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ABSTRACT Time-varying system identification is an appealing but challenging research area. Existing
identification algorithms are usually subject to either low estimation accuracy or bad numerical stability.
These deficiencies motivate the development of an iterative learning identification algorithm in this paper.
Three distinguished features of the proposed method result in the achievement of high estimation accuracy
and high numerical stability: i) recursion along the iteration axis, ii) bias compensation, and iii) singular
value decomposition (SVD). Firstly, an extra iteration axis associated with the original time axis is introduced
in the parameter estimation process. A norm-optimal identification approach with the balance between
convergence speed and noise robustness is then proposed along the iteration axis, followed by further analysis
on the accuracy and the numerical stability. Secondly, in order to eliminate the estimation bias in the presence
of noise and thus to improve the accuracy, a bias compensation algorithm along the iteration axis is proposed.
Thirdly, a SVD-based update algorithm for the covariancematrix is developed to avoid the possible numerical
instability during iterations. Numerical examples are finally provided to validate the algorithm and confirm
its effectiveness.

INDEX TERMS Iterative learning algorithm, time-varying system, parameter estimation, output-error
system, bias compensation, singular value decomposition.

I. INTRODUCTION
System identification has long been an appealing area in both
theory research and practical applications [1]–[3]. Identifi-
cation methods for systems that can be effectively charac-
terized by time-invariant models have received considerable
results [4]. However, there are numerous of practical indus-
trial processes which are inherently time-varying, such as
manufacturing processes, aerospace industry and biomedical
systems [5]–[7]. In [8], a pick-and-place robot working in an
assembly line is investigated. A significant dynamic variation
occurs when amass is picked up or released. Identification for
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such linear time-varying systems turns out to be a challenging
problem and thus attracts wide interests in the community of
engineers [9], [10].

In this paper, parameter estimation for the following linear
time-varying (LTV) system is investigated.

y(k) =
B(k, z)
A(k, z)

u(k)+ v(k), k = 0, 1, 2, . . . ,N (1)

where k is the time index,N is the pre-specified time interval,
and z−1 denotes the backward shift operator with respect to
time. Namely, z−1u(k) = u(k − 1). u(k) and y(k) are the
sampled system input and output respectively, and v(k) is the
observation noise acting on the system. A(k, z) and B(k, z) are
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FIGURE 1. Deficiencies of existing identification algorithms for time-varying systems.

time-varying polynomials of z−1 with the following forms

A(k, z) = 1+ a1(k)z−1 + a2(k)z−2 + . . .+ an(k)z−n, (2)

B(k, z) = b1(k)z−1 + b2(k)z−2 + . . .+ bm(k)z−m, (3)

where a1(k), a2(k), . . . , an(k) and b1(k), b2(k), . . . , bm(k) are
the time-varying parameters. n and m denote the orders of
A(k, z) and B(k, z), respectively.

A. MOTIVATIONS
Generally speaking, the following excellent features are pur-
sued in time-varying system identification.
F1) High estimation accuracy. Identification algorithms are

expected to achieve estimation of time-varying parame-
ters without time delay. The estimation lag which dete-
riorates the estimation accuracy at the time when the
parameters vary should be avoided. In addition, in con-
sideration of the inevitable observation noise in practice,
identification algorithms are desired to eliminate the
noise-induced estimation bias.

F2) High numerical stability. From a practical industrial
point of view, the desired identification algorithms
should have good numerical stability, ensuring no abrupt
performance deterioration during convergence.

Although important theoretical efforts have been devoted
to the time-varying system identification [10]–[12], the fol-
lowing deficiencies of the existing algorithms motivate the
further investigation.

1) LIMITED TRACKING SPEED OF EXISTING RECURSIVE
ALGORITHMS
Recursive least squares (RLS) algorithm is one of the most
popular system identification methods owing to its good
convergence property and small mean square error [13].
However, it fails to track time-varying parameters due to
the asymptotically vanishing gain [14]. Some efforts have
been contributed towards modifying the RLS algorithm for
time-varying system identification [15]. In [16], a RLS
method is proposed for the permanent magnet synchronous
motor by coupling identification with bias compensation.
In [17], an identification method based on the expansion
of time-varying parameters onto a set of basis functions is
proposed. This method is flexible for different applications
by selecting different type of basis functions. However, how

to characterize time-varying parameters by a fixed basis func-
tion set is not a trivial question, and hence the effectiveness
of this method remains to be seen.

Introducing forgetting factors (FFs) to RLS is one of the
most commonly used approaches for time-varying system
identification [18]. In [19], a bias-compensation-based RLS
algorithm with a FF (FFBCRLS) is proposed to improve the
estimation accuracy. In [12], a robust forgetting factor based
RLS algorithm is proposed for time-varying disturbances.
However, in these RLS algorithms with constant FFs, a large
FF close to one reduces the convergence speed while a small
FF close to zero leads to large misadjustment [20]. In [20],
[21], RLS algorithms with variable FFs have been developed
to attain the minimal misadjustment as well as to estimate
the optimal FF. Estimation lag, however, is inevitable in
these FF-based recursive algorithms since they use previous
information to estimate current parameters.

An illuminating example which indicates the slow tracking
speed of existing recursive algorithms is shown in Fig. 1(a).

2) LOW ESTIMATION ACCURACY OF EXISTING ITERATIVE
ALGORITHMS
Motivated by iterative learning control (ILC) [22], itera-
tive learning identification (ILI) has attracted considerable
research attentions in recent studies [23]. ILI is first intro-
duced in [24] where an ILC-based method is proposed for
the identification of linear time-invariant (LTI) systems. This
method is extended in [25] to achieve robustness against noise
through a Kalman filter, and in [26] to estimate parameters in
the presence of input disturbance. The first implementation
of ILI on a physical system is discussed in [27]. These early
investigationsmainly focus on identification of time-invariant
systems.

In [28], an iterative learning approach based on least
squares (ILLS) is proposed to identify repetitive systems
with time-varying parametric uncertainties. In [29], a similar
algorithm to ILLS, called iterative learning recursive least
squares (ILRLS) identification algorithm, is proposed for
linear LTV systems, and is extended to nonlinear systems.
Compared with RLS, ILLS and ILRLS achieve no-lag esti-
mation of time-varying parameters. These methods, however,
result in biased estimation for output-error (OE) systems in
spite of their unbiased estimation for autoregressive systems
with exogenous input (ARX). This is because OE system is
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FIGURE 2. Description of repetitive time-varying parameters.

equivalent to equation-error-type system with colored noise
while ARX system is white-noise.

The low estimation accuracy of existing iterative algo-
rithms is illuminated in Fig. 1(b).

3) NUMERICAL INSTABILITY OF EXISTING
COVARIANCE-MATRIX-BASED ALGORITHMS
There exists inherently numerical instability in RLS-like
algorithms [8], [17], [19]–[21], [25], [28]. The covariance
matrix of input signals may become poorly conditioned or
even singular if input signals are not persistently exciting
[30]. In addition, the round-off error yielded by the sub-
traction during the update of the covariance matrix may
make it non-positive. In such situations, the estimation error
will increase considerably or even become nonconvergent,
as depicted in Fig. 1(c).

B. CONTRIBUTIONS
In this paper, parameter estimation for the LTV system
in (1) with repetitive behaviors is studied. The repetitive
time-varying parameter is illustrated in Fig. 2 where the
parameter vector θ (k) is defined as

θ (k) , [a1(k) a2(k) . . . an(k) b1(k) b2(k) . . . bm(k)]T . (4)

There are two key features about the considered repetitive
LTV system.
1) The time-varying system can operate multiple times over

a finite interval k ∈ [0 N ].
2) Although the parameters are time-varying for each oper-

ation, the parameters at the same time are invariant for
different operations. More precisely, let θ j(k) denotes the
time-varying parameters at the time k in the jth operation.
It follows that θ1(k) = θ2(k) = . . . = θ j(k), k ∈
[0 N ], although θ i(0), θ i(1), . . . , θ i(N ), i = 1, 2, . . . , j,
are variant.
A large number of plants in industrial processes have repet-

itive behaviors such as the robot arm described in [8] where
the robot picks up a steelmass at a fixed time and then releases
it at other time. The model of the robot has a large variation
when the mass is picked up or released.

In view of the limitations of existing identification
algorithms, a norm-optimal iterative learning identification
algorithm for the repetitive LTV system described in (1) is

proposed with the achievement of F1 and F2 simultaneously.
The main contributions of this work lie in the following.
C1) Besides the time axis, an extra iteration axis is intro-

duced into the considered LTV system in (1), followed
by the development of a norm-optimal identification
algorithm that performs recursion along the iteration
axis. The inevitable estimation lag in conventional recur-
sive algorithms is eliminated.

C2) A novel bias compensation method in the iteration
domain is proposed to mitigate the effect of observation
noise on the estimation accuracy.

C3) A singular value decomposition (SVD) based update
algorithm for the covariance matrix is developed to
solve the numerical instability in conventional RLS-like
algorithms.

The rest of this paper is organized as follows. Section II
describes the basic regressive equations. Section III derives
the norm-optimal ILI algorithm and analyzes its accuracy
and numerical stability. In Section IV, a bias compensation
scheme is proposed to improve the estimation accuracy, fol-
lowed by Section V where a SVD based update algorithm
for the covariance matrix is derived to improve the numerical
stability. Section VI provides examples to show effectiveness
of the proposed method.

II. PRELIMINARIES
The system described in (1) can be rewritten in a regressive
form as

y(k) = ϕ(k)θ (k)+ ψ(k)θ (k)+ v(k) (5)

where the information vector ϕ(k) ∈ R1×nf , nf = n+m, and
the noise vector ψ(k) ∈ R1×nf are defined respectively as

ϕ(k), [−y(k − 1) . . . − y(k − n) u(k − 1) . . . u(k − m)],

(6)

ψ(k), [v(k − 1) v(k − 2) . . . v(k − n) 0 . . . 0]. (7)

Note that ψ(k) represents the set of previous noise infor-
mation while v(k) denotes the current noise information.
The following assumptions are made about the system

described in (1).
1) For each operation, v(k) is white noise with zero mean.

u(k) and v(k) are statistically independent.
2) All the time-varying parameters are bounded, and the

orders n and m are fixed and known.
Considering the repetitive nature of the system, an iteration

axis as shown in Fig. 3 is introduced into the LTV system
in (1). The parameters vary along the time axis for each
iteration/operation, but are invariant along the iteration axis
for each time. In other words, the time-varying behavior of
the plant is iteration-invariant.

The system output in the jth iteration can be written as

yj(k) = ϕj(k)θ (k)+ ψ j(k)θ (k)+ vj(k) (8)

For all iterations, the stacked output vector Y j(k),
the stacked noise vector V j(k), the stacked information
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FIGURE 3. Introduction of the iteration axis.

matrix 8j(k) and the stacked noise matrix 9j(k) are defined
respectively as

Y j(k) , [y1(k) y2(k) . . . yj(k)]T ∈ Rj×1,

V j(k) , [v1(k) v2(k) . . . vj(k)]T ∈ Rj×1,

8j(k) , [ϕ1(k) ϕ2(k) . . . ϕj(k))]
T
∈ Rj×nf ,

9j(k) , [ψ1(k) ψ2(k) . . . ψ j(k))]
T
∈ Rj×nf .

(9)

Then the following equation can be obtained

Y j(k) = 8j(k)θ (k)+9j(k)θ (k)+ V j(k). (10)

III. NORM-OPTIMAL ITERATIVE LEARNING
IDENTIFICATION
Conventional recursive identification algorithms are per-
formed along the time axis in the form of θ̂(k) = θ̂ (k −
1) + L(k)e(k). In this paper, an identification algorithm that
performs recursion along the iteration axis is proposed in the
form of

θ̂ j(k) = θ̂ j−1(k)+ Lj(k)Ej(k) (11)

where θ̂ j(k) is the estimate vector at the time index k in the jth
iteration, Lj(k) is the learning gain and Ej(k) is the estimation
error defined as

Ej(k) , Y j(k)−8j(k )̂θ j(k). (12)

As discussed in Section I, estimation lag is inevitable in
conventional recursive identification, even if through forget-
ting factors. However, due to the iteration-invariant character-
istics of the time-varying parameters, the estimation lag can
be eliminated in iterative identification algorithms.

A. ITERATIVE LEARNING IDENTIFICATION ALGORITHM
Here a norm-optimal approach is proposed to design the
learning law in (11). The quadratic cost function is chosen for
the balance between convergence speed and noise robustness,
which is given as follows

Jj(k, θ̂ j(k)) = ETj (k)W1Ej(k)

+ [̂θ j(k)−θ̂ j−1(k)]
T
W2 [̂θ j(k)−θ̂ j−1(k)] (13)

where W1 ∈ Rj×j and W2 ∈ Rnf×nf are positive definite
weighting matrices on the estimation error and the estimate
increment, respectively. In this paper, the weights on the
estimation error from the first iteration to the jth iteration

are set to be same. So are the weights on the estimate incre-

ment. More precisely, we define W1 ,


w1 0 · · · 0
0 w1 · · · 0
...

...
. . .

...

0 0 · · · w1



and W2 ,


w2 0 · · · 0
0 w2 · · · 0
...

...
. . .

...

0 0 · · · w2

 where w1 and w2 are scalar

weighting coefficients.
The cost function in (13) is very similar to the

norm-optimal ILC [31] except the term for input energy.
The inclusion of the penalty on the estimate changing rate
improves the robustness against noise although the conver-
gence speed may be decreased.

For the optimization problem in (13), minimizing
Jj(k, θ̂ j(k)) by taking the partial derivative with respect to
θ̂ j(k) and setting it to zero lead to

θ̂ j(k) = θ̂ j−1(k)+W
−1
2 8T

j (k)W1Ej(k). (14)

From the comparison with (11), it can be observed that the
learning gain is Lj(k) = W−12 8T

j (k)W1. However, the param-
eter update law in (14) is not implementable sinceEj(k) is not
available before θ̂ j(k) is obtained according to (12).
When the iteration index j is large enough, at least nf ,W2+

8T
j (k)W18j(k) will be full-rank. Substituting (12) into (14)

yields

θ̂ j(k) =
[
W2 +8

T
j (k)W18j(k)

]−1
W2θ̂ j−1(k)

+

[
W2 +8

T
j (k)W18j(k)

]−1
8T
j (k)W1Y j(k) (15)

which provides an implementable parameters update law.
Remark 1: The iterative learning law in (15) seems to be

similar to the one in [8], but they are fundamentally different
in the information data used for iteration. Information matrix
8j(k) in [8] consists of sampled input/output (I/O) data in a
time window at the current iteration, i.e. 8j(k) , [ϕj(k −
p) . . . ϕj(k) . . . ϕj(k + q)] where [k − p, k + q] is the
time window around the time k . However, we do not use the
concept of time window in this paper.8j(k) here is composed
of I/O data from the first to the jth iterations at the current
time, i.e. 8j(k) , [ϕ1(k) ϕ2(k) . . . ϕj(k)]. In a word,
information data in this paper is collected along the iteration
axis instead of the time axis.

The iterative update law in (15) uses not only the current
I/O data but also the I/O data from all the previous iterations.
If it is performed directly, there would be a heavy calculation
due to the large size of 8j(k) as well as the requirement of
large storage space for all-iterations data. Now, the update law
in (15) will be simplified further such that only the sampled
I/O data at the current iteration is required.

Define

Pj(k) ,
[
W2 +8

T
j (k)W18j(k)

]−1
∈ Rnf×nf . (16)
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Obviously,

P−1j (k) = P−1j−1(k)+ w1ϕ
T
j (k)ϕj(k). (17)

Based on the matrix-inversion algorithm, it follows that

Pj(k) = Pj−1(k)−
w1Pj−1(k)ϕTj (k)ϕj(k)Pj−1(k)

1+ w1ϕj(k)Pj−1(k)ϕ
T
j (k)

. (18)

Denote1θ̂ j(k) , θ̂ j(k)− θ̂ j−1(k) as the vector of estimate
increment. Substituting (16) into (15) leads to the iterative
update law for 1θ̂ j(k) as follows

1θ̂ j(k) = w2Pj(k)1θ̂ j−1(k)+ Lj(k)[yj(k)− ϕj(k )̂θ j−1(k)]

(19)

where

Lj(k) = w1Pj(k)ϕTj (k) =
w1Pj−1(k)ϕTj (k)

1+ w1ϕj(k)Pj−1(k)ϕ
T
j (k)

. (20)

From (19), it can be observed that, besides the last-iteration
estimates and their increments, only sampled I/O data in the
current iteration, i.e. ϕj(k), is used to update the estimates.
No I/O data from previous iterations are required. The pro-
posed iterative identification algorithm can be summarized
as follows

θ̂ j(k) = θ̂ j−1(k)+1θ̂ j(k)
1θ̂ j(k) = w2Pj(k)1θ̂ j−1(k)

+Lj(k)[yj(k)− ϕj(k )̂θ j−1(k)],
Lj(k) = w1Pj(k)ϕTj (k),

Pj(k) = Pj−1(k)−
w1Pj−1(k)ϕTj (k)ϕj(k)Pj−1(k)

1+ w1ϕj(k)Pj−1(k)ϕ
T
j (k)

.

(21)

Remark 2: It is interesting to note that, except its execu-
tion along the iteration axis, the proposed algorithm in (21)
looks similar to the RLS algorithm. The involvement of the
penalty on the estimate changing rate in the cost function,
however, makes the proposed algorithm mainly focus on
the update law of the estimate increment, i.e. 1θ̂ j(k), rather
than the estimate itself, i.e. θ̂ j(k). This is different from the
RLS algorithm. The penalty term achieves a tradeoff between
the convergence speed and the robustness. What is more,
regardless of the iterative execution way, the RLS algorithm
can be actually regarded as a special case of the proposed
algorithm in (21) by setting w2 to be zero.

B. PERFORMANCE ANALYSIS
In this section, estimation accuracy and numerical stability
are analyzed for the proposed iterative identification algo-
rithm in (21).

1) ESTIMATION ACCURACY
From the assumptions in Section II, it follows that vi(k) is
independent-of-inputs white noise with zero mean and the

iterations are mutually independent. According to the law of
large numbers, we have in probability as j gets large

1
j

∑j

i=1
v2i (k)→ σ 2

1
j

∑j

i=1
ui(k)vi(q)→ 0

(22)

where q = 0, 1, . . . ,N . (For simplicity, we will omit in
probability late if there is no confusion.) Therefore, it can be
obviously obtained that

lim
j→∞

1
j

j∑
i=1

yi(k)vi(k) =

{
σ 2, k = k.
0, k 6= k.

(23)

Based on the above knowledge, the converged estimates
are presented in the following theorem.
Theorem 1: Consider the repetitive LTV system in (1) sat-

isfying the assumptions in Section II. Provided that the inputs
are persistent-excitation along the iteration axis, and that
they are stationary and ergodic, then

lim
j→∞

θ̂ j(k) = θ (k)− w1σ
2[ lim
j→∞

jPj(k)]�θ(k) (24)

is satisfied where � ,
[
In O
O Om

]
.

Proof: Substituting (16) into (15), it follows that

θ̂ j(k) = w2Pj(k )̂θ j−1(k)

+ w1Pj(k)8T
j (k)

[
8j(k)θ (k)+9j(k)θ (k)+ V j(k)

]
.

(25)

Therefore,

w−11 [P−1j (k )̂θ j(k)− w2θ̂ j−1(k)]

= 8T
j (k)9j(k)θ (k)+8T

j (k)V j(k)+8T
j (k)8j(k)θ (k).

(26)

For the terms on the right hand of (26), we have8
T
j (k)9j(k)θ (k) =

∑j

i=1
ϕTi (k)ψ i(k)θ (k),

8T
j (k)V j(k) =

∑j

i=1
ϕTi (k)vi(k).

(27)

Dividing both sides of (27) by j and taking limit, it follows
that 

limj→∞
1
j
8T
j (k)9j(k)θ (k) = −σ 2�θ (k),

limj→∞
1
j
8T
j (k)V j(k) = 0.

(28)

If the inputs are persistent-excitation in the iteration
domain, the persistent excitation (PE) condition 1

j8
T
j

8j(k) =
1
j

∑j
i=1 ϕ

T
i (k)ϕi(k) > 0 holds. Pro-

vided that the inputs are stationary and ergodic, then
limj→∞

1
j8

T
j 8j(k) exists and is independent of the iteration

index j, i.e. limj→∞
1
j8

T
j 8j(k) is a constant matrix for the

fixed k . Therefore, limj→∞
1
j P
−1
j (k) = limj→∞

1
jW2 +

limj→∞
1
j8

T
j W18j(k) = w1 limj→∞

1
j8

T
j 8j(k) is also a

constant matrix for the fixed k .
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Dividing both sides of (26) by j and taking limit, we have

lim
j→∞

1
j
w−11 P−1j (k )̂θ j(k)

= −σ 2�θ (k)+
[
lim
j→∞

1
j
w−11 P−1j (k)

]
θ (k). (29)

Then the limit of θ̂ j(k) can be obtained as follows

lim
j→∞

θ̂ j(k) = θ (k)− w1σ
2
[
lim
j→∞

jPj(k)
]
�θ (k). (30)

This completes the proof. �
Theorem 1 indicates that bias between θ̂ j(k) and θ (k)

exists, and it results primarily from the observation noise.

2) NUMERICAL STABILITY
The definition of Pj(k) as shown in (16) indicates that Pj(k)
is a symmetric positive definite matrix. However, the iterative
update law for Pj(k) in (18) may make it non-positive definite
if the input signals are not persistently exciting [30]. On the
other hand, the round-off error yielded by the subtraction
in (18) may also make P j(k) non-positive definite. In such
situations, the estimates will become unstable as illustrated
in Fig. 1(c).

IV. ACCURACY ENHANCEMENT BY BIAS
COMPENSATION
In this section, a bais compensation algorithm is proposed to
eliminate the noise-induced estimation bias.

A. BIAS COMPENSATION SCHEME
Equation (34) can be rewritten as

θ (k) = lim
j→∞

[̂
θ j(k)+ jw1σ

2Pj(k)�θ (k)
]
, (31)

from which it is indicated that θ̃ j(k) , θ̂ j(k) +
jw1σ

2 Pj(k)�θ (k) provides an unbiased estimation for the
true parameter vector θ(k). Therefore, the compensation term
jw1σ

2 Pj(k)�θ (k) can be introduced into θ̂ j(k) to improve the
estimation accuracy. Since the noise variance σ 2 and the true
parameter vector θ (k) are both unknown, here the compen-
sation term is designed as jw1σ̂

2 Pj(k)�θ̃ j−1(k) where σ̂ is
the estimate of σ . The bias compensation algorithm can be
consequently given in the following form

θ̃ j(k) = θ̂ j(k)+ jw1σ̂
2Pj(k)�θ̃ j−1(k). (32)

Since θ̂ j(k) and Pj(k) can be determined by (21) and �
is a constant known matrix, the key to obtain the unbiased
estimate θ̃ j(k) lies in the estimation of the noise variance.
Remark 3: Equation (34) can also be rewritten as

limj→∞ θ̂ j(k) =
{
I − w1σ

2
[
limj→∞ jPj(k)

]
�
}
θ (k). If the

inverse of
[
I−jw1σ̂

2 Pj(k)�
]
exists, another bias compensa-

tion algorithm can be given as follows

θ̃ j(k) =
[
I − jw1σ̂

2Pj(k)�
]−1

θ̂ j(k). (33)

B. NOISE VARIANCE ESTIMATION
To estimate the noise variance, we present the following
theorem.
Theorem 2: Consider the quadratic cost function Jj(k)

shown in (13). The limit of 1
j Jj(k) satisfies

lim
j→∞

1
j
Jj(k) = w1σ

2[1+ θT (k)� lim
j→∞

θ̂ j(k)]. (34)

The estimate of the noise variance can be consequently given
by

σ̂ 2
=

Jj(k)

jw1[1+ θ̃Tj−1(k)�θ̂ j(k)]
. (35)

Proof: From (14), it follows that

ETj (k)W18j(k) = [1θ̂ j(k)]TW2. (36)

Then the cost function Jj(k) described in (13) can be rewrit-
ten as

Jj(k) = w1YTj (k)9j(k)θ (k)+ w1YTj V j(k)

−w1θ̂
T
j (k)8

T
j (k)9j(k)θ (k)− w1θ̂

T
j (k)8

T
j (k)V j(k)

+w2[1θ̂ j(k)]T [θ (k)− θ̂ j−1(k)]. (37)

For the first and second terms on the right hand of (37),
we have Y

T
j (k)9j(k) =

∑j

i=1
yi(k)9i(k),

YTj (k)V j(k) =
∑j

i=1
yi(k)vi(k).

(38)

Dividing both sides of (38) by j and taking limit lead to
limj→∞

1
j
YTj (k)9j(k) = 0,

limj→∞
1
j
YTj (k)V j(k) = σ 2.

(39)

According to (28) and (39), dividing both sides of (37) by
j and taking limit, it follows that

lim
j→∞

1
j
Jj(k) = w1σ

2[1+ θT (k)� lim
j→∞

θ̂ j(k)]. (40)

Then the noise variance σ 2 can be given as

σ 2
=

limj→∞
1
j Jj(k)

w1[1+ θT (k)�limj→∞θ̂ j(k)]
. (41)

Thus the estimate of σ 2 can be obtained as (35) shows. This
completes the proof. �

Theorem 2 indicates that the estimation of the noise vari-
ance is mainly dependent on the cost function Jj(k). However,
from the definition of Jj(k)) in (13), Jj(k) uses not only the
current-iteration I/O data but also the I/O data from all the
previous iterations, which leads it to be an intractable issue
to calculate Jj(k) directly from its definition. To tackle this
issue, an iterative update law for Jj(k) is necessitated.

25684 VOLUME 8, 2020



F. Song et al.: Enhancing Accuracy and Numerical Stability for Repetitive Time-Varying System Identification

C. COST FUNCTION ITERATIVE UPDATE
From (12), the iterative relationship between Ej(k) and
Ej−1(k) can be expressed as follows

Ej(k) =
[
Ej−1(k)−8j−1(k)1θ̂ j(k)

ej(k)

]
(42)

where ej(k) = yj(k)− ϕj(k )̂θ j(k).
Then the first term ETj (k)W1Ej(k) in the right hand of (13)

can be rewritten as

ETj (k)W1Ej(k)

= w1ETj−1(k)Ej−1(k)− 2w21θ̂
T
j (k)1θ̂ j−1

+1θ̂
T
j (k)

[
P−1j−1(k)−W2

]
1θ̂ j(k)+ w1e2j (k). (43)

Substituting (43) into (13), we have

Jj(k) = w1ETj−1(k)Ej−1(k)+ w1e2j (k)

− 2w21θ̂
T
j (k)1θ̂ j−1(k)+1θ̂

T
j (k)P

−1
j−1(k)1θ̂ j(k).

(44)

The term−2w21θ̂
T
j (k)1θ̂ j−1(k)+1θ̂

T
j (k)P

−1
j−1(k)1θ̂ j(k)

in (44) can be simplified as

−2w21θ̂
T
j (k)1θ̂ j−1(k)+1θ̂

T
j (k)P

−1
j−1(k)1θ̂ j(k)

= 1θ̂
T
j (k)

{
w1ϕ

T
j (k)[yj(k)− ϕj(k )̂θ j(k)]

−w21θ̂ j−1(k)
}
. (45)

Substituting (45) into (44), it follows that

Jj(k) = Jj−1(k)− w21θ̂
T
j−1(k)[1θ̂ j(k)+1θ̂ j−1(k)]

+w1[yj(k)− ϕj(k )̂θ j(k)][yj(k)− ϕj(k )̂θ j−1(k)].

(46)

From (32), (35) and (46), the bias compensation algorithm
for accuracy enhancement can be summarized as follows

θ̃ j(k) = θ̂ j(k)+ jw1σ̂
2Pj(k)�θ̃ j−1(k),

σ̂ 2
=

Jj(k)

jw1

[
1+ θ̃Tj−1(k)�θ̂ j(k)

] ,
Jj(k) = Jj−1(k)− w21θ̂

T
j−1(k)[1θ̂ j(k)+1θ̂ j−1(k)]

+w1[yj(k)− ϕj(k )̂θ j(k)][yj(k)− ϕj(k )̂θ j−1(k)].

(47)

Remark 4: It should be pointed out that the principle of
bias compensation has been widely used in time-invariant
parameter estimation [16], [19], [32], [33], but is rarely stud-
ied in time-varying systems. In [19], a forgetting factor is
involved into the bias-compensation-based RLS algorithm
proposed in [32] to estimate time-varying parameters. How-
ever, a big estimation lag appears when parameters vary,
although high estimation accuracy is achieved when parame-
ters are invariant.
Remark 5: The existing bias compensation algorithms

such as the one in [32] can be regarded as special cases
of the proposed algorithm in (46) by setting the weighting
coefficient w2 as zero.

V. NUMERICAL STABILITY ENHANCEMENT BY SVD
Since Pj(k) is a symmetric positive definite matrix, there
exists an orthogonal matrix Qj(k) ∈ Rnf×nf by which Pj(k)
can be decomposed as follows based on SVD

Pj(k) = Qj(k)32
j (k)Q

T
j (k) (48)

where 3j(k) = diag(σj_1 σj_2 . . . σj_nf ), and σj_1 ≥ σj_2 ≥
. . . ≥ σj_nf are singular values of Pj(k).
Substituting (48) into (17), it follows that[

Qj(k)32
j (k)Q

T
j (k)

]−1
=

[
QTj−1(k)

]−1 [
3−2j−1(k)

+w1QTj−1(k)ϕ
T
j (k)ϕj(k)Qj−1(k)

]
Q−1j−1(k). (49)

Define0j(k) ,

[√
w1ϕj(k)Qj−1(k)
3−1j−1(k)

]
∈ R(nf+1)×nf . It can

be obtained that

0Tj (k)0j(k) = 3
−2
j−1(k)+ w1QTj−1(k)ϕ

T
j (k)ϕj(k)Qj−1(k).

(50)

Substituting (50) into (49) yields[
Qj(k)32

j (k)Q
T
j (k)

]−1
=

[
QTj−1(k)

]−1
0Tj (k)0j(k)Q

−1
j−1(k).

(51)

The SVD of 0j(k) can be given by

0j(k) = Qj(k)
[
3j(k)
0

] [
Rj(k)

]T
(52)

where Qj(k) ∈ R(nf+1)×(nf+1) and Rj(k) ∈ Rnf×nf are
orthogonal matrices, and3j(k) ∈ Rnf×nf is the singular value
matrix of 0j(k).
Substituting (52) into (51), it follows that[
Qj(k)32

j (k)Q
T
j (k)

]−1
=

{
Qj−1(k)Rj(k)3

−2
j (k)

[
Qj−1(k)Rj(k)

]T}−1
. (53)

Obviously, {
Qj(k) = Qj−1(k)Rj(k),

3j(k) = 3
−1
j (k).

(54)

Now the SVD based update law for Pj(k) can be summa-
rized as follows

Pj(k) = Qj(k)32
j (k)Q

T
j (k),

Qj(k) = Qj−1(k)Rj(k),

3j(k) = 3
−1
j (k),[√

w1ϕj(k)Qj−1(k)
3−1j−1(k)

]
= Qj(k)

[
3j(k)
0

] [
Rj(k)

]T
.

(55)

By now, based on the above results in (21), (47) and (55),
we have established the enhanced norm-optimal iterative
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learning identification (ENOILI) algorithm for the LTV sys-
tem described in (1). The steps involved in the ENOILI
algorithm are listed as follows.
S1) Initialize the ENOILI algorithm. The iteration index j is

set to be zero. Initialize w1 as 1 and determine w2 tak-
ing into consideration the balance between convergence
speed and noise robustness. Set P0(k) as [w2I +4]−1

where 4 is a small positive definite matrix, for example
4 = 10−6In+m. Decompose P0(k) based on SVD and
then get the initial values of Qj(k) and 3j(k), i.e. Q0(k)
and 30(k). The cost function J0(k) and the estimate
vectors θ̂0(k), θ̃0(k) and 1θ̂0(k) are all initialized to be
zeros, k = 0, 1, . . . ,N .

S2) Increase the iteration index j by one. Consider the LTV
system described by (1) and collect the sampled I/O data
uj(k) and yj(k). Then construct the information vector
ϕj(k).

S3) Update Pj(k) based on (55). Calculate the learning gain
Lj(k) by (20) and then update the estimate vector θ̂ j(k)
by (19).

S4) Calculate Jj(k) by (46) and estimate the noise variance
by (35). Then update the estimate vector θ̃ j(k) by (32).

S5) Compare θ̃ j(k) with θ̃ j−1(k), if

N∑
k=1

‖ θ̃ j(k)− θ̃ j−1(k) ‖≤ ε (56)

where ε is a small positive real number determined by
user, then terminate the identification procedure. Other-
wise go to S2 and begin the (j+ 1)th iteration.

VI. SIMULATION RESULTS
To illustrate the proposed algorithm and validate its effec-
tiveness, two numerical simulation examples are provided in
this section. Example 1 is provided to verify the merit of the
proposed ENOILI algorithm versus conventional recursive
algorithms, while example 2 is provided to show the enhanced
performance compared with the existing iterative algorithms.

A. EXAMPLE 1: COMPARISON RESULTS WITH
CONVENTIONAL RECURSIVE IDENTIFICATION
ALGORITHMS
To show the differences between the proposed ENOILI algo-
rithmwith conventional recursion algorithms, here we choose
one of the latest recursive identification algorithm for LTV
systems, namely FFBCRLS algorithm proposed in [19], as a
contrast.

The considered LTV system is a linear motor used in a
wafer stage system as shown in Fig. 4. It is responsible
for the long-stroke motion of the wafer stage which is an
important mechatronic unit in photolithography, one of the
significant processes in integrated circuits manufacturing.
Two same wafter stages are used in photolithography in
order to reduce the overhead time created by wafer exchange.
While the first stage performs overhead activities such as
wafer unload/load, horizontal alignment and measurement of

FIGURE 4. Wafer stage system. When the linear motor releases or
captures the wafer stage, the load mass has an abrupt variation.

the surface topography, the second wafer exposes the previ-
ously measured wafer. When both stages are finished with
their tasks, the stages are swapped and a new cycle begins.
See [34], [35] for themore descriptions about the photolithog-
raphy process.

When the swap begins, the linear motor releases the wafer
stage, followed by the capture of the other equivalent one.
Therefore, a big model variation occurs for the linear motor
when the wafer stage is released or captured. Suppose that
the period for the wafer stage swap is 4s, the mass of the liner
motor is 20kg and the mass of the wafer stage is 30kg. Then
based on a rigid body assumption, the true model of the linear
motor can be given as follows

Y (s) =
1
Ms2

U (s) (57)

where U (s) and Y (s) are the input and output of the linear
motor respectively, andM is the time-varying load given by

M =

{
20, 0 < t ≤ 2,
50, 2 < t ≤ 4.

(58)

The equivalent zero-order-hold discrete-time model with
the sampling time Ts = 2ms can be given by (1), with the
following time-varying polynomials

A(k, z) =

{
1− 1.997z−1 + 0.997z−2, 0 6 k < 1000
1− 1.999z−1 + 0.999z−2, 1000 < k 6 2000

(59)

B(k, z) =

{
9.990z−1 + 9.980z−2, 0 6 k < 1000
3.998z−1 + 3.997z−2, 1000 < k 6 2000

(60)

where k = 0, 1, 2, . . . ,N and N = 2000.
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FIGURE 5. Estimates by FFBCRLS and ENOILI respectively with λ = 0.99.

FIGURE 6. Estimates by FFBCRLS and ENOILI respectively with λ = 0.96.

Identification of the parameters in (59) and (60) is
performed by the proposed ENOILI algorithm and the
FFBCRLS algorithm in [19] respectively. The input signal
uj(k) is taken as i.i.d. persistent-excitation sequence dis-
tributed uniformly in [−1 1]. The output signal yj(k) is con-
taminated by the observation noise vj(k) ∈ N (0, σ 2) with
σ 2
= 0.32.
To describe the estimation accuracy, the parameter estima-

tion error is defined as

δj =
1
N

N∑
k=0

||̃θ j(k)− θ (k)||
||θ (k)||

. (61)

To show the relationship between tracking speed and esti-
mation accuracy, the FFBCRLS algorithm is performed under
different forgetting factors λ = 0.99 and λ = 0.96. The
maximum iteration index for the ENOILI algorithm is set
to be 200. Initialize the ENOILI algorithm according to
Section V-S1) where the weighting coefficientsw1 andw2 are
both set to be 1, and 4 is set to be 10−6I . From the estimates
shown in Fig. 5 and Fig. 6, and the estimation error shown
in Fig. 7, the following observations can be obtained.
O1) Tracking speed and estimation accuracy conflict with

each other in regarding to the choice of the forgetting
factor for the FFBCRLS algorithm. As shown in Fig. 5,
a large forgetting factor close to one mitigates the esti-
mates fluctuation and improves the estimation accu-
racy when the parameters are invariant, but leads to a
conspicuous estimation lag when the parameters vary
drastically. On the other hand, a small forgetting fac-
tor decreases the estimation lag and thus improves the
tracking speed as shown in Fig. 6, whereas the estimates
fluctuate sharply due to noise.

O2) Fast tracking speed and high estimation accuracy
are achieved simultaneously by the proposed ENOILI

algorithm. On one hand, as shown in Fig. 5 and Fig. 6,
the estimates by the ENOILI algorithm track the param-
eters timely when drastic variation happens. Tracking
lag does not exist since the ENOILI algorithm performs
identification in the iteration domain rather than the time
domain as FFBCRLS does. On the other hand, estimates
fluctuation is reduced remarkably by the compensa-
tion of the noise-induced estimation error, and hence
estimation accuracy is improved significantly. (F1 is
achieved.)

O3) It can be observed from Fig. 5 that the time span is up to
k = 2000, which indicates there should be 2000 itera-
tive estimation algorithms running in a parallel manner.
Actually, the fast tracking speed and high estimation
accuracy achieved by the proposed ENOILI algorithm
are at the cost of calculations. Therefore, the proposed
algorithm is more suitable for systems where the plant
operates over a short interval, or where heavy calcula-
tion is allowed.

Remark 6: For a practical industrial system, if the esti-
mation result of the time-varying parameter is not used for
real-time control or compensation, we can store the I/O data
when the plant runs and then estimate the parameters off
line on an industrial computer whose calculating capacity
is usually very powerful. Therefore, although thousands of
estimation algorithms are required in each iteration, the heavy
calculation cannot limit the practical application of the pro-
posed approach due to its off-line feature.

B. EXAMPLE 2: COMPARISON RESULTS WITH EXISTING
ITERATIVE IDENTIFICATION ALGORITHMS
To further show the enhanced numerical stability and esti-
mation accuracy, here we make a comparison between
the proposed ENOILI algorithm and two existing iterative
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FIGURE 7. Estimation error by FFBCRLS and ENOILI respectively.

FIGURE 8. Estimates by ILLS and ENOILI respectively.

algorithms which are the ILLS algorithm proposed in [28]
and the ILRLS algorithm proposed in [29]. ILLS and ILRLS
are very similar to ENOILI except the bias compensation
term and the SVD-based update law for Pj(k). The LTV
system in (1) with the following time-varying parameters is
considered

a1(k) = −1.5+ 0.8 cos(0.1πk)
a2(k) = 0.6+ 0.01k cos(0.1πk)

b1(k) = 1+
cos(2πk/61)

k + 1
b2(k) = 0.4+ 0.2 sin(0.1πk)

(62)

where k = 0, 1, 2, . . . ,N and N = 40.
The input signal uj(k) is taken as same as that in Example 1.

The observation noise is taken as vj(k) ∈ N (0, σ 2) with
σ 2
= 0.042. The maximum iteration index is set to be

500. Initialize ENOILI according to Section V-S1) where the
weighting coefficients w1 and w2 are both set to be 1, and 4
is set to be 10−6I . Initialize Pj(k) in ILLS and ILRLS both to
be 106I . The estimates and estimation error by ILLS, ILRLS
and ENOILI are shown in Fig. 8–Fig. 10, from which the
following observations are obtained.
O4) Higher estimation accuracy is achieved by the proposed

ENOILI algorithm than the existing iterative identifica-
tion algorithms. Large estimation bias exists for ILLS

FIGURE 9. Estimates by ILRLS and ENOILI respectively.

FIGURE 10. Estimation error by ILLS, ILRLS and ENOILI respectively.

and ILRLS algorithms at some time indexes, as shown
in Fig. 8 and Fig. 9. The bias mainly results from
the observation noise. By designing bias compensation
term, the proposed ENOILI algorithm obtains more
accurate estimates than ILLS and ILRLS algorithms.
As shown in Fig. 10, the noise-induced estimation
error is compensated significantly as the iteration index
increases. (F1 is achieved.)

O5) Higher numerical stability is achieved by the proposed
ENOILI algorithm than the existing iterative identifi-
cation algorithms. As shown in Fig. 10, the estimation
errors by ILLS and ILRLS algorithms increase sharply
during some iterations which is undesirable in prac-
tice. This numerical instability mainly results from the
non-positive definite Pj(k) as discussed in Section III-B.
The ENOILI algorithm uses SVD operation instead of
the subtraction operation in ILLS and ILRLS algorithms
when updating Pj(k), thereby improving numerical sta-
bility significantly. (F2 is achieved.)

Fig. 11 shows the estimation error in 500th iteration under
different noise variance, from which it is indicated that the
noise deteriorates the estimation accuracy while the pro-
posed ENOILI algorithm compensates the noise-induced bias
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FIGURE 11. Estimation error under different noise variance.

and achieves accuracy enhancement compared with exist-
ing algorithms. This conclusion is in accordance with the
observation O4).

VII. CONCLUSION
In this paper, an enhanced normal-optimal iterative identifi-
cation algorithm for repetitive time-varying systems has been
proposed. The main motivations are that 1) the conventional
recursive methods have low tracking speed; 2) the presence
of observation noise always leads to estimation bias; and
3) there exists inherently numerical instability in the existing
RLS-like algorithms. To address these problems, an itera-
tion axis is introduced into the LTV systems. Identification
method that performs recursion in the iteration domain is
proposed such that the estimation lag is eliminated. To reduce
the estimation bias induced by noise, a bias compensation
term is developed to improve the estimation accuracy. The
convergence and numerical stability of the proposed algo-
rithm is further improved by a SVD-based update law for the
covariance matrix. Future work includes the possible appli-
cation of the proposed method to a real-world identification
problem.
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