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ABSTRACT At present, cloud robots tend to be intelligent and cooperative. Based on this, we proposed a
teaching method based on Imitation and a learning method that incorporates Incremental Learning and Meta
Learning. We use Imitation Learning to teach robots, and more concretely, we propose a natural teaching
method based on visual sense by using a depth camera, the robot can learn from the trajectory caught by
the camera. Meta Learning helps robots understand the task and split it into some subtasks which enhances
the level of generalization. Besides, once the circumstances change the robot can update the cloud database
using Incremental Learning. Using proposed method, we make robots capable of learning and cooperating
with other robots. It is no longer necessary for robots to learn based on a great number of data which is
a shortcoming of traditional robots. The greatest advantage of this method is that we improve the learning
efficiency of robots and enhance the level of generalization of the model. Our method was experimentally
verified in a laboratory and the results indicated that the method improved the learning efficiency of robots.

INDEX TERMS Imitation learning, cloud robot, incremental learning, meta learning.

I. INTRODUCTION
Nowadays, robot collaborative work has become an urgent
need, and the development of Industry 4.0 will accelerate this
process. Therefore, optimizing the human-robot cooperation
has been a very important matter in many recent works. As a
result, a new concept - cloud robots - was put forward. Cloud
robots, with the help of cloud platforms, allow robots to learn
from each other and share knowledge. The concept of cloud
robots was first proposed by Dr. Kuffner of Carnegie Mellon
university in 2010 [1]which was then quickly followed by
article [2] in which Steve Cousins summed up the concept
as ‘‘No robot is an island.’’ Cloud robot is the combination
of cloud computing and robotics. The robot itself does not
need to store all information or have strong computing power
and can connect to the relevant server and obtain the required
information when needed. Compared with traditional robots,
it has stronger learning ability. Cloud robots are developed
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from traditional robot combining network and cloud comput-
ing, which has obvious advantages over traditional robots.
With a Shared knowledge base, robots can share informa-
tion, so that robots around the world can learn from each
other through the knowledge base. Nowadays tasks requiring
robots to perform are increasingly complex, traditional robots
have limited computing power and storage capacity, while
cloud robots store dense computing and large storage in the
cloud, providing a wider range of applications. In addition,
many behaviors and action sequences of cloud robots are
encapsulated asmodules, and the development based onmod-
ularization also brings convenience to the use of program
developers.

To this day, many researches have been done on the learn-
ing and sharing of knowledge among robots. For example,
a multi-robot, multi-tasking learning framework, after a robot
has passed the demonstration learning task, lessons learned
can be moved to other robots and used to perform another
task [3]. A learning framework of adaptivemanipulative skills
from human to robot to facilitate robot skill generalization is
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described in [4]. An adaptive data sharing method in collabo-
rative robots is described in [5]. A robot mutual learning sys-
tem, each robot in the system is individual but they can also
exchange information help each other learn [6]. A language
decision tree algorithm for multi-robot path learning problem
determines robot’s behaviors dynamically [7], and so on.

In previous works, Sumin Cho and Jo [8] proposed
an incremental learning method for teaching robots to
do tasks through selected kinesthetic teaching trials [8].
A. M. Ghalamzan E. proposed a method for learning a con-
trol policy for a task from demonstration [9]. Although [8]
requires kinesthetic teaching trials, which is not convenient
from a practical standpoint, a better way is to let the robot
learn directly from video. The empirical knowledge of [9]
also is not self-taught. But in order to improve the adaptability
of acquired skills to the environment and the generalization
of tasks, it’s important to make robots learn by themselves.
So, in this paper, a collaborative learning method for cloud
robots based on incremental learning is proposed.

The main contribution of this paper lies in the use of
human-like thinking to obtain effective methods suitable for
robot autonomous learning, including:
(1) A task understanding Meta Learning method based on

neural task programming is designed. The dynamic pro-
gramming idea of this learning method can effectively
deal with new tasks.

(2) Based on the essence of learning and the structure
of thinking, a human-assisted robot learning method
was proposed, and a skill teaching method oriented to
human-machine collaboration was constructed. Using
this approach, robots can quickly learn new skills with
a small amount of demo data.

(3) Combining the robot’s learning rules with the knowledge
structure characteristics of the robot’s brain, a collabora-
tive incremental learning method of openness, sharing,
and group cooperation is proposed to obtain a more
efficient robot autonomous learning framework.

The remaining sections are as follows. Section II is litera-
ture review. Section III is an overview of this paper. The task
understanding method is introduced in Section IV. The skill
teaching method is introduced in Section V. In Sections VI,
we introduce Incremental Learning. The whole collaborative
learning frame is introduced in SectionVII. VIII describes the
experiments and the results in detail. Finally, the conclusion
of this paper follows in Sections IX.

II. RELATED WORK
At present, cloud robots system allows robots to learn from
each other and share knowledge within the cloud platform.
Inspired by biology, John Lones proposed a robotic adaptive
approach [10]. Arren J. Glover proposes an incremental learn-
ing framework that enables lifelong learning and continuous
learning of new things [11]. The above researches verified the
feasibility of cloud robots.

In 2011, Eindhoven university et al. and Philips launched
the RoboEarth project jointly to build a world wide web for

FIGURE 1. The architecture of cloud robot system based on incremental
learning.

robots [12]. [13] discussed how to make multi-agent work
together, while a better solution is to enable multiple robots
to learn together.

Sumin Cho and Jo [8] proposed an incremental learning
method for teaching robots to do tasks through selected
kinesthetic teaching trials [8]. It demonstrates that robot
can incrementally refine and reproduce learned behaviors
that accurately represent the essential characteristics of the
teaching trials through incremental learning method and that
it can reject erroneous teaching trials to improve learning
performance.

Chelsea Finn et al. [14] present a meta-imitation learning
method that enables a robot to learn how to learn more
efficiently, allowing it to acquire new skills from just a single
demonstration [14]. It combines meta-learning with imita-
tion, enabling a robot to reuse past experience and, as a result,
learn new skills from a single demonstration. This proves that
in the field of robotics, the use of meta-learning can greatly
improve the efficiency of robotic learning methods. In [15],
based on meta-learning technology, robots can learn from
human original video pixels.

In what follows, we will propose a collaborative learning
method for cloud robots based on incremental learning.

III. OVERVIEW
Fig. 1 illustrates the architecture of the proposed cloud
robot system based on incremental learning. The first part
of the system is a collaborative learning platform for cloud
robots, which will recycle information from terminal robots
to improve the skills learning network and evaluate different
states and actions. The second part of the system is the use
of terminal robot. The terminal robot first splits the task
into different skill combinations during the execution of the
task, and at the same time, acquires the skills according to
the human’s imitative learning for the unknown task, and
optimizes the acquired skills by obtaining the execution result
during the actual execution and updating the new network, the
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new network will be able to better understand the relationship
between action and success. In this way, at each regular inter-
val, each robot will obtain a copy of the upgraded learning
network from the cloud robot collaborative learning platform,
and then begin to use the skills information in these new
learning networks to guide the action. Because these loop-
updated learning networks will do a better job in assessing
real-world actions, the robot itself will achieve better results.
This virtuous circle is repeated in the continuous improve-
ment of the task. By that means, the performance of hybrid
intelligent networks is improved.

IV. TASK UNDERSTANDING METHOD BASED ON
NEURAL TASK PROGRAMMING
Current AI based learning methods, especially deep learning,
require large amount of previously labeled data for better
training results. However, since robots generally take sev-
eral seconds or even minutes to complete the learning task,
generating a relatively good amount of training data is rather
difficult. Furthermore, traditional robot teaching is usually
conducted in a structured environment with poor scalability.
So, we need a new method to train robots efficiently.

This study adopts a robot task learning and understand-
ing framework of new neural task programming (NTP).
It supports a few-shot learning from presentation and neural
network program induction [16]. As a novel meta-learning
method, NTP is a hierarchical model that recursively splits
a large task into simple subtasks that are suitable for
robotic demonstration learning like MOVE_LEFT, FOL-
LOW_THE_CURVE, PICK_UP AND DROP_INTO.

The structure of a task mainly consists of three variations:
1) Repeat Times: the number of times the task needs to be
executed; 2) Task Execution Sequence; and 3) Task Content:
what the robot need to do and what is the success conditions.
Define T as the set of all simple subtasks, note that T can
be infinite. S as the environment state space, A as the action
space. For each task t ∈ T the Boolean function g as
described in Eq.(1) is the success condition of the task.

g : S × T → {0, 1} (1)

Given the state s ∈ S, if task t is completed in states, then
g(s, t) = 1, otherwise g(s, t) = 0. Then, we use Task
Description ϕ(t) ∈ 9 to describe each task, where 9 is a
collection of all possible task descriptions. Formally, the task
description is treated as a sequence of random variables:

ϕ(t) = {x1, x2, . . . , xN } (2)

NTP takes the task description ϕ(t) as input to instantiate
strategies and is defined as a time series that describes the
task process and the ultimate goals. In many real-world tasks,
robots cannot access the underlying environment state. It only
receives the environmental observation sample o ∈ O corre-
sponding to the state s, whereO is the observation space. Our
goal is to learn a ‘‘meta-policy’’ that instantiates feedback
strategies from a mission statement as below:

π̃ : 9 → (O→ A) (3)

During the test, each new task description ϕ(t) is fed into
NTP. Then the meta-policy generates a strategy as Eq. (3) to
achieve the mission completion state sT :

π (a|o;ϕ(t)) : O→ A (4)

where g(sT , t) = 1. For example, NTP splits the task of robot
moving objects into subtasks.

NTP has three key components: task description interpreter
fTDI , task description encoder fTDE , and core network fCN .
The task description is a time series that can describe the
entire task step and the final goal, such as the human teaching
video or the trajectory of the object. The task description
encoder encodes a task description ψ into a vector space v.
The core network uses the state s, the program p, and the
task description ψ to produce the program key k and an
end-of-program probability e. Then we get a program i that
gets maximum with the key k in a memory that stores all
programs. And when the probability reaches the threshold
δ, the program returns. The task description interpreter takes
the task description as input and chooses to perform one
of the following two operations: (1) When the current pro-
gram is not the bottom, it predicts the corresponding subtask
description for the next subroutine;(2) When the program is
the bottom (can be the basic skills of the robot or the API
provided by the robot), the task description encoder converts
the task description into a vector space.

Define [M key
j ; Mprog

i ] is a learnable key-value memory
structure used to generate sub-program, fen(o) is a domain-
specific task encoders used to map an observation to a state
representation. The core network takes status, program, and
task descriptions as input, to generate the next subroutine to
be called and the probability of program ending as shown in
Algorithm 1.

NTP is a task-independent learning algorithm that can
be applied to various tasks with a potentially hierarchical
structure, whose key idea is to learn reusable representations
that are shared across tasks and domains. NTP explains a task

Algorithm 1 NTP Inference Procedure
Inputs: task description ψ , program id i, and environment
observation o
function RUN (i, ψ)

e← 0, p← Mprog
i , s← fen(o), v← fTDE (ψ)

while e← δ do
k, e← fCN (v, p, s), ψ ′← fTDI (ψ, p, s)
i′← argmax j=1...N (M

key
j , k)

if program i′ is primitive then if i′ is an API
a← fTDI (ψ ′, i′, s) decode API args a
RUN_API(i′, a) run API i′ with args a
else
RUN (i′, ψ ′) RUN program i′ with ψ ′

end if
end while

end function
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and instantiates a hierarchical strategy as a neural program,
where the underlying program is the basic operation or cor-
responding basic skills that can be performed in the environ-
ment. This hierarchical decomposition facilitates information
hiding and modularity because the underlying module can
only access the corresponding subtask descriptions related to
its function, which prevents the model from learning spurious
reliance on training data for better reusability. At the same
time, NTP solves the problem of task generalization. As for
the basic task at the bottom level, One-Shot learning (One-
Shot learning) mode [17] can be used to train new skills and
optimize existing ones by incremental learning parameters
obtained from human-computer collaborative learning. This
section will be described in detail below.

For tasks that are difficult for the robot to understand or
tasks that the robot has never met, that is, tasks that cannot
be resolved by NTP, the analysis can be assisted by human
intervention. For NTP, humans only need to provide task
description information in the input of task description inter-
preter or split and combine the targets so that NTP can split
the corresponding skills.

V. SKILL TEACHING METHODS FOR HUMAN-COMPUTER
COLLABORATION
In terms of teaching and learning, in many robot-learning
methods, a video would be provided to the robot to demon-
strate how to do a certain task, which illustrates the trajectory
and actions of the task. The combination of the interpreta-
tion of the task demonstration by the human through natural
interaction and the simulation of the robot can speed up the
learning process. Programming by demonstration (PbD) can
intuitively teaches robots sophisticated motor skills without
the need for an amount of technical knowledge to program
the robot [18]–[20]. However, there is a problem with this
approach that any minor changes to the task require further
demonstrations. Inspired by neurobiology, robot motion is
divided into discrete motion states or ‘‘motion primitives,’’
which have significant advantages in inferring logical struc-
tures and inducing task execution procedures. The common
method is to split the trajectory into a series of key points.
If enough information locations are selected, interpolation
between key point sequences can produce movements close
enough to the original demonstration. However, the disadvan-
tage is to ignore important information about changes along
the trajectory, or a fixed path between the key points, or add
complex point-to-point methods to consider modifications to
the path. This paper proposes a new demonstration learning
method (Learn from Demonstrations, LfD), which fills these
shortcomings by avoiding the definition of state machines
or reward functions. The goal of LfD is to learn strategies
that can extend beyond the provided examples and be robust
to disturbances. Use meta-learning methods to help robots
quickly learn new tasks from gradient-based strategy updates
[14]. Essentially, it is to learn strategy parameters. A new skill
can be directly learned given a single demonstration, allowing
the robot to efficiently learn new skills without any other

mechanism. The process is performed in a low dimensional
subspace where the trajectory of the robot can be effectively
controlled. The goal of this project is to learn a strategy that
can quickly adapt to new skills. Aiming to eliminate the need
for a large amount of task-specific demonstration data, the
scheme will reuse demonstration data from other skills to
achieve efficient learning of new skills. Through cross-skill
adaptation training, meta-learning effectively treats the entire
skill as data points. The amount of data available for each
individual skill is relatively small. In the context of robotics,
this is the universal robot we want to develop—the ability
to provide a small amount of supervision for every new skill
a robot should perform. Consider a strategy π that maps
observations o to predictive actions â. DuringMeta Learning,
the strategy was trained to accommodate numerous tasks.
Formally, we set each simulation skill as:

T i=
{
τ={o1, a1, . . . , oT , aT} ∼ π∗i ,L

(
a1:T , â1:T

)
,T
}

(5)

which is composed of demo data τ generated by the human
expert strategy π∗i and a loss function L for simulation. The
feedback is provided by the loss function as below.

L
(
a1, . . . , aT , â1, . . . , âT

)
→ R (6)

We use a mean squared error loss as a function of policy
parameters plc as follows:

LTi
(
fplc
)
=

∑
τ (j)∼Ti

∑
t

||fplc
(
o(j)t
)
− a(j)t ||

2
2 (7)

We detail the procedure in Algorithm 2.
Due to imperfections in the actions provided in the demon-

stration video, we further use a neural network to let the robot
learn directly from the video frames as shown in Fig. 2., for

Algorithm 2 Meta-Imitation Learning
Require: p(T ): distribution over tasks
Require: α, β: step size hyper parameters
randomly initialize ε
while not done do
Sample batch of tasks Ti ∼ p(T )
for all Ti do
Sample demonstration τ = {o1, a1, . . . oT , aT } from Ti
Evaluate ∇εLTi (fε) using τ and LTi in Eq. (2)
Compute adapted parameters with gradient descent:
ε′i = ε − α∇εLTi (fε)
Sample demonstration τ ′i =

{
o′1, a′1, . . . o′T , a′T

}
from Ti for the meta-update

end for
Update ε← ε − β∇ε

∑
Ti∼p(T ) LTi (fε′i ) using

each τ ′i and LTi in Equation (7)
end while
return parameters ε that can be quickly adapted to new

tasks through imitation.
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FIGURE 2. Diagrams of meta-imitation learning architecture.

which the loss function is defined as follows:

L∗Ti
(
fplc
)
=

∑
τ (j)∼Ti

∑
t

||Wy(j)t + b− a
(j)
t ||

2
2 (8)

where y(j)t is the set of post-synaptic activations of the last
hidden layer, W and b is the weight matrix and bias of the
final layer. With gradient descent and the meta-learned loss
function L∗Ti , we can get the adapted parameter θ ′i of each task
Ti. So, we can get meta-objective as follows:

min
θ,W ,b

∑
Ti∼p(T )

LTi (fθ ′i ) =
∑

Ti∼p(T )

LTi
(
fθ − α∇θL∗Ti (fθ )

)
(9)

In general, some current image classification networks,
such as VGG, can be used to extract 2D position points.
The robot information and position information are fused
by the full connection layer and the action feature vector
is output.

VI. INCREMENTAL LEARNING
With the development of artificial intelligence and machine
learning, people have developed many machine learning
algorithms. Most of these algorithms are batch learning
(Batch Learning) modes. That is, all training samples can be
obtained once before training. After learning these samples,
the learning process is terminated and no new knowledge
is learned. However, in practical applications, the training
samples of robots are not usually available all at once, but are
gradually obtained with time, and the information reflected
by the samples may also change with time. The cloud robot
based collaborative learning system is an agent that can con-
tinuously learn new knowledge from new samples and can
save most of the knowledge that has been learned before.
Incremental learning is very similar to human’s own learn-
ing patterns. Because people learn and receive new things
every day while they are growing up, learning is gradually
carried out. Moreover, human beings generally cannot forget
the knowledge they have learned. Therefore, the incremental
learning method is very suitable for the shared collaborative
learning model of cloud robots. With the continuous increase
in data size, the demand for time and space will increase
rapidly, which will eventually lead to the speed of learning
not being able to keep up with the speed of data update. If the
new sample arrives the robots need to learn all data again,
it will consume a lot of time and space, so the batch learning
algorithm cannot meet this requirement. Only the incremental

learning algorithm can gradually update the knowledge, and
can correct and strengthen the previous knowledge, so that
the updated knowledge can adapt to the newly arrived data
without having to relearn all data. The incremental learning
algorithm should simultaneously satisfy the below charac-
teristics: 1) New knowledge can be learned from new data;
2) Data that has been previously processed does not require
processing repeatedly; 3) Only one training observation sam-
ple is seen and learned at a time;4) Learning new knowledge
while preserving most of the previously learned knowledge;
5) Once learning is completed, training observations samples
are discarded; 6) The learning system does not have prior
knowledge of the entire training sample. The importance of
incremental algorithms is reflected in the following aspects:
In an actual database, the amount of data tends to increase
gradually. Therefore, when dealing with new data, the learn-
ing method should be able to make some changes to the
trained system to learn the knowledge contained in the new
data; The time to modify a trained system is usually lower
than the cost of retraining a system. Besides, cloud resources
can promote incremental learning [21].

Assume the old skills network have n groups feature map-
ping nodes and m groups broad enhancement nodes. The new
learned skill feature mapping group nodes can be denoted as:

Zn+1 = φ(XWn+1 + βn+1) (10)

Its enhancement nodes are as follows:

Hm = [ξ (Zn+1W1 + β1), . . . , ξ (Zn+1Wm + βm)] (11)

where Wi and βexi are randomly generated. Assume A is a
n×m pattern matrix of the cloud robots knowledge network
and Amn+1 = [Amn |Zn+1|Hm] is the upgrade of new mapped
features and the corresponding enhancement nodes. The rel-
atively new pseudo-inverse matrix is as follows:

(Amn+1)
+
=

[
(Amn )

+
−MBT

BT

]
(12)

BT =

{
(C)+ if C 6= 0
(1+MTM )−1MT (Amn )

+ if C = 0
(13)

where M = (Amn )
+[Zn+1|Hm], C = [Zn+1|Hm]− AmnM

Then, the upgraded weights are:

Wm
n+1 =

[
Wm
n −MB

TY
BTY

]
(14)

Now we can use (Amn+1)
+ and Wm

n+1 update the network,
the above is the steps of incremental learning to add new skill
into network.
This paper introduces a mature incremental learning

method for multi-machine collaborative learning, such as the
network structure of Broad Learning System (BLS) proposed
by Prof. Junlong Chen [22]. The BLS can be extended hor-
izontally, using the characteristics of the input mapping as
the network’s feature node, and then enhanced to randomly
generate weights (enhanced nodes), and connect the mapping
features and enhancement nodes to the output directly. The
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corresponding output coefficients can be obtained by fast
Pseudo pseudo-inverse. In this way, with the newly added
neural nodes, including the newly added feature nodes, BLS
does not need to start from scratch. It only needs to adjust
the weights associated with the newly added nodes, and it can
also perform incremental learning on the newly added inputs.
Such a network is very suitable for multi-robot sharing col-
laborative learning. The above section has already introduced
that the robot can learn through human teaching and can also
learn through the experience knowledge of other robots. This
allow the robot to think like a human being would and learn
to execute new tasks by itself without being any specific
programming. Incremental learning methods can adapt to
constantly learning new information and can use visual, audi-
tory, and tactile as inputs of data. Facing new tasks, the robot
will automatically look for previous experiences, and share
knowledge and communicate with other robots through the
internet.

Assume A is a n × m pattern matrix of the cloud robots
knowledge neural network which has n group of feature
mapping nodes and m group of enhancement nodes, W are
connecting weights. X is a new knowledge learned by a
robot, and Znx = [φ

(
XWe1 + βe1

)
, . . . , φ

(
XWen + βen

)
] is

the incremental features updated by X . The new node can be
described as:

Ax =[φ
(
XWe1 + βe1

)
, . . . , φ

(
XWen + βen

)
|

ξx
(
ZnxWh1 + βh1

)
, . . . , ξx

(
ZnxWhm + βhm

)
] (15)

whereWei ,Whj and βei , βhj are random variation origin from
the neural network, and ξx is a unique random mappings.
Then Amn is updated as below:

xAmn =
[
Amn
ATx

]
(16)

The new knowledge updating algorithm is shown in
Algorithm 3.

As a result, the pseudo-inverse of xAmn can be deduced as
follows:

(xAmn )
+
= [(Amn )

+
− BDT |B] (17)

where DT = ATx A
m+
n .

The relatively upgraded pseudoinverse matrix (Am+1)+ is
deduced as follows:

(Am+1)+ =
[
(Am)+ − DBT

BT

]
(18)

Meanwhile, the new weights are:
xWm

n = Wm
n + (Y Ta − A

T
xW

m
n )B (19)

where Ya are the labels of X .

VII. COLLABORATIVE LEARNING FRAME FOR CLOUD
ROBOTS BASED ON INCREMENTAL LEARNING
Fig. 3 shows the cloud robot collaborative learning method
proposed in this paper. This way of accessing information,
just like accessing resources on the Internet, has obvious

Algorithm 3 Collaborative Incremental Learning
Require: X a new knowledge learned by a robot
i = 0;
while i <= n do

Random Wei, βei;

Calculate Zi = [φ(XWei + βei)];
i++;

end while
Set the feature mapping group Zn = [Z1, . . . .,Zn];
for j = 1; j <= m do
Random Whj, βhj;

Hj = [ξ (ZnWhj + βhj)];
end
Set the enhancement nodes group Hm

= [H1, . . . ,Hm];
Calculate A+ = lim

λ→0
(λI + AAT )−1AT ;

while The error of model is not small enough do
if p enhancement nodes are added then
Random Whm+1 , βhm+1;

Calculate Hm+1 = [ξ (ZnWhm+1 + βhm+1 )];
Update Am+1n ;

Set D = (Am)+ξ (ZnWhm+1 + βhm+1 );
update (Am+1)+ with Eq. (8)
Set C = ξ (ZnWhm+1 + βhm+1 )− A

mD;
if C 6= 0 then
BT = (C)+;
else
BT = (1+ DTD)−1BT (Am)+;

end
m++;
else
Set new knowledge as X;
update Ax ,x Amn by Eq. (16),(17);
update (xAmn )

+ and (xWm
n )
+ by Eq. (18),(19);

end
end while
returnW ;

advantage. For tasks that robots do not understand, robots
can search for ready-made solutions from the cloud resources
(same task solution methods). When a robot starts acting,
we will assist in adjusting the actions it chooses. In this way,
the results of behaviors will sometimes be better than the
execution results of experiences, and sometimes it will be
worse because of human’s incorrect guidance. This allows
every robot to explore different ways of handling a certain
task. The actions taken by the robots, their behavior and the
records of the result are ultimately sent to the cloud robot.
The server collects information about all robots and uses
them cyclically (incremental learning) to improve the neural
networks used to evaluate different states and actions.

This method mainly applies the current cutting-edge tech-
nologies including cloud storage, cloud computing, and big
data processing. In addition to the function of sharing knowl-
edge and experience which is analogous to what other most
current cloud robot platforms have, another major function
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FIGURE 3. Collaborative learning framework based on cloud robots.

of the cloud robot collaborative learning platform is collab-
orative learning. Fig. 3 shows a diagram of collaborative
learning model based on a cloud robot platform. Within this
framework, the robot does not need to store any empirical
knowledge or skill experiences locally. Instead, it acquires
experiences or verified knowledge from the cloud robot.
Cloud robots store skill knowledge learned by all robots and
are open to all robots. When dealing with tasks, terminal
robots only need to obtain relevant knowledge and experience
through the Internet platform. When they cannot cope with
tasks, they can learn by means of human’s collaboration. The
new skills and knowledge obtained by the terminal robot
learning or the result data obtained by performing tasks and
so on can be used to train the copied version neural network
obtained from the cloud robot platform. The updated network
parameters are used to update the network parameters of the
cloud robot platform. Therefore, the newly acquired experi-
ence knowledge can be transmitted synchronously to other
robots to realize the function of mutual learning and improv-
ing together.

We put forward the collaborative learning frame for cloud
robots based on incremental learning as shown in Fig. 4. First
when the robot is confronted with a new task, the robot splits
the task by using the NTPmethod, which has been introduced
in III. This recursively divides large tasks into simple sub-
tasks, which are suitable for robot demonstration learning.
We first define a set of subtasks T, which can be combined
into all the tasks we need. The image data collected by
Kinect2 is used as the current environmental state. For each
subtask, we delegate a neural program to perform tasks. The
neural program performs end-to-end training with the task
decomposition mechanism. We define three key components
of NTP: task description interpreter, task description encoder,

FIGURE 4. Collaborative learning frame for cloud robots based on
incremental learning.

and core network. The task description encoder is a BP neural
network. In the core network, CNN is used to encode the state
of the environment, and RNN is used to encode the program
into vector features, and these two features are concatenated
with the task description vector as the input of the BP neural
network.

When a task that cannot be split is encountered, a human
expert can intervene, and once the split is done, a series of
skill sequence combinations are obtained, and then the central
brain, namely the cloud robot, is used to search for related
skills. The skills that the cloud robot had mastered, if any,
are used to perform the task. For the skills that are dimmed
difficult for the robot to master, a human expert input is pro-
vided and the robot can then directly learn from imitation and
combine with the above-mentioned already acquired skills to
complete the task. In this imitation learning setup, a new skill
that was extracted from a generated demonstration by sample
batch of tasks. During the meta-training, the strategy is to
use a demo of the expert about sample batch of tasks to train
and then test in a new demo to determine its training and test
errors based on the loss. Then, improve the strategy by taking
the changed test errors with the new demo of parameters into
account. Therefore, the test error of sample demonstrations
is a training error in the meta-learning process. At the end
of meta-training, new skills are extracted from task set and
meta-performance is measured by a demonstrated strategic
performance. The result of meta-training is a strategy that can
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adapt to new skills through a single demonstration. There-
fore, during the meta-test, a new skill will be sampled and a
demonstration of the skill will be provided, and themodel will
be updated to obtain the strategy of the skill. During meta-
testing, a new skill may involve new goals or new operations
or previously unseen objects.

Because each robot has a different environment and its own
individual differences and other reasons, each skill performs
differently on each robot. For the execution result after the
completion of the task, humans can give a certain evaluation
according to the execution situation, and when the robot
shows a deviation or error, it can be timely corrected by
humans. Humans utilize the execution result data to retrain
the skill model. Then when robots in different circumstances
uploadwhat they learned, there is always something same and
something different. In this case, we use incremental learning
to improve the learning efficiency of robots. We only keep
the different part and update it to the cloud robot platform to
optimize the mastered skills and increased the skill numbers
in the cloud database.

VIII. EXPERIMENT
A. ENVIRONMENT OF EXPERIMENT
To verify the feasibility of the proposed method, we used
Robot-A (GRB3016), Robot-B (UR3) and Robot-C (KUKA)
as our test platforms. Robot-A, Robot-B and Robot-C had
all been connected to the Cloud. We use prior knowledge
to define a set of valid subtasks T, which include actions
such as move, insert, remove, etc. The image data collected
by Kinect2 is used as the current environmental state data.
In addition, when there is an indivisible task, the experi-
menters on the side will step in and mark it manually. Before
the experiment, we will use the end-to-end method to train
the imitation learning network. The input of the imitation
learning network is some videos of the same task. In the
experiments, PbD trials were first carried out on Robot-A
and the learned trajectories were stored for the purpose of
teaching the remaining robots. Fig. 5 shows the environments
for our experiments. We put a steel plate on the experimen-
tal platform that was in front of the robot. And the opera-
tor stood beside the experimental platform to demonstrate
the correct trajectory to the robot by gestures as shown in
Fig. 7 experiment site 1. Our robots have a shaft and a depth
camera attached to the end of arm. The camera can catch the
image of the steel plate and then tell the robot how deep it
should be.

FIGURE 5. Environments for experiment.

FIGURE 6. Steel plate arrangement and projection. (a) The steel plate
parallel to the table. (b) A steel plate with an edge contacting the
platform forming an angle of θ degrees. (c) Steel plates with long sides
forming an angle of β degrees with the ground and short sides forming
an angle of α degrees with the ground. (d) The width of the slot. (e) The
width of the slot. (f) The width of the slot.

FIGURE 7. Experiment without incremental learning.

FIGURE 8. Experiment with incremental learning.

Below two experiments are presented. In each experiment,
we placed the steel plate parallel to the table and demon-
strated the trajectory to Robot-A [see Fig. 6(a)]. However, for
Robot-B, we made only one edge of the steel plate contact
with the platform to form a θ degree angle. As for Robot-
C we made only the corner of the steel plate contact with
the platform. In this case, the longer edge of the steel plate
and the platform formed a β degree angle while the shorter
one and the platform formed a α degree angle as shown
in Fig. 6(b)-(c).

As it is known to us all, the projection of an object depends
on the placement of the object. Therefore, the projection and
the trajectory were the same for Robot-A. The width of the
slot was greater than the diameter of the shaft at any position
as shown in Fig. 6(d). The black line was the projection of the
trajectory and the red point of was the projection of the shaft at
the end of arm. For Robot-B, things changed. Because of the
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FIGURE 9. Time and Length of trajectory of Peg-into-hole and Trajectory tracking. (a) The trend of the time and the length of trajectory when robots
pegged their shaft into the hole. (b) The trend of trajectory tracking. (c) The trend of the time and the length of trajectory when robots pegged their shaft
into the hole. (d) The trend of trajectory tracking.

angle, the shape of the projection changed so that the width
of the projection was less than that of the trajectory at some
positions. Maybe it would become less than the diameter of
the shaft as shown in Fig. 6(e). Because the placement of the
steel plate became more different for Robot-C, the projection
deformed more seriously. It meant that there might be more
space where the diameter of the shaft was less than the width
of the projection of the trajectory as shown in Fig. 6(f). In the
similar circumstance, we let robots peg the shaft into the hole
to see results.

B. RESULT ANALYSIS
For the first time, the operator demonstrated the correct
trajectory to Robot-A. Robot-A learned the skills by track
tracking and then it shared skills with Robot-B and Robot-C
through the cloud. And then the shaft succeeded to go along
the track without touching the steel plate.

But when Robot-B learned the skill, as we mentioned
above we changed the layout of the steel plate and we didn’t
revise the solution. Thus similarly to Robot-A, Robot-B
inserted the shaft vertically into the steel plate. Thus Robot-B
just likewhat Robot-A did inserted the shaft vertically into the
steel plate. As a result, the shaft touched the steel plate and
Robot-B had to stop working to prevent damage. Robot-C
was the same as Robot-B failing to find the solution that is
perfect to the problem. Because it didn’t learn the correct
trajectory from the failure of Robot-B as shown in Fig. 7.
But it’s not absolute. We found the angle had a critical value.
If the angle was greater than the critical value robots is sure
to fail because when they inserted the shaft vertically into
the steel plate, the width was too small for the shaft to pass.
However, if the angle is less than the critical value, because
there was enough space for the shaft to pass, robots was able
to accomplish the task.

In the second experiment, the operator did something dif-
ferent, showing Robot-B how to find the correct solution
when the placement of the steel plate had been changed. Then
Robot-B used incremental learning technology and uploaded
the skills it learned to the cloud for other robots(Robot-C)
to refer. In this case, when Robot-C tried to solve the prob-
lem, it didn’t insert the shaft vertically into the steel plate
directly. Firstly, it found the placement of the steel plate had
changed through an image returned by the camera. Then it
adjusted the arm making the shaft perpendicular to the steel

TABLE 1. The feasibility of trajectory tracking with different methods
when the angle changes.

TABLE 2. The feasibility of peg-into-hole with different methods when
the angle changes.

plate. Finally, Robot-C accomplished the task successfully as
shown in Fig. 8.

The result is shown in TABLE 1. When the angle θ was
less than 27 degrees, the three methods performed well when
they tried to solve the trajectory tracking problem. And the
situation was the samewhen the angles α and β were less than
35 and 24 degrees, respectively. But when the angle became
greater, we found only our method with incremental learning
worked out while the other two methods couldn’t accomplish
the task. This is because, in these cases, the motion planning
of the robotic arm can change significantly. Models with-
out incremental learning cannot compare well with previous
scenarios and learn such changes, while models using incre-
mental learning can update and optimize neural networks that
evaluate different states and actions and upload these changes
to the cloud robot.

And unsurprisingly we saw the same case when robots
pegged the shaft into the hole in TABLE 2. The first exper-
iment we simulated the traditional batch learning model.
Once learned the robots won’t continue to learn to revise or
optimize the solution. They only repeat what they learned
and the learning process is one-way as shown in Fig. 7. So,
once the circumstance change, robots will fail to complete the
work. And then we will have to make one robot learn how to
work in the new circumstance and upload what it learned to
the cloud. It’s too troublesome.
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TABLE 3. The initial study time and the update learning time of robot-a
with different methods in two experiments.

We applied incremental learning in the second experiment.
The learning process is two-way as shown in Fig. 8. In this
case, every robot can upload what they learned in the different
circumstances to revise and optimize the solution to a kind
of problems instead of only one problem. With the growth
of the number of trails, the skills mastered became more
and more and were optimized by incremental learning. And
as shown in Fig. 8, it led that the time used to learn and
the length of trajectory both converged to optimal solution.
Fig. 9(a) shows the trend of the time and the length of trajec-
tory when robots pegged their shaft into the hole. Fig. 9(b)
shows the trend of trajectory tracking. And as what we can
see, they all become less in the process of experiment. End
results are just as shown in TABLE 3. Learning from scratch
requires much more time than just updating the network.
The result proved that the model we proposed was really
make robot more intelligent and they learned from each other.
Also, the learning and working efficiency of cloud robot with
incremental learning is higher than that of traditional batch
learning through our experiment. Whenever a new task is
processed, it is not necessary to rebuild all the knowledge
bases, but only to update the changes caused by the new tasks
on the basis of the original knowledge bases. Incremental
learning makes full use of historical training results in the
current sample training, thereby significantly reducing the
time for subsequent training.

We proved that the learning and working efficiency of
cloud robot with incremental learning is higher than that of
traditional batch learning through our experiment.

IX. CONCLUSION
This paper presents an effective collaborative learning
method that incorporates Incremental Learning and Meta
Learning to train cloud robots. The knowledge is learned by
themselves rather than being added and edited by human.
Furthermore, the knowledge learned by a robot can be shared
with other robots once uploaded to the cloud.

Our experiment results show that the proposed method
using Incremental learning is more efficient than the with-
out, proving that incremental learning and Meta Learning
decrease the amount of time necessary to relearn a skill.
It makes it not necessary for robots to relearn from the begin-
ning. Also, our results proved that implementing our method
is not only feasible but also valid.

There are still some shortcomings in the current
research. At present, although we increase the learning and

working efficiency of cloud robot by using Incremental
Learning and Meta Learning, we only implement some
simple functions. Whether our system is intelligent enough
to accomplish a lot of complicated tasks remains to be
confirmed.
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