations between
different modalities are maximized. However, owing to the
characteristic of high time complexity, the above methods
are limited in promotion. In addition, they cannot effectively
utilize unlabeled data.

Accordingly, in this paper we propose a semantic con-
sistency cross-modal retrieval with semi-supervised graph
regularization (SCCMR) algorithm (Figure 2), which can
simultaneously take into account the heterogeneous gap,

FIGURE 2. The flowchart of our proposed method.
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the selection of discriminant information, and the semantic
information of unlabeled data. We also propose an effective
optimization algorithm. Experiments show that our algorithm
outperforms several advanced cross-modal retrieval methods
on four datasets. The main contributions of this paper are as
follows:

1. A novel semi-supervised cross-modal retrieval algo-
rithm is proposed, which can simultaneously optimize the
prediction labels and projection matrices of different modali-
ties and use the original semantic labels to correct the predic-
tion labels, ensuring that the obtained prediction label matrix
is globally optimal.

2. The graph embedding method ensures the approxima-
tion of paired images and texts in potential subspace as well
as their approximation with the same semantics.

3. When learning a potential space, we use the l21-norm
to select features with strong correlation and discrimination.
Further, we propose an effective iterative algorithm to ensure
the convergence of the objective function.

The remaining chapters of this paper are organized as
follows. In Section 2, we introduce the latest cross-modal
retrieval methods. In Section 3, we introduce our algorithm
and its optimization in detail. In Section 4, the experimen-
tal results are analyzed in detail on four datasets. And in
Section 5, we summarize the main contributions of this paper.

II. RELATED WORKS
The key challenge of cross-modal retrieval technology [27]
is to realize the correlation analysis of different modal data.
In this process, different constraints are taken into account
to improve the retrieval accuracy. Based on this, domestic
and overseas scholars have developed so many cross-
modal retrieval methods, such as subspace learning methods,
dictionary learning methods, and pseudo-label construction
methods.

Subspace learning methods are the earliest and most
widely used in the cross-modal field. Research on these
methods provides a foundation for other cross-modal retrieval
methods. Traditional subspace learning methods involve pro-
jecting images and texts into the original semantic space.
For example, Wei et al. [28] proposed a modality-dependent
cross-media retrieval (MDCR) method, which is task-based
and is used to learn different projection matrices for different
cross-modal retrieval tasks. Because of the noise in the orig-
inal semantic labels, many scholars are devoted to finding an
orthogonal space to provide more accurate common repre-
sentations for image and text learning. Wu et al. [29] used
orthogonal constrained spectral regression to learn potential
subspaces, which greatly improved the accuracy of cross-
modal retrieval. However, this method only solves the prob-
lem of similarity measurement of different modal data and
cannot select more discriminant data and effectively consider
the internal structure of different modal data. Consequently,
the results achieved so far cannot meet people’s expectations.

Because the dimension of data of different modalities are
so different, a lot of information will be lost if only seeking

low-dimensional common subspaces for different modalities.
Especially for high-dimensional image modalities, it is dif-
ficult to maintain the integrity of information. Dictionary
learning methods can learn sparse coefficients for data of
different modalities, which not only reduce the computa-
tional difficulty, but also improve the accuracy of cross-modal
retrieval. Zhuang et al. [30] proposed a supervised coupled
dictionary learning with group structures algorithm, which
took advantage of dictionary to process different modal data.
Meanwhile, the common structure was found by labeling
information of similar data withinmodal data. Deng et al. [31]
continued to explore dictionary learning and proposed a dis-
criminative dictionary learning method, which uses common
label alignment to learn different modalities of semantic map-
ping, thus, improving the retrieval performance. Xu et al. [17]
learned the corresponding dictionary for different modal data,
obtained its sparse representation, and then projected the
sparse representations of different modal data into a com-
mon subspace for cross-modal retrieval. However, the above
dictionary learning methods only use dictionaries to learn
common representation for different modal data, and only
use labeled data, ignoring the huge information contained in
unlabeled data, preventing them from achieving better results.

Because unlabeled data contain vast information, many
methods have been developed to construct pseudo-labels for
unlabeled data of different modalities, and then learning pro-
jection matrices by using pseudo-labels and original seman-
tic labels. Xu et al. [32] proposed a pseudo-label learning
algorithm based on semantic consistency preservation. The
main concept of the algorithm is to use labeled data to learn
class centers, and then calculate pseudo-labels for different
modalities. Finally, the original labels with labeled data and
the pseudo-labels without labeled data are used as differ-
ent modal learning projection matrices. Then, the common
representation space is obtained for similarity measurement.
A similar concept is used in the semi-supervised distance con-
sistency preservation algorithm proposed by Dong et al. [33]
Although both of the above algorithms use unlabeled data,
they have the following disadvantages: (1) the unlabeled data
is learned from the internal structure of labeled data and can-
not mine the physical structure of unlabeled data effectively;
(2) the pseudo-label is constructed for unlabeled data first,
and then the projection matrix is produced. The pseudo-label
and projection matrix cannot be optimized simultaneously.
Therefore, the result is not globally optimal.

To overcome the shortcomings of the above methods,
we propose the SCCMR method. Not only can the intrinsic
structure relationship between labeled data and unlabeled
data be fully excavated, but the prediction labels and projec-
tion matrices of different modalities can also be optimized to
further improve the performance of cross-modal retrieval.

III. SEMANTIC CONSISTENCY CROSS-MODAL RETRIEVAL
WITH SEMI-SUPERVISED GRAPH REGULARIZATION
In this section, we describe the SCCMR method and an
effective optimization algorithm to optimize the objective
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function. Detailed formal definitions and explanations will
also be described.

A. THE FORMAL DEFINITION
Given a labeled data set G1 = {(vi, ti, yi)

n1
i=1}, where vi ∈ R

dv

and ti ∈ Rdt correspond to the original underlying features
of the image and text, respectively, there are n1 pairs of
samples. (vi, ti) is an image-text pair with a common semantic
yi ∈ Rc, where c represents the number of categories of
semantic concepts in the data set. We define a unlabeled
data set G2 = {(vj, tj)nj=n1+1}, with n − n1 visual and tex-
tual samples. Then, we define an image training set V =
[v1, v2, . . . , vn1 , vn1+1, . . . , vn] ∈ Rdv×n and a text training
set T = [t1, t2, . . . , tn1 , tn1+1, . . . , tn] ∈ R

dt×n, dv and dt rep-
resent the dimensions of the underlying features of the image
and text, respectively. Y = [y1, y2, . . . , yn1 , yn1+1, . . . , yn] ∈
Rc×n and F = [f1, f2, . . . , fn1 , fn1+1, . . . , fn] ∈ Rc×n rep-
resent a real label matrix and a prediction label matrix,
respectively. In particular, yk = 0,∀k = n1 + 1, . . . , n.

B. PROPOSED METHOD
To make full use of the information of labeled and unla-
beled data, we propose a semantic consistency cross-modal
retrieval with semi-supervised graph regularization algo-
rithm. This algorithm aims at learning different projection
matrices for different modalities, in order to project the data
of different modalities into a potential subspace for similar-
ity measurements. Because unlabeled data lacks real labels,
we cannot directly use the original semantic label matrix to
achieve our goal. Therefore, we learn a predictive label matrix
and use the real label matrix with labeled data to dynamically
correct the predictive label matrix. To make predictive labels
as close as possible to real labels, we define a graph embed-
ding method:

n∑
i=1

u1||fi − yi||2F=tr((F − Y )
TU (F − Y )) (1)

where U ∈ Rc×c is a diagonal matrix, Uii = ui. And we
define ui as follows:

ui =

{
+∞, labeled data
0, otherwise

(2)

Therefore, we can obtain the following final objective
function:

min
UV ,UT

α(||F − UT
V V ||

2
F + ||F − U

T
T T ||

2
F )

+ λ

N∑
i=1

N∑
j=1

Wij||UT
V Vi − U

T
T Tj||

2
2

+ β(||UV ||21 + ||UT ||21)
+ tr((F − Y )TU (F − Y )) (3)

where α, λ and β are super parameters, which are used to
control the weight of each item. UV ∈ Rdv×c and UT ∈ Rdt×c

represent the projection matrices of images and texts, respec-
tively. We use the l21-norm to constrain the projection matrix.

On the one hand, it can avoid data over-fitting, on the other
hand, it can be used to select features with strong correlation
and discrimination.

The adjacency matrix Wij is defined as follows:

wij =

{
1/Nt , if vi and tj belong tothe same class t
0, otherwise

(4)

where Nt represents the number of t-th class. The first item
of the objective function is a linear regression term, which
guarantees that images and texts with the same semantics
are approximated in potential subspaces. The second item
is the correlation analysis item, which is used to ensure that
image-text pairs are approximated in the potential subspace,
and to further ensure the approximation of images and texts
with the same semantics in the potential subspace. Traditional
methods use the following paired constraints:

λ

N∑
i=1

N∑
j=1

||UT
V Vi − U

T
T Tj||

2
2 (5)

The above formula only guarantees the approximation of
image-text pairs in potential subspaces and cannot achieve
our goal.

C. OPTIMIZATION
We find that the objective function is convergent when one of
the variables is updated while the others are fixed. Accord-
ingly, we propose an effective iterative algorithm. First,
we optimize ||UV ||21 and ||UT ||21. Following the procedure
in [21], we take UV as an example. We define ϕ(x) =√
x2 + ε, where ε is a smoothing termwhich can be expressed

by a small constant to ensure the convergence of the iterative
algorithm. Then, we can have ||UV ||21 =

∑di
b=1 ϕ(||u

b
V ||2)

and the following formula can be obtained:

||UV ||21 = tr(UT
V RVUV ) (6)

where RV = Diag(rV ). The b-th element of RV is represented
as: rbV = 1/2||ubV ||2, thus, r

b
V can be represented as follows:

rbV =
1

2
√
|||ubV ||

2
2 + ε

(7)

Similarly, ||UT ||21 is expressed as:

||UT ||21 = tr(UT
T RTUT ) (8)

Then we fix F and UT to update the value of UV , we can
obtain:

min
UV

J (UV ) = α||F − UT
V V ||

2
F + β||UV ||21

+ λ

N∑
i=1

N∑
j=1

Wij||UT
V Vi − U

T
T Tj||

2
2

= α||FT − V TUV ||2F + β||UV ||21
+ λ(tr(UT

V VDV
TUV )− tr(UT

V VWT TUT )

− tr(UT
T TWV TUV )) (9)
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where D is the degree matrix corresponding to the adjacent
matrix W .

The partial derivative of the above formula for UV is
expressed as follows:

∂J (UV )
∂UV

= −2αV (FT − V TUV )+ 2βRVUV

+2λV (DV TUV −WT TUT ) (10)

We can get the following formula by making the derivative
equal to zero.

UV = (αVV T
+λVDV T

+βRV )−1(αVFT+λVWT TUT ) (11)

Similarly, we derive the partial derivative ofUT and obtain
the following formula:

∂J (UT )
∂UT

= −2αT (FT − T TUT )+ 2βRTUT

+2λT (DT TUT −WV TUV ) (12)

Then,

UT = (αTT T+λTDT T+βRT )−1(αTFT+λTWV TUV ) (13)

Finally, we fixUV ,UT , update F , and obtain the following
formula:

∂J (F)
∂F

= α(F − UT
V V+F − U

T
T T )+ UF − UY = 0 (14)

Thus,

F = (2αI + U )−1(α(UT
V V + U

T
T T )+ UY ) (15)

The iterative algorithm for SCCMR is formulated in
Algorithm 1.

Algorithm 1 Iterative Algorithm for SCCMR
Input: Image feature matrix V = [v1, v2, . . . , vn1 ,
vn1+1, . . . , vn] ∈ R

dv×n;
Text feature matrix T = [t1, t2, . . . , tn1 ,

tn1+1, . . . , tn] ∈ R
dt×n;

Real label matrix Y = [y1, y2, . . . , yn1 ,
yn1+1, . . . , yn] ∈ R

c×n;
Parameters α, λ, β.

1: Initialize UV , UT , F as random matrices for iteration
k = 0;
2: repeat
3: Updata UV with UT and F ;
4: Updata UT with UV and F ;
5: Updata F with UV and UT ;
6: Set k = k + 1.
7: until: Objective function of Eq. (2) converges.

Output: Projection matrices UV , UT , predictive label
matrix F .

IV. EXPERIMENTS
A. DATASETS
For the experiments, we used the following datasets:

Wikipedia dataset is the first open-access dataset in the
field of cross-modal retrieval. It contains 2866 image-text
pairs, each of which corresponds to one of ten semantics.
We randomly selected 2173 pairs of data from the set to form
the training set and 693 pairs of data to form the testing set.
In this dataset, the text is represented by a 100-dimensional
latent dirichlet allocation (LDA) feature and the image is rep-
resented by a 4096-dimensional convolutional neural network
(CNN) feature.

Pascal Sentence dataset is a very popular dataset in
the field of cross-modal retrieval. It contains 1000 pairs of
image-text pairs from 20 semantic categories. Among them,
600 pairs are used for training and 400 pairs are used for
testing. For text, we first obtain the 300-dimensional fea-
tures of the text, and then the 100-dimensional features rep-
resentation of the text based on LDA. For image, we use
4096-dimensional CNN visual features to represent them.

INRIA-Websearch dataset is a large-scale dataset in the
field of cross-modal retrieval. It consists of 71478 image-text
pairs, divided in 353 semantic categories. In particular, for
this study, we selected 100 categories with the largest num-
ber of samples as the dataset. Among them, 10332 samples
constitute the training set and 4366 samples constitute the
testing set. In this dataset, the text is represented by 1000-
dimensional LDA features. For image, 4096-dimensional
CNN visual features are used.

NUS-WIDE-10k dataset is a very widely-used cross-
modal dataset chosen from the 10 largest categories in
NUS-WIDE dataset. Furthermore, 8000/2000 image-text
pairs are utilized for training/testing. The images are rep-
resented by 4096-dimensional VGG vectors while the texts
are represented by 1000-dimensional bag of words(BoW)
vectors.

The statistical characteristics of the above four datasets are
shown in Table 1.

B. EXPERIMENTAL SETTINGS AND COMPARED METHODS
1) EVALUATION METRICS
In this paper, we introduce two subtasks of cross-modal
retrieval: image query text (I2T) and text query image (T2I).
To further verify the effectiveness of our algorithm on the four
datasets, we also performed the experiments with the three
most common evaluation metrics: mean average precision
(MAP), precision-recall curve (PR curve), and precision of
each class. Detailed description of the proposed method is as
follows:

We calculate the average precision value first:

AP =
1
R

N∑
k=1

p(k)δ(k) (16)

where N is the number of returned samples, R represents
the relevant data samples. p(k) is the precision of the top k
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TABLE 1. Key statistics of datasets.

retrieved samples. δ(k) = 1 indicates that the k-th instance
is consistent with the query term, otherwise δ(k) = 0. Then,
the MAP can be defined as:

MAP =
1
N

N∑
i=1

AP(qi) (17)

where qi denotes the i-th query instance.

2) PARAMETER TUNING
In our proposed objective function, there are three param-
eters, namely α, λ and β. Among them, α and λ control
the weights of the linear regression and correlation analysis.
Taking the image query text task on the Wikipedia dataset
as an example, we use the grid search method to obtain the
optimal parameters. As can be seen from Figure 3, when
α= 0.05, λ= 0.05, and β = 0.1, theMAP value is maximum.
Using the same method, we can also obtain the optimal
parameters on the other three datasets.

FIGURE 3. Experimental results of our method with different values of
model parameters on Wikipedia dataset.

3) COMPARED METHODS
In the experiment, we compared our SCCMR method
with the following twelve advanced cross-modal retrieval
methods:

1. Tree-view CCA (CCA-3V/T-V CCA) [34] utilizes
image view, text view, and semantic view. The semantic view
can capture high-level semantic information effectively and
help to obtain better image and text representation in the
potential subspace.

2.GeneralizedMultiviewLinearDiscriminantAnalysis
(GMLDA) and Generalized Multiview Marginal Fisher
Analysis (GMMFA) [35] are extensions of Linear Discrim-
inant Analysis (LDA) [36] and Marginal Fisher Analysis
(MFA) [37], respectively. They all use generalizedmulti-view
analysis (GMA), GMLDA = GMA + LDA and GMMFA =
GMA +MFA.
3. JFSSL chooses features with strong correlation and

discrimination through l21-norm, and learns a common sub-
space for images and texts. The nearest neighbor relationship
between image and text in the subspace is maintained by
regression.

4. MDCR is a modality-dependent cross-modal retrieval
method, which assigns different projection matrices to dif-
ferent cross-modal retrieval tasks, and greatly improves the
efficiency of cross-modal retrieval.

5. Collaborative representation cross-media (CR-
CMR) [38] is an advanced cross-modal retrieval method
for dictionary learning. It learns different dictionaries for
images and texts, and obtains corresponding collaborative
representations. At the same time, this method maintains
semantic consistency.

6. Joint latent subspace learning and regression
(JLSLR) [29] uses spectral regression when learning poten-
tial subspaces. Through orthogonal constraints, JLSLR learns
more accurate orthogonal space than the original semantic
space. In this space, maintaining the relevance of the image
and text is also considered.

7. GSS-SL [14] and JRL [39] are two state-of-the-art
semi-supervisedmethods in the field of cross-modal retrieval.

8. Multimodal DBN [40] takes advantage of Deep
Boltzmann Machine to learn a generative model which con-
tains diverse input modalities, and it can obtain the joint
representations of different modalities.

9. Bimodal-AE [41] and Corr-AE [42] utilize Autoen-
coder to construct model. Compared with Bimodal-AE,
Corr-AE gets a better performance by adding association con-
straints to the representation layer of the two single-modality
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FIGURE 4. Precision-recall curves on three datasets.

autoencoders, which pay more attention to the common parts
of the two modalities when reconstruct the input data.

C. ANALYSIS OF EXPERIMENTAL RESULTS
In this section, we will describe the performance analysis of
our method on four common datasets with the three eval-
uation methods mentioned above. Table 2 gives the MAP
values of nine advanced cross-modal retrieval methods and
ourmethod on three datasets. Table 3 gives theMAP values of
three DNN-based methods and a advanced semi-supervised
method on NUS-WIDE-10k dataset. Figure 4 shows the PR

value of two cross-modal retrieval subtasks of SCCMR on the
Wikipedia, Pascal Sentence and INRIA-Websearch datasets.
Figure 5 shows the MAP values for each class of SCCMR on
the first two datasets. Detailed analyses are given below:

1) PERFORMANCE ON WIKIPEDIA DATASET
As can be seen from Table 2, our method achieves higher
MAP scores on the Wikipedia datasets than the first eight
methods. For the image query text task, our method is 0.7%
higher than GSS-SL. For text query image task, our method
is also 0.8% higher than CR-CMR method. However, there
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FIGURE 5. MAP scores for each class on two datasets.

still exist a exception. Our SCCMR achieves a slightly lower
accuracy than JRL. The reason is that JRL can benefit from
both modality correlation and semantic information. In addi-
tion, it has powerful ability to resist noise. The reasons why
our method is superior to the other methods are given below.

1. The CCA-3V, GMMFA, GMLDA, MDCR, and JLSLR
only use labeled data, ignoring the rich information contained
in the unlabeled data. The JFSSL uses unlabeled data only
to construct graphs and does not fully mine their seman-
tic information. Our method not only utilizes the structural

information of unlabeled data to construct Laplacian graphs,
but also fully extracts the rich semantic information in the
unlabeled data, which is helpful to learn a superior potential
subspace, significantly improving the cross-modal retrieval.

2. Although GSS-SL utilizes the unlabeled data to increase
the diversity of training set, it cannot dynamically update pre-
diction labels. However, our method not only ensures that the
image-text pairs are approximate in the potential subspace,
but also ensures the approximation of images and texts with
the same semantics in the potential subspace. In particular,
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TABLE 2. The MAP scores on Wikipedia dataset, Pascal Sentence dataset and INRIA-Websearch dataset. The best result in each column is marked with
bold.

TABLE 3. The MAP scores on NUS-WIDE-10k dataset. The best result in
each column is marked with bold.

it can utilize the original semantic labels to correct the pre-
diction labels, which effectively improves the completeness
of the model.

Figure 4(a) and (b) and Figure 5(a), (c), and (e) show the
PR value of our method and the MAP values of each class.
We can see that our method is still superior, which further
verifies the effectiveness of our method.

2) PERFORMANCE ON PASCAL SENTENCE DATASET AND
INRIA-WEBSEARCH DATASET
As can be seen from Table 2, the average MAP scores of our
method on Pascal Sentence datsaset and INRIA-Websearch
dataset are 1.7% and 1.1% higher than those of the sub-
optimal CR-CMR, respectively. Further, we can see that the
MAP values of all methods on INRIA-Websearch dataset are
higher than those on the Pascal Sentence dataset, which shows
that the larger is the feature dimension, i.e., the larger the
samples size, the better the performance will be. As can be
seen from Figure 4, the PR value of our method on above
two datasets are also significantly higher than those of other
methods. In Figure. 5(b), (d), and (f) we can see that our
method achieves the highestMAP score in most semantic cat-
egories. The above analyses further verify the effectiveness of
our method.

3) PERFORMANCE ON NUS-WIDE-10K DATASET
In order to further verify the progressiveness and effective-
ness of our SCCMR onNUS-WIDE-10k dataset, we compare
our SCCMR with four methods with high accuracy, includ-
ing three deep neural network methods Multimodal DBN,
Bimodal-AE and Corr-AE. As shown in Table 3, benefiting
from the graph embedding and l21-norm constraints, SCCMR

FIGURE 6. Convergence curves of the objective function values.

keeps obvious advantages with 4 compared methods on this
dataset.

D. TIME-CONSUMING AND CONVERGENCE
As shown in Table 4, we can obtain that running time
increases with the number of samples in the dataset.
All experiments are implemented on Intel(R) Core(TM)
i7-6700 CPU 3.40 GHz×2 machine with 24GBRAM. To test
the convergence of our proposed iterative algorithm, we take
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TABLE 4. The time-consuming of SCCMR on four datasets.

the Wikipedia dataset as an example, and draw the line dia-
grams of image query text and text query image. As shown
in Figure 6, we can see that our algorithm converges about
the fourth iteration.

E. RETRIEVAL CASE ANALYSIS
Figure 7 shows examples of image query text and text retriev-
ing image on Wikipedia dataset. Because it is difficult to
see the semantics of text description, for better observation,
we use the images corresponding to the texts to replace the
text results in image query text. We can see that the first
five values we retrieved are correct in both image query
text and text query image subtask, which further verifies the
effectiveness of our method.

FIGURE 7. Two examples of image query text and text query image on
Wikipedia dataset. For the example of image query text, we use the
corresponding images of retrieved texts to demonstrate the results.

F. CONCLUSION
In this paper, the SCCMR method and an effective optimiza-
tion algorithm used to optimize our objective function are
proposed. The SCCMR makes full use of labeled and unla-
beled data of different modalities, simultaneously optimizes
the prediction labels and projection matrices of different
modalities, and corrects the prediction labels with the original
semantic labels to ensure that the obtained prediction label
matrix is globally optimal. At the same time, the proposed
methodwould choose the features with strong discrimination.
The experimental results show that the method performs well
on four commonly used cross-modal retrieval datasets.
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